avrdude/src/jtagmkII.c

4065 lines
121 KiB
C

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2005-2007 Joerg Wunsch <j@uriah.heep.sax.de>
*
* Derived from stk500 code which is:
* Copyright (C) 2002-2004 Brian S. Dean <bsd@bsdhome.com>
* Copyright (C) 2005 Erik Walthinsen
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* $Id$ */
/*
* avrdude interface for Atmel JTAG ICE mkII programmer
*
* The AVR Dragon also uses the same protocol, so it is handled here
* as well.
*/
#include "ac_cfg.h"
#include <ctype.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <sys/time.h>
#include <time.h>
#include "avrdude.h"
#include "libavrdude.h"
#include "crc16.h"
#include "jtagmkII.h"
#include "jtagmkII_private.h"
#include "usbdevs.h"
/*
* Private data for this programmer.
*/
struct pdata
{
unsigned short command_sequence; /* Next cmd seqno to issue. */
/*
* See jtagmkII_read_byte() for an explanation of the flash and
* EEPROM page caches.
*/
unsigned char *flash_pagecache;
unsigned long flash_pageaddr;
unsigned int flash_pagesize;
unsigned char *eeprom_pagecache;
unsigned long eeprom_pageaddr;
unsigned int eeprom_pagesize;
int prog_enabled; /* Cached value of PROGRAMMING status. */
unsigned char serno[6]; /* JTAG ICE serial number. */
/* JTAG chain stuff */
unsigned char jtagchain[4];
/* The length of the device descriptor is firmware-dependent. */
size_t device_descriptor_length;
/* Start address of Xmega boot area */
unsigned long boot_start;
/* Major firmware version (needed for Xmega programming) */
unsigned int fwver;
};
#define PDATA(pgm) ((struct pdata *)(pgm->cookie))
/*
* The OCDEN fuse is bit 7 of the high fuse (hfuse). In order to
* perform memory operations on MTYPE_SPM and MTYPE_EEPROM, OCDEN
* needs to be programmed.
*
* OCDEN should probably rather be defined via the configuration, but
* if this ever changes to a different fuse byte for one MCU, quite
* some code here needs to be generalized anyway.
*/
#define OCDEN (1 << 7)
#define RC(x) { x, #x },
static struct {
unsigned int code;
const char *descr;
} jtagresults[] = {
RC(RSP_DEBUGWIRE_SYNC_FAILED)
RC(RSP_FAILED)
RC(RSP_ILLEGAL_BREAKPOINT)
RC(RSP_ILLEGAL_COMMAND)
RC(RSP_ILLEGAL_EMULATOR_MODE)
RC(RSP_ILLEGAL_JTAG_ID)
RC(RSP_ILLEGAL_MCU_STATE)
RC(RSP_ILLEGAL_MEMORY_TYPE)
RC(RSP_ILLEGAL_MEMORY_RANGE)
RC(RSP_ILLEGAL_PARAMETER)
RC(RSP_ILLEGAL_POWER_STATE)
RC(RSP_ILLEGAL_VALUE)
RC(RSP_NO_TARGET_POWER)
RC(RSP_SET_N_PARAMETERS)
};
/*
* pgm->flag is marked as "for private use of the programmer".
* The following defines this programmer's use of that field.
*/
#define PGM_FL_IS_DW (0x0001)
#define PGM_FL_IS_PDI (0x0002)
#define PGM_FL_IS_JTAG (0x0004)
static int jtagmkII_open(PROGRAMMER * pgm, char * port);
static int jtagmkII_initialize(PROGRAMMER * pgm, AVRPART * p);
static int jtagmkII_chip_erase(PROGRAMMER * pgm, AVRPART * p);
static int jtagmkII_read_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char * value);
static int jtagmkII_write_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char data);
static int jtagmkII_reset(PROGRAMMER * pgm, unsigned char flags);
static int jtagmkII_set_sck_period(PROGRAMMER * pgm, double v);
static int jtagmkII_setparm(PROGRAMMER * pgm, unsigned char parm,
unsigned char * value);
static void jtagmkII_print_parms1(PROGRAMMER * pgm, const char * p);
static int jtagmkII_paged_write(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes);
static unsigned char jtagmkII_memtype(PROGRAMMER * pgm, AVRPART * p, unsigned long addr);
static unsigned int jtagmkII_memaddr(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m, unsigned long addr);
// AVR32
#define ERROR_SAB 0xFFFFFFFF
static int jtagmkII_open32(PROGRAMMER * pgm, char * port);
static void jtagmkII_close32(PROGRAMMER * pgm);
static int jtagmkII_reset32(PROGRAMMER * pgm, unsigned short flags);
static int jtagmkII_initialize32(PROGRAMMER * pgm, AVRPART * p);
static int jtagmkII_chip_erase32(PROGRAMMER * pgm, AVRPART * p);
static unsigned long jtagmkII_read_SABaddr(PROGRAMMER * pgm, unsigned long addr,
unsigned int prefix); // ERROR_SAB illegal
static int jtagmkII_write_SABaddr(PROGRAMMER * pgm, unsigned long addr,
unsigned int prefix, unsigned long val);
static int jtagmkII_avr32_reset(PROGRAMMER * pgm, unsigned char val,
unsigned char ret1, unsigned char ret2);
static int jtagmkII_smc_init32(PROGRAMMER * pgm);
static int jtagmkII_paged_write32(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes);
static int jtagmkII_flash_lock32(PROGRAMMER * pgm, unsigned char lock,
unsigned int page);
static int jtagmkII_flash_erase32(PROGRAMMER * pgm, unsigned int page);
static int jtagmkII_flash_write_page32(PROGRAMMER * pgm, unsigned int page);
static int jtagmkII_flash_clear_pagebuffer32(PROGRAMMER * pgm);
static int jtagmkII_paged_load32(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes);
void jtagmkII_setup(PROGRAMMER * pgm)
{
if ((pgm->cookie = malloc(sizeof(struct pdata))) == 0) {
avrdude_message(MSG_INFO, "%s: jtagmkII_setup(): Out of memory allocating private data\n",
progname);
exit(1);
}
memset(pgm->cookie, 0, sizeof(struct pdata));
}
void jtagmkII_teardown(PROGRAMMER * pgm)
{
free(pgm->cookie);
}
static unsigned long
b4_to_u32(unsigned char *b)
{
unsigned long l;
l = b[0];
l += (unsigned)b[1] << 8;
l += (unsigned)b[2] << 16;
l += (unsigned)b[3] << 24;
return l;
}
static unsigned long
b4_to_u32r(unsigned char *b)
{
unsigned long l;
l = b[3];
l += (unsigned)b[2] << 8;
l += (unsigned)b[1] << 16;
l += (unsigned)b[0] << 24;
return l;
}
static void
u32_to_b4(unsigned char *b, unsigned long l)
{
b[0] = l & 0xff;
b[1] = (l >> 8) & 0xff;
b[2] = (l >> 16) & 0xff;
b[3] = (l >> 24) & 0xff;
}
static void
u32_to_b4r(unsigned char *b, unsigned long l)
{
b[3] = l & 0xff;
b[2] = (l >> 8) & 0xff;
b[1] = (l >> 16) & 0xff;
b[0] = (l >> 24) & 0xff;
}
static unsigned short
b2_to_u16(unsigned char *b)
{
unsigned short l;
l = b[0];
l += (unsigned)b[1] << 8;
return l;
}
static void
u16_to_b2(unsigned char *b, unsigned short l)
{
b[0] = l & 0xff;
b[1] = (l >> 8) & 0xff;
}
static const char *
jtagmkII_get_rc(unsigned int rc)
{
int i;
static char msg[50];
for (i = 0; i < sizeof jtagresults / sizeof jtagresults[0]; i++)
if (jtagresults[i].code == rc)
return jtagresults[i].descr;
sprintf(msg, "Unknown JTAG ICE mkII result code 0x%02x", rc);
return msg;
}
static void jtagmkII_print_memory(unsigned char *b, size_t s)
{
int i;
if (s < 2)
return;
for (i = 0; i < s - 1; i++) {
avrdude_message(MSG_INFO, "0x%02x ", b[i + 1]);
if (i % 16 == 15)
putc('\n', stderr);
else
putc(' ', stderr);
}
if (i % 16 != 0)
putc('\n', stderr);
}
static void jtagmkII_prmsg(PROGRAMMER * pgm, unsigned char * data, size_t len)
{
int i;
if (verbose >= 4) {
avrdude_message(MSG_TRACE, "Raw message:\n");
for (i = 0; i < len; i++) {
avrdude_message(MSG_TRACE, "0x%02x", data[i]);
if (i % 16 == 15)
putc('\n', stderr);
else
putc(' ', stderr);
}
if (i % 16 != 0)
putc('\n', stderr);
}
switch (data[0]) {
case RSP_OK:
avrdude_message(MSG_INFO, "OK\n");
break;
case RSP_FAILED:
avrdude_message(MSG_INFO, "FAILED\n");
break;
case RSP_ILLEGAL_BREAKPOINT:
avrdude_message(MSG_INFO, "Illegal breakpoint\n");
break;
case RSP_ILLEGAL_COMMAND:
avrdude_message(MSG_INFO, "Illegal command\n");
break;
case RSP_ILLEGAL_EMULATOR_MODE:
avrdude_message(MSG_INFO, "Illegal emulator mode");
if (len > 1)
switch (data[1]) {
case EMULATOR_MODE_DEBUGWIRE: avrdude_message(MSG_INFO, ": DebugWire"); break;
case EMULATOR_MODE_JTAG: avrdude_message(MSG_INFO, ": JTAG"); break;
case EMULATOR_MODE_HV: avrdude_message(MSG_INFO, ": HVSP/PP"); break;
case EMULATOR_MODE_SPI: avrdude_message(MSG_INFO, ": SPI"); break;
case EMULATOR_MODE_JTAG_XMEGA: avrdude_message(MSG_INFO, ": JTAG/Xmega"); break;
}
putc('\n', stderr);
break;
case RSP_ILLEGAL_JTAG_ID:
avrdude_message(MSG_INFO, "Illegal JTAG ID\n");
break;
case RSP_ILLEGAL_MCU_STATE:
avrdude_message(MSG_INFO, "Illegal MCU state");
if (len > 1)
switch (data[1]) {
case STOPPED: avrdude_message(MSG_INFO, ": Stopped"); break;
case RUNNING: avrdude_message(MSG_INFO, ": Running"); break;
case PROGRAMMING: avrdude_message(MSG_INFO, ": Programming"); break;
}
putc('\n', stderr);
break;
case RSP_ILLEGAL_MEMORY_TYPE:
avrdude_message(MSG_INFO, "Illegal memory type\n");
break;
case RSP_ILLEGAL_MEMORY_RANGE:
avrdude_message(MSG_INFO, "Illegal memory range\n");
break;
case RSP_ILLEGAL_PARAMETER:
avrdude_message(MSG_INFO, "Illegal parameter\n");
break;
case RSP_ILLEGAL_POWER_STATE:
avrdude_message(MSG_INFO, "Illegal power state\n");
break;
case RSP_ILLEGAL_VALUE:
avrdude_message(MSG_INFO, "Illegal value\n");
break;
case RSP_NO_TARGET_POWER:
avrdude_message(MSG_INFO, "No target power\n");
break;
case RSP_SIGN_ON:
avrdude_message(MSG_INFO, "Sign-on succeeded\n");
/* Sign-on data will be printed below anyway. */
break;
case RSP_MEMORY:
avrdude_message(MSG_INFO, "memory contents:\n");
jtagmkII_print_memory(data, len);
break;
case RSP_PARAMETER:
avrdude_message(MSG_INFO, "parameter values:\n");
jtagmkII_print_memory(data, len);
break;
case RSP_SPI_DATA:
avrdude_message(MSG_INFO, "SPI data returned:\n");
for (i = 1; i < len; i++)
avrdude_message(MSG_INFO, "0x%02x ", data[i]);
putc('\n', stderr);
break;
case EVT_BREAK:
avrdude_message(MSG_INFO, "BREAK event");
if (len >= 6) {
avrdude_message(MSG_INFO, ", PC = 0x%lx, reason ", b4_to_u32(data + 1));
switch (data[5]) {
case 0x00:
avrdude_message(MSG_INFO, "unspecified");
break;
case 0x01:
avrdude_message(MSG_INFO, "program break");
break;
case 0x02:
avrdude_message(MSG_INFO, "data break PDSB");
break;
case 0x03:
avrdude_message(MSG_INFO, "data break PDMSB");
break;
default:
avrdude_message(MSG_INFO, "unknown: 0x%02x", data[5]);
}
}
putc('\n', stderr);
break;
default:
avrdude_message(MSG_INFO, "unknown message 0x%02x\n", data[0]);
}
putc('\n', stderr);
}
int jtagmkII_send(PROGRAMMER * pgm, unsigned char * data, size_t len)
{
unsigned char *buf;
avrdude_message(MSG_DEBUG, "\n%s: jtagmkII_send(): sending %lu bytes\n",
progname, (unsigned long)len);
if ((buf = malloc(len + 10)) == NULL)
{
avrdude_message(MSG_INFO, "%s: jtagmkII_send(): out of memory",
progname);
return -1;
}
buf[0] = MESSAGE_START;
u16_to_b2(buf + 1, PDATA(pgm)->command_sequence);
u32_to_b4(buf + 3, len);
buf[7] = TOKEN;
memcpy(buf + 8, data, len);
crcappend(buf, len + 8);
if (serial_send(&pgm->fd, buf, len + 10) != 0) {
avrdude_message(MSG_INFO, "%s: jtagmkII_send(): failed to send command to serial port\n",
progname);
free(buf);
return -1;
}
free(buf);
return 0;
}
static int jtagmkII_drain(PROGRAMMER * pgm, int display)
{
return serial_drain(&pgm->fd, display);
}
/*
* Receive one frame, return it in *msg. Received sequence number is
* returned in seqno. Any valid frame will be returned, regardless
* whether it matches the expected sequence number, including event
* notification frames (seqno == 0xffff).
*
* Caller must eventually free the buffer.
*/
static int jtagmkII_recv_frame(PROGRAMMER * pgm, unsigned char **msg,
unsigned short * seqno) {
enum states { sSTART,
/* NB: do NOT change the sequence of the following: */
sSEQNUM1, sSEQNUM2,
sSIZE1, sSIZE2, sSIZE3, sSIZE4,
sTOKEN,
sDATA,
sCSUM1, sCSUM2,
/* end NB */
sDONE
} state = sSTART;
unsigned long msglen = 0, l = 0;
int headeridx = 0;
int timeout = 0;
int ignorpkt = 0;
int rv;
unsigned char c, *buf = NULL, header[8];
unsigned short r_seqno = 0;
unsigned short checksum = 0;
struct timeval tv;
double timeoutval = 100; /* seconds */
double tstart, tnow;
avrdude_message(MSG_TRACE, "%s: jtagmkII_recv():\n", progname);
gettimeofday(&tv, NULL);
tstart = tv.tv_sec;
while ( (state != sDONE ) && (!timeout) ) {
if (state == sDATA) {
rv = 0;
if (ignorpkt) {
/* skip packet's contents */
for(l = 0; l < msglen; l++)
rv += serial_recv(&pgm->fd, &c, 1);
} else {
rv += serial_recv(&pgm->fd, buf + 8, msglen);
}
if (rv != 0) {
timedout:
/* timeout in receive */
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_recv(): Timeout receiving packet\n",
progname);
free(buf);
return -1;
}
} else {
if (serial_recv(&pgm->fd, &c, 1) != 0)
goto timedout;
}
checksum ^= c;
if (state < sDATA)
header[headeridx++] = c;
switch (state) {
case sSTART:
if (c == MESSAGE_START) {
state = sSEQNUM1;
} else {
headeridx = 0;
}
break;
case sSEQNUM1:
case sSEQNUM2:
r_seqno >>= 8;
r_seqno |= ((unsigned)c << 8);
state++;
break;
case sSIZE1:
case sSIZE2:
case sSIZE3:
case sSIZE4:
msglen >>= 8;
msglen |= ((unsigned)c << 24);
state++;
break;
case sTOKEN:
if (c == TOKEN) {
state = sDATA;
if (msglen > MAX_MESSAGE) {
avrdude_message(MSG_INFO, "%s: jtagmkII_recv(): msglen %lu exceeds max message "
"size %u, ignoring message\n",
progname, msglen, MAX_MESSAGE);
state = sSTART;
headeridx = 0;
} else if ((buf = malloc(msglen + 10)) == NULL) {
avrdude_message(MSG_INFO, "%s: jtagmkII_recv(): out of memory\n",
progname);
ignorpkt++;
} else {
memcpy(buf, header, 8);
}
} else {
state = sSTART;
headeridx = 0;
}
break;
case sDATA:
/* The entire payload has been read above. */
l = msglen + 8;
state = sCSUM1;
break;
case sCSUM1:
case sCSUM2:
buf[l++] = c;
if (state == sCSUM2) {
if (crcverify(buf, msglen + 10)) {
if (verbose >= 9)
avrdude_message(MSG_TRACE2, "%s: jtagmkII_recv(): CRC OK",
progname);
state = sDONE;
} else {
avrdude_message(MSG_INFO, "%s: jtagmkII_recv(): checksum error\n",
progname);
free(buf);
return -4;
}
} else
state++;
break;
default:
avrdude_message(MSG_INFO, "%s: jtagmkII_recv(): unknown state\n",
progname);
free(buf);
return -5;
}
gettimeofday(&tv, NULL);
tnow = tv.tv_sec;
if (tnow - tstart > timeoutval) {
avrdude_message(MSG_INFO, "%s: jtagmkII_recv_frame(): timeout\n",
progname);
free(buf);
return -1;
}
}
avrdude_message(MSG_DEBUG, "\n");
*seqno = r_seqno;
*msg = buf;
return msglen;
}
int jtagmkII_recv(PROGRAMMER * pgm, unsigned char **msg) {
unsigned short r_seqno;
int rv;
for (;;) {
if ((rv = jtagmkII_recv_frame(pgm, msg, &r_seqno)) <= 0)
return rv;
avrdude_message(MSG_DEBUG, "%s: jtagmkII_recv(): "
"Got message seqno %d (command_sequence == %d)\n",
progname, r_seqno, PDATA(pgm)->command_sequence);
if (r_seqno == PDATA(pgm)->command_sequence) {
if (++(PDATA(pgm)->command_sequence) == 0xffff)
PDATA(pgm)->command_sequence = 0;
/*
* We move the payload to the beginning of the buffer, to make
* the job easier for the caller. We have to return the
* original pointer though, as the caller must free() it.
*/
memmove(*msg, *msg + 8, rv);
if (verbose == 4)
{
int i = rv;
unsigned char *p = *msg;
avrdude_message(MSG_TRACE, "%s: Recv: ", progname);
while (i) {
unsigned char c = *p;
if (isprint(c)) {
avrdude_message(MSG_TRACE, "%c ", c);
}
else {
avrdude_message(MSG_TRACE, ". ");
}
avrdude_message(MSG_TRACE, "[%02x] ", c);
p++;
i--;
}
avrdude_message(MSG_TRACE, "\n");
}
return rv;
}
if (r_seqno == 0xffff) {
avrdude_message(MSG_DEBUG, "%s: jtagmkII_recv(): got asynchronous event\n",
progname);
} else {
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_recv(): "
"got wrong sequence number, %u != %u\n",
progname, r_seqno, PDATA(pgm)->command_sequence);
}
free(*msg);
}
}
int jtagmkII_getsync(PROGRAMMER * pgm, int mode) {
int tries;
#define MAXTRIES 10
unsigned char buf[3], *resp, c = 0xff;
int status;
unsigned int fwver, hwver;
int is_dragon;
avrdude_message(MSG_DEBUG, "%s: jtagmkII_getsync()\n", progname);
if (strncmp(pgm->type, "JTAG", strlen("JTAG")) == 0) {
is_dragon = 0;
} else if (strncmp(pgm->type, "DRAGON", strlen("DRAGON")) == 0) {
is_dragon = 1;
} else {
avrdude_message(MSG_INFO, "%s: Programmer is neither JTAG ICE mkII nor AVR Dragon\n",
progname);
return -1;
}
for (tries = 0; tries < MAXTRIES; tries++) {
/* Get the sign-on information. */
buf[0] = CMND_GET_SIGN_ON;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_getsync() attempt %d of %d: Sending sign-on command: ",
progname, tries + 1, MAXTRIES);
jtagmkII_send(pgm, buf, 1);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
avrdude_message(MSG_INFO, "%s: jtagmkII_getsync() attempt %d of %d: sign-on command: status %d\n",
progname, tries + 1, MAXTRIES, status);
} else if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
avrdude_message(MSG_NOTICE2, "0x%02x (%d bytes msg)\n", resp[0], status);
if (status > 0) {
if ((c = resp[0]) == RSP_SIGN_ON) {
fwver = ((unsigned)resp[8] << 8) | (unsigned)resp[7];
PDATA(pgm)->fwver = fwver;
hwver = (unsigned)resp[9];
memcpy(PDATA(pgm)->serno, resp + 10, 6);
if (status > 17) {
avrdude_message(MSG_NOTICE, "JTAG ICE mkII sign-on message:\n");
avrdude_message(MSG_NOTICE, "Communications protocol version: %u\n",
(unsigned)resp[1]);
avrdude_message(MSG_NOTICE, "M_MCU:\n");
avrdude_message(MSG_NOTICE, " boot-loader FW version: %u\n",
(unsigned)resp[2]);
avrdude_message(MSG_NOTICE, " firmware version: %u.%02u\n",
(unsigned)resp[4], (unsigned)resp[3]);
avrdude_message(MSG_NOTICE, " hardware version: %u\n",
(unsigned)resp[5]);
avrdude_message(MSG_NOTICE, "S_MCU:\n");
avrdude_message(MSG_NOTICE, " boot-loader FW version: %u\n",
(unsigned)resp[6]);
avrdude_message(MSG_NOTICE, " firmware version: %u.%02u\n",
(unsigned)resp[8], (unsigned)resp[7]);
avrdude_message(MSG_NOTICE, " hardware version: %u\n",
(unsigned)resp[9]);
avrdude_message(MSG_NOTICE, "Serial number: "
"%02x:%02x:%02x:%02x:%02x:%02x\n",
PDATA(pgm)->serno[0], PDATA(pgm)->serno[1], PDATA(pgm)->serno[2], PDATA(pgm)->serno[3], PDATA(pgm)->serno[4], PDATA(pgm)->serno[5]);
resp[status - 1] = '\0';
avrdude_message(MSG_NOTICE, "Device ID: %s\n",
resp + 16);
}
free(resp);
break;
}
free(resp);
}
}
if (tries >= MAXTRIES) {
if (status <= 0)
avrdude_message(MSG_INFO, "%s: jtagmkII_getsync(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
else
avrdude_message(MSG_INFO, "%s: jtagmkII_getsync(): "
"bad response to sign-on command: %s\n",
progname, jtagmkII_get_rc(c));
return -1;
}
PDATA(pgm)->device_descriptor_length = sizeof(struct device_descriptor);
/*
* There's no official documentation from Atmel about what firmware
* revision matches what device descriptor length. The algorithm
* below has been found empirically.
*/
#define FWVER(maj, min) ((maj << 8) | (min))
if (!is_dragon && fwver < FWVER(3, 16)) {
PDATA(pgm)->device_descriptor_length -= 2;
avrdude_message(MSG_INFO, "%s: jtagmkII_getsync(): "
"S_MCU firmware version might be too old to work correctly\n",
progname);
} else if (!is_dragon && fwver < FWVER(4, 0)) {
PDATA(pgm)->device_descriptor_length -= 2;
}
if (mode != EMULATOR_MODE_SPI)
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_getsync(): Using a %u-byte device descriptor\n",
progname, (unsigned)PDATA(pgm)->device_descriptor_length);
if (mode == EMULATOR_MODE_SPI) {
PDATA(pgm)->device_descriptor_length = 0;
if (!is_dragon && fwver < FWVER(4, 14)) {
avrdude_message(MSG_INFO, "%s: jtagmkII_getsync(): ISP functionality requires firmware "
"version >= 4.14\n",
progname);
return -1;
}
}
if (mode == EMULATOR_MODE_PDI || mode == EMULATOR_MODE_JTAG_XMEGA) {
if (!is_dragon && mode == EMULATOR_MODE_PDI && hwver < 1) {
avrdude_message(MSG_INFO, "%s: jtagmkII_getsync(): Xmega PDI support requires hardware "
"revision >= 1\n",
progname);
return -1;
}
if (!is_dragon && fwver < FWVER(5, 37)) {
avrdude_message(MSG_INFO, "%s: jtagmkII_getsync(): Xmega support requires firmware "
"version >= 5.37\n",
progname);
return -1;
}
if (is_dragon && fwver < FWVER(6, 11)) {
avrdude_message(MSG_INFO, "%s: jtagmkII_getsync(): Xmega support requires firmware "
"version >= 6.11\n",
progname);
return -1;
}
}
#undef FWVER
if(mode < 0) return 0; // for AVR32
tries = 0;
retry:
/* Turn the ICE into JTAG or ISP mode as requested. */
buf[0] = mode;
if (jtagmkII_setparm(pgm, PAR_EMULATOR_MODE, buf) < 0) {
if (mode == EMULATOR_MODE_SPI) {
avrdude_message(MSG_INFO, "%s: jtagmkII_getsync(): "
"ISP activation failed, trying debugWire\n",
progname);
buf[0] = EMULATOR_MODE_DEBUGWIRE;
if (jtagmkII_setparm(pgm, PAR_EMULATOR_MODE, buf) < 0)
return -1;
else {
/*
* We are supposed to send a CMND_RESET with the
* MONCOM_DISABLE flag set right now, and then
* restart from scratch.
*
* As this will make the ICE sign off from USB, so
* we risk losing our USB connection, it's easier
* to instruct the user to restart AVRDUDE rather
* than trying to cope with all this inside the
* program.
*/
(void)jtagmkII_reset(pgm, 0x04);
if (tries++ > 3) {
avrdude_message(MSG_INFO, "%s: Failed to return from debugWIRE to ISP.\n",
progname);
return -1;
}
avrdude_message(MSG_INFO, "%s: Target prepared for ISP, signed off.\n"
"%s: Now retrying without power-cycling the target.\n",
progname, progname);
goto retry;
}
} else {
return -1;
}
}
/* GET SYNC forces the target into STOPPED mode */
buf[0] = CMND_GET_SYNC;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_getsync(): Sending get sync command: ",
progname);
jtagmkII_send(pgm, buf, 1);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_getsync(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return -1;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
avrdude_message(MSG_NOTICE2, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
free(resp);
if (c != RSP_OK) {
avrdude_message(MSG_INFO, "%s: jtagmkII_getsync(): "
"bad response to set parameter command: %s\n",
progname, jtagmkII_get_rc(c));
return -1;
}
return 0;
}
/*
* issue the 'chip erase' command to the AVR device
*/
static int jtagmkII_chip_erase(PROGRAMMER * pgm, AVRPART * p)
{
int status, len;
unsigned char buf[6], *resp, c;
if (p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI)) {
buf[0] = CMND_XMEGA_ERASE;
buf[1] = XMEGA_ERASE_CHIP;
memset(buf + 2, 0, 4); /* address of area to be erased */
len = 6;
} else {
buf[0] = CMND_CHIP_ERASE;
len = 1;
}
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_chip_erase(): Sending %schip erase command: ",
progname,
(p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI))? "Xmega ": "");
jtagmkII_send(pgm, buf, len);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_chip_erase(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return -1;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
avrdude_message(MSG_NOTICE2, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
free(resp);
if (c != RSP_OK) {
avrdude_message(MSG_INFO, "%s: jtagmkII_chip_erase(): "
"bad response to chip erase command: %s\n",
progname, jtagmkII_get_rc(c));
return -1;
}
if (!(p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI)))
pgm->initialize(pgm, p);
return 0;
}
/*
* There is no chip erase functionality in debugWire mode.
*/
static int jtagmkII_chip_erase_dw(PROGRAMMER * pgm, AVRPART * p)
{
avrdude_message(MSG_INFO, "%s: Chip erase not supported in debugWire mode\n",
progname);
return 0;
}
static void jtagmkII_set_devdescr(PROGRAMMER * pgm, AVRPART * p)
{
int status;
unsigned char *resp, c;
LNODEID ln;
AVRMEM * m;
struct {
unsigned char cmd;
struct device_descriptor dd;
} sendbuf;
memset(&sendbuf, 0, sizeof sendbuf);
sendbuf.cmd = CMND_SET_DEVICE_DESCRIPTOR;
sendbuf.dd.ucSPMCRAddress = p->spmcr;
sendbuf.dd.ucRAMPZAddress = p->rampz;
sendbuf.dd.ucIDRAddress = p->idr;
u16_to_b2(sendbuf.dd.EECRAddress, p->eecr);
sendbuf.dd.ucAllowFullPageBitstream =
(p->flags & AVRPART_ALLOWFULLPAGEBITSTREAM) != 0;
sendbuf.dd.EnablePageProgramming =
(p->flags & AVRPART_ENABLEPAGEPROGRAMMING) != 0;
for (ln = lfirst(p->mem); ln; ln = lnext(ln)) {
m = ldata(ln);
if (strcmp(m->desc, "flash") == 0) {
if (m->page_size > 256)
PDATA(pgm)->flash_pagesize = 256;
else
PDATA(pgm)->flash_pagesize = m->page_size;
u32_to_b4(sendbuf.dd.ulFlashSize, m->size);
u16_to_b2(sendbuf.dd.uiFlashPageSize, m->page_size);
u16_to_b2(sendbuf.dd.uiFlashpages, m->size / m->page_size);
if (p->flags & AVRPART_HAS_DW) {
memcpy(sendbuf.dd.ucFlashInst, p->flash_instr, FLASH_INSTR_SIZE);
memcpy(sendbuf.dd.ucEepromInst, p->eeprom_instr, EEPROM_INSTR_SIZE);
}
} else if (strcmp(m->desc, "eeprom") == 0) {
sendbuf.dd.ucEepromPageSize = PDATA(pgm)->eeprom_pagesize = m->page_size;
}
}
sendbuf.dd.ucCacheType =
(p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI))? 0x02 /* ATxmega */: 0x00;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_set_devdescr(): "
"Sending set device descriptor command: ",
progname);
jtagmkII_send(pgm, (unsigned char *)&sendbuf,
PDATA(pgm)->device_descriptor_length + sizeof(unsigned char));
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_set_devdescr(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
avrdude_message(MSG_NOTICE2, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
free(resp);
if (c != RSP_OK) {
avrdude_message(MSG_INFO, "%s: jtagmkII_set_devdescr(): "
"bad response to set device descriptor command: %s\n",
progname, jtagmkII_get_rc(c));
}
}
static void jtagmkII_set_xmega_params(PROGRAMMER * pgm, AVRPART * p)
{
int status;
unsigned char *resp, c;
LNODEID ln;
AVRMEM * m;
struct {
unsigned char cmd;
struct xmega_device_desc dd;
} sendbuf;
memset(&sendbuf, 0, sizeof sendbuf);
sendbuf.cmd = CMND_SET_XMEGA_PARAMS;
u16_to_b2(sendbuf.dd.whatever, 0x0002);
sendbuf.dd.datalen = 47;
u16_to_b2(sendbuf.dd.nvm_base_addr, p->nvm_base);
u16_to_b2(sendbuf.dd.mcu_base_addr, p->mcu_base);
for (ln = lfirst(p->mem); ln; ln = lnext(ln)) {
m = ldata(ln);
if (strcmp(m->desc, "flash") == 0) {
if (m->page_size > 256)
PDATA(pgm)->flash_pagesize = 256;
else
PDATA(pgm)->flash_pagesize = m->page_size;
u16_to_b2(sendbuf.dd.flash_page_size, m->page_size);
} else if (strcmp(m->desc, "eeprom") == 0) {
sendbuf.dd.eeprom_page_size = m->page_size;
u16_to_b2(sendbuf.dd.eeprom_size, m->size);
u32_to_b4(sendbuf.dd.nvm_eeprom_offset, m->offset);
} else if (strcmp(m->desc, "application") == 0) {
u32_to_b4(sendbuf.dd.app_size, m->size);
u32_to_b4(sendbuf.dd.nvm_app_offset, m->offset);
} else if (strcmp(m->desc, "boot") == 0) {
u16_to_b2(sendbuf.dd.boot_size, m->size);
u32_to_b4(sendbuf.dd.nvm_boot_offset, m->offset);
} else if (strcmp(m->desc, "fuse1") == 0) {
u32_to_b4(sendbuf.dd.nvm_fuse_offset, m->offset & ~7);
} else if (strncmp(m->desc, "lock", 4) == 0) {
u32_to_b4(sendbuf.dd.nvm_lock_offset, m->offset);
} else if (strcmp(m->desc, "usersig") == 0 ||
strcmp(m->desc, "userrow") == 0) {
u32_to_b4(sendbuf.dd.nvm_user_sig_offset, m->offset);
} else if (strcmp(m->desc, "prodsig") == 0) {
u32_to_b4(sendbuf.dd.nvm_prod_sig_offset, m->offset);
} else if (strcmp(m->desc, "data") == 0) {
u32_to_b4(sendbuf.dd.nvm_data_offset, m->offset);
}
}
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_set_xmega_params(): "
"Sending set Xmega params command: ",
progname);
jtagmkII_send(pgm, (unsigned char *)&sendbuf, sizeof sendbuf);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_set_xmega_params(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
avrdude_message(MSG_NOTICE2, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
free(resp);
if (c != RSP_OK) {
avrdude_message(MSG_INFO, "%s: jtagmkII_set_xmega_params(): "
"bad response to set device descriptor command: %s\n",
progname, jtagmkII_get_rc(c));
}
}
/*
* Reset the target.
*/
static int jtagmkII_reset(PROGRAMMER * pgm, unsigned char flags)
{
int status;
unsigned char buf[2], *resp, c;
/*
* In debugWire mode, don't reset. Do a forced stop, and tell the
* ICE to stop any timers, too.
*/
if (pgm->flag & PGM_FL_IS_DW) {
unsigned char parm[] = { 0 };
(void)jtagmkII_setparm(pgm, PAR_TIMERS_RUNNING, parm);
}
buf[0] = (pgm->flag & PGM_FL_IS_DW)? CMND_FORCED_STOP: CMND_RESET;
buf[1] = (pgm->flag & PGM_FL_IS_DW)? 1: flags;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_reset(): Sending %s command: ",
progname, (pgm->flag & PGM_FL_IS_DW)? "stop": "reset");
jtagmkII_send(pgm, buf, 2);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_reset(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return -1;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
avrdude_message(MSG_NOTICE2, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
free(resp);
if (c != RSP_OK) {
avrdude_message(MSG_INFO, "%s: jtagmkII_reset(): "
"bad response to reset command: %s\n",
progname, jtagmkII_get_rc(c));
return -1;
}
return 0;
}
static int jtagmkII_program_enable_INFO(PROGRAMMER * pgm, AVRPART * p)
{
return 0;
}
static int jtagmkII_program_enable(PROGRAMMER * pgm)
{
int status;
unsigned char buf[1], *resp, c;
int use_ext_reset;
if (PDATA(pgm)->prog_enabled)
return 0;
for (use_ext_reset = 0; use_ext_reset <= 1; use_ext_reset++) {
buf[0] = CMND_ENTER_PROGMODE;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_program_enable(): "
"Sending enter progmode command: ",
progname);
jtagmkII_send(pgm, buf, 1);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_program_enable(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return -1;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
avrdude_message(MSG_NOTICE2, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
free(resp);
if (c != RSP_OK) {
avrdude_message(MSG_INFO, "%s: jtagmkII_program_enable(): "
"bad response to enter progmode command: %s\n",
progname, jtagmkII_get_rc(c));
if (c == RSP_ILLEGAL_JTAG_ID) {
if (use_ext_reset == 0) {
unsigned char parm[] = { 1};
avrdude_message(MSG_INFO, "%s: retrying with external reset applied\n",
progname);
(void)jtagmkII_setparm(pgm, PAR_EXTERNAL_RESET, parm);
continue;
}
avrdude_message(MSG_INFO, "%s: JTAGEN fuse disabled?\n", progname);
return -1;
}
}
}
PDATA(pgm)->prog_enabled = 1;
return 0;
}
static int jtagmkII_program_disable(PROGRAMMER * pgm)
{
int status;
unsigned char buf[1], *resp, c;
if (!PDATA(pgm)->prog_enabled)
return 0;
buf[0] = CMND_LEAVE_PROGMODE;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_program_disable(): "
"Sending leave progmode command: ",
progname);
jtagmkII_send(pgm, buf, 1);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_program_disable(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return -1;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
avrdude_message(MSG_NOTICE2, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
free(resp);
if (c != RSP_OK) {
avrdude_message(MSG_INFO, "%s: jtagmkII_program_disable(): "
"bad response to leave progmode command: %s\n",
progname, jtagmkII_get_rc(c));
return -1;
}
PDATA(pgm)->prog_enabled = 0;
(void)jtagmkII_reset(pgm, 0x01);
return 0;
}
static unsigned char jtagmkII_get_baud(long baud)
{
static struct {
long baud;
unsigned char val;
} baudtab[] = {
{ 2400L, PAR_BAUD_2400 },
{ 4800L, PAR_BAUD_4800 },
{ 9600L, PAR_BAUD_9600 },
{ 19200L, PAR_BAUD_19200 },
{ 38400L, PAR_BAUD_38400 },
{ 57600L, PAR_BAUD_57600 },
{ 115200L, PAR_BAUD_115200 },
{ 14400L, PAR_BAUD_14400 },
/* Extension to jtagmkII protocol: extra baud rates, standard series. */
{ 153600L, PAR_BAUD_153600 },
{ 230400L, PAR_BAUD_230400 },
{ 460800L, PAR_BAUD_460800 },
{ 921600L, PAR_BAUD_921600 },
/* Extension to jtagmkII protocol: extra baud rates, binary series. */
{ 128000L, PAR_BAUD_128000 },
{ 256000L, PAR_BAUD_256000 },
{ 512000L, PAR_BAUD_512000 },
{ 1024000L, PAR_BAUD_1024000 },
/* Extension to jtagmkII protocol: extra baud rates, decimal series. */
{ 150000L, PAR_BAUD_150000 },
{ 200000L, PAR_BAUD_200000 },
{ 250000L, PAR_BAUD_250000 },
{ 300000L, PAR_BAUD_300000 },
{ 400000L, PAR_BAUD_400000 },
{ 500000L, PAR_BAUD_500000 },
{ 600000L, PAR_BAUD_600000 },
{ 666666L, PAR_BAUD_666666 },
{ 1000000L, PAR_BAUD_1000000 },
{ 1500000L, PAR_BAUD_1500000 },
{ 2000000L, PAR_BAUD_2000000 },
{ 3000000L, PAR_BAUD_3000000 },
};
int i;
for (i = 0; i < sizeof baudtab / sizeof baudtab[0]; i++)
if (baud == baudtab[i].baud)
return baudtab[i].val;
return 0;
}
/*
* initialize the AVR device and prepare it to accept commands
*/
static int jtagmkII_initialize(PROGRAMMER * pgm, AVRPART * p)
{
AVRMEM hfuse;
unsigned char b;
int ok;
const char *ifname;
/* Abort and print error if programmer does not support the target microcontroller */
if ((strncmp(ldata(lfirst(pgm->id)), "jtag2updi", strlen("jtag2updi")) == 0 && p->flags & AVRPART_HAS_PDI) ||
(strncmp(ldata(lfirst(pgm->id)), "jtagmkII", strlen("jtagmkII")) == 0 && p->flags & AVRPART_HAS_UPDI)) {
avrdude_message(MSG_INFO, "Error: programmer %s does not support target %s\n\n",
ldata(lfirst(pgm->id)), p->desc);
return -1;
}
ok = 0;
if (pgm->flag & PGM_FL_IS_DW) {
ifname = "debugWire";
if (p->flags & AVRPART_HAS_DW)
ok = 1;
} else if (pgm->flag & PGM_FL_IS_PDI) {
ifname = "PDI";
if (p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI))
ok = 1;
} else {
ifname = "JTAG";
if (p->flags & AVRPART_HAS_JTAG)
ok = 1;
}
if (!ok) {
avrdude_message(MSG_INFO, "%s: jtagmkII_initialize(): part %s has no %s interface\n",
progname, p->desc, ifname);
return -1;
}
if ((serdev->flags & SERDEV_FL_CANSETSPEED) && pgm->baudrate && pgm->baudrate != 19200) {
if ((b = jtagmkII_get_baud(pgm->baudrate)) == 0) {
avrdude_message(MSG_INFO, "%s: jtagmkII_initialize(): unsupported baudrate %d\n",
progname, pgm->baudrate);
} else {
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_initialize(): "
"trying to set baudrate to %d\n",
progname, pgm->baudrate);
if (jtagmkII_setparm(pgm, PAR_BAUD_RATE, &b) == 0)
serial_setparams(&pgm->fd, pgm->baudrate, SERIAL_8N1);
}
}
if ((pgm->flag & PGM_FL_IS_JTAG) && pgm->bitclock != 0.0) {
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_initialize(): "
"trying to set JTAG clock period to %.1f us\n",
progname, pgm->bitclock);
if (jtagmkII_set_sck_period(pgm, pgm->bitclock) != 0)
return -1;
}
if ((pgm->flag & PGM_FL_IS_JTAG) &&
jtagmkII_setparm(pgm, PAR_DAISY_CHAIN_INFO, PDATA(pgm)->jtagchain) < 0) {
avrdude_message(MSG_INFO, "%s: jtagmkII_initialize(): Failed to setup JTAG chain\n",
progname);
return -1;
}
/*
* If this is an ATxmega device in JTAG mode, change the emulator
* mode from JTAG to JTAG_XMEGA.
*/
if ((pgm->flag & PGM_FL_IS_JTAG) &&
(p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI))) {
if (jtagmkII_getsync(pgm, EMULATOR_MODE_JTAG_XMEGA) < 0)
return -1;
}
/*
* Must set the device descriptor before entering programming mode.
*/
if (PDATA(pgm)->fwver >= 0x700 && (p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI)) != 0)
jtagmkII_set_xmega_params(pgm, p);
else
jtagmkII_set_devdescr(pgm, p);
PDATA(pgm)->boot_start = ULONG_MAX;
if ((p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI))) {
/*
* Find out where the border between application and boot area
* is.
*/
AVRMEM *bootmem = avr_locate_mem(p, "boot");
AVRMEM *flashmem = avr_locate_mem(p, "flash");
if (bootmem == NULL || flashmem == NULL) {
if (strncmp(ldata(lfirst(pgm->id)), "jtagmkII", strlen("jtagmkII")) == 0) {
avrdude_message(MSG_INFO, "%s: jtagmkII_initialize(): Cannot locate \"flash\" and \"boot\" memories in description\n",
progname);
}
} else {
if (PDATA(pgm)->fwver < 0x700) {
/* V7+ firmware does not need this anymore */
unsigned char par[4];
u32_to_b4(par, flashmem->offset);
(void) jtagmkII_setparm(pgm, PAR_PDI_OFFSET_START, par);
u32_to_b4(par, bootmem->offset);
(void) jtagmkII_setparm(pgm, PAR_PDI_OFFSET_END, par);
}
PDATA(pgm)->boot_start = bootmem->offset - flashmem->offset;
}
}
free(PDATA(pgm)->flash_pagecache);
free(PDATA(pgm)->eeprom_pagecache);
if ((PDATA(pgm)->flash_pagecache = malloc(PDATA(pgm)->flash_pagesize)) == NULL) {
avrdude_message(MSG_INFO, "%s: jtagmkII_initialize(): Out of memory\n",
progname);
return -1;
}
if ((PDATA(pgm)->eeprom_pagecache = malloc(PDATA(pgm)->eeprom_pagesize)) == NULL) {
avrdude_message(MSG_INFO, "%s: jtagmkII_initialize(): Out of memory\n",
progname);
free(PDATA(pgm)->flash_pagecache);
return -1;
}
PDATA(pgm)->flash_pageaddr = PDATA(pgm)->eeprom_pageaddr = (unsigned long)-1L;
if (PDATA(pgm)->fwver >= 0x700 && (p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI))) {
/*
* Work around for
* https://savannah.nongnu.org/bugs/index.php?37942
*
* Firmware version 7.24 (at least) on the Dragon behaves very
* strange when it gets a RESET request here. All subsequent
* responses are completely off, so the emulator becomes unusable.
* This appears to be a firmware bug (earlier versions, at least
* 7.14, didn't experience this), but by omitting the RESET for
* Xmega devices, we can work around it.
*/
} else {
if (jtagmkII_reset(pgm, 0x01) < 0)
return -1;
}
if ((pgm->flag & PGM_FL_IS_JTAG) && !(p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI))) {
strcpy(hfuse.desc, "hfuse");
if (jtagmkII_read_byte(pgm, p, &hfuse, 1, &b) < 0)
return -1;
if ((b & OCDEN) != 0)
avrdude_message(MSG_INFO, "%s: jtagmkII_initialize(): warning: OCDEN fuse not programmed, "
"single-byte EEPROM updates not possible\n",
progname);
}
return 0;
}
static void jtagmkII_disable(PROGRAMMER * pgm)
{
free(PDATA(pgm)->flash_pagecache);
PDATA(pgm)->flash_pagecache = NULL;
free(PDATA(pgm)->eeprom_pagecache);
PDATA(pgm)->eeprom_pagecache = NULL;
/*
* jtagmkII_program_disable() doesn't do anything if the
* device is currently not in programming mode, so just
* call it unconditionally here.
*/
(void)jtagmkII_program_disable(pgm);
}
static void jtagmkII_enable(PROGRAMMER * pgm)
{
return;
}
static int jtagmkII_parseextparms(PROGRAMMER * pgm, LISTID extparms)
{
LNODEID ln;
const char *extended_param;
int rv = 0;
for (ln = lfirst(extparms); ln; ln = lnext(ln)) {
extended_param = ldata(ln);
if (strncmp(extended_param, "jtagchain=", strlen("jtagchain=")) == 0) {
unsigned int ub, ua, bb, ba;
if (sscanf(extended_param, "jtagchain=%u,%u,%u,%u", &ub, &ua, &bb, &ba)
!= 4) {
avrdude_message(MSG_INFO, "%s: jtagmkII_parseextparms(): invalid JTAG chain '%s'\n",
progname, extended_param);
rv = -1;
continue;
}
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_parseextparms(): JTAG chain parsed as:\n"
"%s %u units before, %u units after, %u bits before, %u bits after\n",
progname,
progbuf, ub, ua, bb, ba);
PDATA(pgm)->jtagchain[0] = ub;
PDATA(pgm)->jtagchain[1] = ua;
PDATA(pgm)->jtagchain[2] = bb;
PDATA(pgm)->jtagchain[3] = ba;
continue;
}
avrdude_message(MSG_INFO, "%s: jtagmkII_parseextparms(): invalid extended parameter '%s'\n",
progname, extended_param);
rv = -1;
}
return rv;
}
static int jtagmkII_open(PROGRAMMER * pgm, char * port)
{
union pinfo pinfo;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_open()\n", progname);
/*
* The JTAG ICE mkII always starts with a baud rate of 19200 Bd upon
* attaching. If the config file or command-line parameters specify
* a higher baud rate, we switch to it later on, after establishing
* the connection with the ICE.
*/
pinfo.serialinfo.baud = 19200;
pinfo.serialinfo.cflags = SERIAL_8N1;
/*
* If the port name starts with "usb", divert the serial routines
* to the USB ones. The serial_open() function for USB overrides
* the meaning of the "baud" parameter to be the USB device ID to
* search for.
*/
if (strncmp(port, "usb", 3) == 0) {
#if defined(HAVE_LIBUSB)
serdev = &usb_serdev;
pinfo.usbinfo.vid = USB_VENDOR_ATMEL;
pinfo.usbinfo.flags = 0;
pinfo.usbinfo.pid = USB_DEVICE_JTAGICEMKII;
pgm->fd.usb.max_xfer = USBDEV_MAX_XFER_MKII;
pgm->fd.usb.rep = USBDEV_BULK_EP_READ_MKII;
pgm->fd.usb.wep = USBDEV_BULK_EP_WRITE_MKII;
pgm->fd.usb.eep = 0; /* no seperate EP for events */
#else
avrdude_message(MSG_INFO, "avrdude was compiled without usb support.\n");
return -1;
#endif
}
strcpy(pgm->port, port);
if (serial_open(port, pinfo, &pgm->fd)==-1) {
return -1;
}
/*
* drain any extraneous input
*/
jtagmkII_drain(pgm, 0);
if (jtagmkII_getsync(pgm, EMULATOR_MODE_JTAG) < 0)
return -1;
return 0;
}
static int jtagmkII_open_dw(PROGRAMMER * pgm, char * port)
{
union pinfo pinfo;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_open_dw()\n", progname);
/*
* The JTAG ICE mkII always starts with a baud rate of 19200 Bd upon
* attaching. If the config file or command-line parameters specify
* a higher baud rate, we switch to it later on, after establishing
* the connection with the ICE.
*/
pinfo.serialinfo.baud = 19200;
pinfo.serialinfo.cflags = SERIAL_8N1;
/*
* If the port name starts with "usb", divert the serial routines
* to the USB ones. The serial_open() function for USB overrides
* the meaning of the "baud" parameter to be the USB device ID to
* search for.
*/
if (strncmp(port, "usb", 3) == 0) {
#if defined(HAVE_LIBUSB)
serdev = &usb_serdev;
pinfo.usbinfo.vid = USB_VENDOR_ATMEL;
pinfo.usbinfo.flags = 0;
pinfo.usbinfo.pid = USB_DEVICE_JTAGICEMKII;
pgm->fd.usb.max_xfer = USBDEV_MAX_XFER_MKII;
pgm->fd.usb.rep = USBDEV_BULK_EP_READ_MKII;
pgm->fd.usb.wep = USBDEV_BULK_EP_WRITE_MKII;
pgm->fd.usb.eep = 0; /* no seperate EP for events */
#else
avrdude_message(MSG_INFO, "avrdude was compiled without usb support.\n");
return -1;
#endif
}
strcpy(pgm->port, port);
if (serial_open(port, pinfo, &pgm->fd)==-1) {
return -1;
}
/*
* drain any extraneous input
*/
jtagmkII_drain(pgm, 0);
if (jtagmkII_getsync(pgm, EMULATOR_MODE_DEBUGWIRE) < 0)
return -1;
return 0;
}
static int jtagmkII_open_pdi(PROGRAMMER * pgm, char * port)
{
union pinfo pinfo;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_open_pdi()\n", progname);
/*
* The JTAG ICE mkII always starts with a baud rate of 19200 Bd upon
* attaching. If the config file or command-line parameters specify
* a higher baud rate, we switch to it later on, after establishing
* the connection with the ICE.
*/
pinfo.serialinfo.baud = 19200;
pinfo.serialinfo.cflags = SERIAL_8N1;
/*
* If the port name starts with "usb", divert the serial routines
* to the USB ones. The serial_open() function for USB overrides
* the meaning of the "baud" parameter to be the USB device ID to
* search for.
*/
if (strncmp(port, "usb", 3) == 0) {
#if defined(HAVE_LIBUSB)
serdev = &usb_serdev;
pinfo.usbinfo.vid = USB_VENDOR_ATMEL;
pinfo.usbinfo.flags = 0;
pinfo.usbinfo.pid = USB_DEVICE_JTAGICEMKII;
pgm->fd.usb.max_xfer = USBDEV_MAX_XFER_MKII;
pgm->fd.usb.rep = USBDEV_BULK_EP_READ_MKII;
pgm->fd.usb.wep = USBDEV_BULK_EP_WRITE_MKII;
pgm->fd.usb.eep = 0; /* no seperate EP for events */
#else
avrdude_message(MSG_INFO, "avrdude was compiled without usb support.\n");
return -1;
#endif
}
strcpy(pgm->port, port);
if (serial_open(port, pinfo, &pgm->fd)==-1) {
return -1;
}
/*
* drain any extraneous input
*/
jtagmkII_drain(pgm, 0);
if (jtagmkII_getsync(pgm, EMULATOR_MODE_PDI) < 0)
return -1;
return 0;
}
static int jtagmkII_dragon_open(PROGRAMMER * pgm, char * port)
{
union pinfo pinfo;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_dragon_open()\n", progname);
/*
* The JTAG ICE mkII always starts with a baud rate of 19200 Bd upon
* attaching. If the config file or command-line parameters specify
* a higher baud rate, we switch to it later on, after establishing
* the connection with the ICE.
*/
pinfo.serialinfo.baud = 19200;
pinfo.serialinfo.cflags = SERIAL_8N1;
/*
* If the port name starts with "usb", divert the serial routines
* to the USB ones. The serial_open() function for USB overrides
* the meaning of the "baud" parameter to be the USB device ID to
* search for.
*/
if (strncmp(port, "usb", 3) == 0) {
#if defined(HAVE_LIBUSB)
serdev = &usb_serdev;
pinfo.usbinfo.vid = USB_VENDOR_ATMEL;
pinfo.usbinfo.flags = 0;
pinfo.usbinfo.pid = USB_DEVICE_AVRDRAGON;
pgm->fd.usb.max_xfer = USBDEV_MAX_XFER_MKII;
pgm->fd.usb.rep = USBDEV_BULK_EP_READ_MKII;
pgm->fd.usb.wep = USBDEV_BULK_EP_WRITE_MKII;
pgm->fd.usb.eep = 0; /* no seperate EP for events */
#else
avrdude_message(MSG_INFO, "avrdude was compiled without usb support.\n");
return -1;
#endif
}
strcpy(pgm->port, port);
if (serial_open(port, pinfo, &pgm->fd)==-1) {
return -1;
}
/*
* drain any extraneous input
*/
jtagmkII_drain(pgm, 0);
if (jtagmkII_getsync(pgm, EMULATOR_MODE_JTAG) < 0)
return -1;
return 0;
}
static int jtagmkII_dragon_open_dw(PROGRAMMER * pgm, char * port)
{
union pinfo pinfo;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_dragon_open_dw()\n", progname);
/*
* The JTAG ICE mkII always starts with a baud rate of 19200 Bd upon
* attaching. If the config file or command-line parameters specify
* a higher baud rate, we switch to it later on, after establishing
* the connection with the ICE.
*/
pinfo.serialinfo.baud = 19200;
pinfo.serialinfo.cflags = SERIAL_8N1;
/*
* If the port name starts with "usb", divert the serial routines
* to the USB ones. The serial_open() function for USB overrides
* the meaning of the "baud" parameter to be the USB device ID to
* search for.
*/
if (strncmp(port, "usb", 3) == 0) {
#if defined(HAVE_LIBUSB)
serdev = &usb_serdev;
pinfo.usbinfo.vid = USB_VENDOR_ATMEL;
pinfo.usbinfo.flags = 0;
pinfo.usbinfo.pid = USB_DEVICE_AVRDRAGON;
pgm->fd.usb.max_xfer = USBDEV_MAX_XFER_MKII;
pgm->fd.usb.rep = USBDEV_BULK_EP_READ_MKII;
pgm->fd.usb.wep = USBDEV_BULK_EP_WRITE_MKII;
pgm->fd.usb.eep = 0; /* no seperate EP for events */
#else
avrdude_message(MSG_INFO, "avrdude was compiled without usb support.\n");
return -1;
#endif
}
strcpy(pgm->port, port);
if (serial_open(port, pinfo, &pgm->fd)==-1) {
return -1;
}
/*
* drain any extraneous input
*/
jtagmkII_drain(pgm, 0);
if (jtagmkII_getsync(pgm, EMULATOR_MODE_DEBUGWIRE) < 0)
return -1;
return 0;
}
static int jtagmkII_dragon_open_pdi(PROGRAMMER * pgm, char * port)
{
union pinfo pinfo;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_dragon_open_pdi()\n", progname);
/*
* The JTAG ICE mkII always starts with a baud rate of 19200 Bd upon
* attaching. If the config file or command-line parameters specify
* a higher baud rate, we switch to it later on, after establishing
* the connection with the ICE.
*/
pinfo.serialinfo.baud = 19200;
pinfo.serialinfo.cflags = SERIAL_8N1;
/*
* If the port name starts with "usb", divert the serial routines
* to the USB ones. The serial_open() function for USB overrides
* the meaning of the "baud" parameter to be the USB device ID to
* search for.
*/
if (strncmp(port, "usb", 3) == 0) {
#if defined(HAVE_LIBUSB)
serdev = &usb_serdev;
pinfo.usbinfo.vid = USB_VENDOR_ATMEL;
pinfo.usbinfo.flags = 0;
pinfo.usbinfo.pid = USB_DEVICE_AVRDRAGON;
pgm->fd.usb.max_xfer = USBDEV_MAX_XFER_MKII;
pgm->fd.usb.rep = USBDEV_BULK_EP_READ_MKII;
pgm->fd.usb.wep = USBDEV_BULK_EP_WRITE_MKII;
pgm->fd.usb.eep = 0; /* no seperate EP for events */
#else
avrdude_message(MSG_INFO, "avrdude was compiled without usb support.\n");
return -1;
#endif
}
strcpy(pgm->port, port);
if (serial_open(port, pinfo, &pgm->fd)==-1) {
return -1;
}
/*
* drain any extraneous input
*/
jtagmkII_drain(pgm, 0);
if (jtagmkII_getsync(pgm, EMULATOR_MODE_PDI) < 0)
return -1;
return 0;
}
void jtagmkII_close(PROGRAMMER * pgm)
{
int status;
unsigned char buf[1], *resp, c;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_close()\n", progname);
if (pgm->flag & (PGM_FL_IS_PDI | PGM_FL_IS_JTAG)) {
/* When in PDI or JTAG mode, restart target. */
buf[0] = CMND_GO;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_close(): Sending GO command: ",
progname);
jtagmkII_send(pgm, buf, 1);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_close(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
} else {
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
avrdude_message(MSG_NOTICE2, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
free(resp);
if (c != RSP_OK) {
avrdude_message(MSG_INFO, "%s: jtagmkII_close(): "
"bad response to GO command: %s\n",
progname, jtagmkII_get_rc(c));
}
}
}
buf[0] = CMND_SIGN_OFF;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_close(): Sending sign-off command: ",
progname);
jtagmkII_send(pgm, buf, 1);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_close(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
avrdude_message(MSG_NOTICE2, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
free(resp);
if (c != RSP_OK) {
avrdude_message(MSG_INFO, "%s: jtagmkII_close(): "
"bad response to sign-off command: %s\n",
progname, jtagmkII_get_rc(c));
}
serial_close(&pgm->fd);
pgm->fd.ifd = -1;
}
static int jtagmkII_page_erase(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned int addr)
{
unsigned char cmd[6];
unsigned char *resp;
int status, tries;
long otimeout = serial_recv_timeout;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_page_erase(.., %s, 0x%x)\n",
progname, m->desc, addr);
if (!(p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI))) {
avrdude_message(MSG_INFO, "%s: jtagmkII_page_erase: not an Xmega device\n",
progname);
return -1;
}
if ((pgm->flag & PGM_FL_IS_DW)) {
avrdude_message(MSG_INFO, "%s: jtagmkII_page_erase: not applicable to debugWIRE\n",
progname);
return -1;
}
if (jtagmkII_program_enable(pgm) < 0)
return -1;
cmd[0] = CMND_XMEGA_ERASE;
if (strcmp(m->desc, "flash") == 0) {
if (jtagmkII_memtype(pgm, p, addr) == MTYPE_FLASH)
cmd[1] = XMEGA_ERASE_APP_PAGE;
else
cmd[1] = XMEGA_ERASE_BOOT_PAGE;
} else if (strcmp(m->desc, "eeprom") == 0) {
cmd[1] = XMEGA_ERASE_EEPROM_PAGE;
} else if (strcmp(m->desc, "usersig") == 0 ||
strcmp(m->desc, "userrow") == 0) {
cmd[1] = XMEGA_ERASE_USERSIG;
} else if (strcmp(m->desc, "boot") == 0) {
cmd[1] = XMEGA_ERASE_BOOT_PAGE;
} else {
cmd[1] = XMEGA_ERASE_APP_PAGE;
}
serial_recv_timeout = 100;
/*
* Don't use jtagmkII_memaddr() here. While with all other
* commands, firmware 7+ doesn't require the NVM offsets being
* applied, the erase page commands make an exception, and do
* require the NVM offsets as part of the (page) address.
*/
u32_to_b4(cmd + 2, addr + m->offset);
tries = 0;
retry:
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_page_erase(): "
"Sending Xmega erase command: ",
progname);
jtagmkII_send(pgm, cmd, sizeof cmd);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_page_erase(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
if (tries++ < 4) {
serial_recv_timeout *= 2;
goto retry;
}
avrdude_message(MSG_INFO, "%s: jtagmkII_page_erase(): fatal timeout/"
"error communicating with programmer (status %d)\n",
progname, status);
serial_recv_timeout = otimeout;
return -1;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
avrdude_message(MSG_NOTICE2, "0x%02x (%d bytes msg)\n", resp[0], status);
if (resp[0] != RSP_OK) {
avrdude_message(MSG_INFO, "%s: jtagmkII_page_erase(): "
"bad response to xmega erase command: %s\n",
progname, jtagmkII_get_rc(resp[0]));
free(resp);
serial_recv_timeout = otimeout;
return -1;
}
free(resp);
serial_recv_timeout = otimeout;
return 0;
}
static int jtagmkII_paged_write(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
unsigned int block_size;
unsigned int maxaddr = addr + n_bytes;
unsigned char *cmd;
unsigned char *resp;
int status, tries, dynamic_memtype = 0;
long otimeout = serial_recv_timeout;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_paged_write(.., %s, %d, %d)\n",
progname, m->desc, page_size, n_bytes);
if (!(pgm->flag & PGM_FL_IS_DW) && jtagmkII_program_enable(pgm) < 0)
return -1;
if (page_size == 0) page_size = 256;
else if (page_size > 256) page_size = 256;
if ((cmd = malloc(page_size + 10)) == NULL) {
avrdude_message(MSG_INFO, "%s: jtagmkII_paged_write(): Out of memory\n",
progname);
return -1;
}
cmd[0] = CMND_WRITE_MEMORY;
if (strcmp(m->desc, "flash") == 0) {
PDATA(pgm)->flash_pageaddr = (unsigned long)-1L;
cmd[1] = jtagmkII_memtype(pgm, p, addr);
if (p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI))
/* dynamically decide between flash/boot memtype */
dynamic_memtype = 1;
} else if (strcmp(m->desc, "eeprom") == 0) {
if (pgm->flag & PGM_FL_IS_DW) {
/*
* jtagmkII_paged_write() to EEPROM attempted while in
* DW mode. Use jtagmkII_write_byte() instead.
*/
for (; addr < maxaddr; addr++) {
status = jtagmkII_write_byte(pgm, p, m, addr, m->buf[addr]);
if (status < 0) {
free(cmd);
return -1;
}
}
free(cmd);
return n_bytes;
}
cmd[1] = (p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI)) ? MTYPE_EEPROM : MTYPE_EEPROM_PAGE;
PDATA(pgm)->eeprom_pageaddr = (unsigned long)-1L;
} else if (strcmp(m->desc, "usersig") == 0 ||
strcmp(m->desc, "userrow") == 0) {
cmd[1] = MTYPE_USERSIG;
} else if (strcmp(m->desc, "boot") == 0) {
cmd[1] = MTYPE_BOOT_FLASH;
} else if (p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI)) {
cmd[1] = MTYPE_FLASH;
} else {
cmd[1] = MTYPE_SPM;
}
serial_recv_timeout = 200;
for (; addr < maxaddr; addr += page_size) {
if ((maxaddr - addr) < page_size)
block_size = maxaddr - addr;
else
block_size = page_size;
avrdude_message(MSG_DEBUG, "%s: jtagmkII_paged_write(): "
"block_size at addr %d is %d\n",
progname, addr, block_size);
if (dynamic_memtype)
cmd[1] = jtagmkII_memtype(pgm, p, addr);
u32_to_b4(cmd + 2, page_size);
u32_to_b4(cmd + 6, jtagmkII_memaddr(pgm, p, m, addr));
/*
* The JTAG ICE will refuse to write anything but a full page, at
* least for the flash ROM. If a partial page has been requested,
* set the remainder to 0xff. (Maybe we should rather read back
* the existing contents instead before? Doesn't matter much, as
* bits cannot be written to 1 anyway.)
*/
memset(cmd + 10, 0xff, page_size);
memcpy(cmd + 10, m->buf + addr, block_size);
tries = 0;
retry:
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_paged_write(): "
"Sending write memory command: ",
progname);
jtagmkII_send(pgm, cmd, page_size + 10);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_paged_write(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
if (tries++ < 4) {
serial_recv_timeout *= 2;
goto retry;
}
avrdude_message(MSG_INFO, "%s: jtagmkII_paged_write(): fatal timeout/"
"error communicating with programmer (status %d)\n",
progname, status);
free(cmd);
serial_recv_timeout = otimeout;
return -1;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
avrdude_message(MSG_NOTICE2, "0x%02x (%d bytes msg)\n", resp[0], status);
if (resp[0] != RSP_OK) {
avrdude_message(MSG_INFO, "%s: jtagmkII_paged_write(): "
"bad response to write memory command: %s\n",
progname, jtagmkII_get_rc(resp[0]));
free(resp);
free(cmd);
serial_recv_timeout = otimeout;
return -1;
}
free(resp);
}
free(cmd);
serial_recv_timeout = otimeout;
return n_bytes;
}
static int jtagmkII_paged_load(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
unsigned int block_size;
unsigned int maxaddr = addr + n_bytes;
unsigned char cmd[10];
unsigned char *resp;
int status, tries, dynamic_memtype = 0;
long otimeout = serial_recv_timeout;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_paged_load(.., %s, %d, %d)\n",
progname, m->desc, page_size, n_bytes);
if (!(pgm->flag & PGM_FL_IS_DW) && jtagmkII_program_enable(pgm) < 0)
return -1;
page_size = m->readsize;
cmd[0] = CMND_READ_MEMORY;
if (strcmp(m->desc, "flash") == 0) {
cmd[1] = jtagmkII_memtype(pgm, p, addr);
if (p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI))
/* dynamically decide between flash/boot memtype */
dynamic_memtype = 1;
} else if (strcmp(m->desc, "eeprom") == 0) {
cmd[1] = (p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI)) ? MTYPE_EEPROM : MTYPE_EEPROM_PAGE;
if (pgm->flag & PGM_FL_IS_DW)
return -1;
} else if (strcmp(m->desc, "prodsig") == 0) {
cmd[1] = MTYPE_PRODSIG;
} else if (strcmp(m->desc, "usersig") == 0 ||
strcmp(m->desc, "userrow") == 0) {
cmd[1] = MTYPE_USERSIG;
} else if (strcmp(m->desc, "boot") == 0) {
cmd[1] = MTYPE_BOOT_FLASH;
} else if (p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI)) {
cmd[1] = MTYPE_FLASH;
} else {
cmd[1] = MTYPE_SPM;
}
serial_recv_timeout = 100;
for (; addr < maxaddr; addr += page_size) {
if ((maxaddr - addr) < page_size)
block_size = maxaddr - addr;
else
block_size = page_size;
avrdude_message(MSG_DEBUG, "%s: jtagmkII_paged_load(): "
"block_size at addr %d is %d\n",
progname, addr, block_size);
if (dynamic_memtype)
cmd[1] = jtagmkII_memtype(pgm, p, addr);
u32_to_b4(cmd + 2, block_size);
u32_to_b4(cmd + 6, jtagmkII_memaddr(pgm, p, m, addr));
tries = 0;
retry:
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_paged_load(): Sending read memory command: ",
progname);
jtagmkII_send(pgm, cmd, 10);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_paged_load(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
if (tries++ < 4) {
serial_recv_timeout *= 2;
goto retry;
}
avrdude_message(MSG_INFO, "%s: jtagmkII_paged_load(): fatal timeout/"
"error communicating with programmer (status %d)\n",
progname, status);
serial_recv_timeout = otimeout;
return -1;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
avrdude_message(MSG_NOTICE2, "0x%02x (%d bytes msg)\n", resp[0], status);
if (resp[0] != RSP_MEMORY) {
avrdude_message(MSG_INFO, "%s: jtagmkII_paged_load(): "
"bad response to read memory command: %s\n",
progname, jtagmkII_get_rc(resp[0]));
free(resp);
serial_recv_timeout = otimeout;
return -1;
}
memcpy(m->buf + addr, resp + 1, status-1);
free(resp);
}
serial_recv_timeout = otimeout;
return n_bytes;
}
static int jtagmkII_read_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char * value)
{
unsigned char cmd[10];
unsigned char *resp = NULL, *cache_ptr = NULL;
int status, tries, unsupp;
unsigned long paddr = 0UL, *paddr_ptr = NULL;
unsigned int pagesize = 0;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_read_byte(.., %s, 0x%lx, ...)\n",
progname, mem->desc, addr);
if (!(pgm->flag & PGM_FL_IS_DW) && jtagmkII_program_enable(pgm) < 0)
return -1;
cmd[0] = CMND_READ_MEMORY;
unsupp = 0;
addr += mem->offset;
cmd[1] = ( p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI) ) ? MTYPE_FLASH : MTYPE_FLASH_PAGE;
if (strcmp(mem->desc, "flash") == 0 ||
strcmp(mem->desc, "application") == 0 ||
strcmp(mem->desc, "apptable") == 0 ||
strcmp(mem->desc, "boot") == 0) {
pagesize = PDATA(pgm)->flash_pagesize;
paddr = addr & ~(pagesize - 1);
paddr_ptr = &PDATA(pgm)->flash_pageaddr;
cache_ptr = PDATA(pgm)->flash_pagecache;
} else if (strcmp(mem->desc, "eeprom") == 0) {
if ( (pgm->flag & PGM_FL_IS_DW) || ( p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI) ) ) {
/* debugWire cannot use page access for EEPROM */
cmd[1] = MTYPE_EEPROM;
} else {
cmd[1] = MTYPE_EEPROM_PAGE;
pagesize = mem->page_size;
paddr = addr & ~(pagesize - 1);
paddr_ptr = &PDATA(pgm)->eeprom_pageaddr;
cache_ptr = PDATA(pgm)->eeprom_pagecache;
}
} else if (strcmp(mem->desc, "lfuse") == 0) {
cmd[1] = MTYPE_FUSE_BITS;
addr = 0;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "hfuse") == 0) {
cmd[1] = MTYPE_FUSE_BITS;
addr = 1;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "efuse") == 0) {
cmd[1] = MTYPE_FUSE_BITS;
addr = 2;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strncmp(mem->desc, "lock", 4) == 0) {
cmd[1] = MTYPE_LOCK_BITS;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strncmp(mem->desc, "fuse", strlen("fuse")) == 0) {
cmd[1] = MTYPE_FUSE_BITS;
} else if (strcmp(mem->desc, "usersig") == 0 ||
strcmp(mem->desc, "userrow") == 0) {
cmd[1] = MTYPE_USERSIG;
} else if (strcmp(mem->desc, "prodsig") == 0) {
cmd[1] = MTYPE_PRODSIG;
} else if (strcmp(mem->desc, "calibration") == 0) {
cmd[1] = MTYPE_OSCCAL_BYTE;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "signature") == 0) {
cmd[1] = MTYPE_SIGN_JTAG;
if (pgm->flag & PGM_FL_IS_DW) {
/*
* In debugWire mode, there is no accessible memory area to read
* the signature from, but the essential two bytes can be read
* as a parameter from the ICE.
*/
unsigned char parm[4];
switch (addr) {
case 0:
*value = 0x1E; /* Atmel vendor ID */
break;
case 1:
case 2:
if (jtagmkII_getparm(pgm, PAR_TARGET_SIGNATURE, parm) < 0)
return -1;
*value = parm[2 - addr];
break;
default:
avrdude_message(MSG_INFO, "%s: illegal address %lu for signature memory\n",
progname, addr);
return -1;
}
return 0;
}
}
/*
* If the respective memory area is not supported under debugWire,
* leave here.
*/
if (unsupp) {
*value = 42;
return -1;
}
/*
* To improve the read speed, we used paged reads for flash and
* EEPROM, and cache the results in a page cache.
*
* Page cache validation is based on "{flash,eeprom}_pageaddr"
* (holding the base address of the most recent cache fill
* operation). This variable is set to (unsigned long)-1L when the
* cache needs to be invalidated.
*/
if (pagesize && paddr == *paddr_ptr) {
*value = cache_ptr[addr & (pagesize - 1)];
return 0;
}
if (pagesize) {
u32_to_b4(cmd + 2, pagesize);
u32_to_b4(cmd + 6, paddr);
} else {
u32_to_b4(cmd + 2, 1);
u32_to_b4(cmd + 6, addr);
}
tries = 0;
retry:
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_read_byte(): Sending read memory command: ",
progname);
jtagmkII_send(pgm, cmd, 10);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_read_byte(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
if (tries++ < 3)
goto retry;
avrdude_message(MSG_INFO, "%s: jtagmkII_read_byte(): "
"fatal timeout/error communicating with programmer (status %d)\n",
progname, status);
if (status < 0)
resp = 0;
goto fail;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
avrdude_message(MSG_NOTICE2, "0x%02x (%d bytes msg)\n", resp[0], status);
if (resp[0] != RSP_MEMORY) {
avrdude_message(MSG_INFO, "%s: jtagmkII_read_byte(): "
"bad response to read memory command: %s\n",
progname, jtagmkII_get_rc(resp[0]));
goto fail;
}
if (pagesize) {
*paddr_ptr = paddr;
memcpy(cache_ptr, resp + 1, pagesize);
*value = cache_ptr[addr & (pagesize - 1)];
} else
*value = resp[1];
free(resp);
return 0;
fail:
free(resp);
return -1;
}
static int jtagmkII_write_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char data)
{
unsigned char cmd[12];
unsigned char *resp = NULL, writedata, writedata2 = 0xFF;
int status, tries, need_progmode = 1, unsupp = 0, writesize = 1;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_write_byte(.., %s, 0x%lx, ...)\n",
progname, mem->desc, addr);
addr += mem->offset;
writedata = data;
cmd[0] = CMND_WRITE_MEMORY;
cmd[1] = ( p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI) ) ? MTYPE_FLASH : MTYPE_SPM;
if (strcmp(mem->desc, "flash") == 0) {
if ((addr & 1) == 1) {
/* odd address = high byte */
writedata = 0xFF; /* don't modify the low byte */
writedata2 = data;
addr &= ~1L;
}
writesize = 2;
need_progmode = 0;
PDATA(pgm)->flash_pageaddr = (unsigned long)-1L;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "eeprom") == 0) {
cmd[1] = ( p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI) ) ? MTYPE_EEPROM_XMEGA: MTYPE_EEPROM;
need_progmode = 0;
PDATA(pgm)->eeprom_pageaddr = (unsigned long)-1L;
} else if (strcmp(mem->desc, "lfuse") == 0) {
cmd[1] = MTYPE_FUSE_BITS;
addr = 0;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "hfuse") == 0) {
cmd[1] = MTYPE_FUSE_BITS;
addr = 1;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "efuse") == 0) {
cmd[1] = MTYPE_FUSE_BITS;
addr = 2;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strncmp(mem->desc, "fuse", strlen("fuse")) == 0) {
cmd[1] = MTYPE_FUSE_BITS;
} else if (strcmp(mem->desc, "usersig") == 0 ||
strcmp(mem->desc, "userrow") == 0) {
cmd[1] = MTYPE_USERSIG;
} else if (strcmp(mem->desc, "prodsig") == 0) {
cmd[1] = MTYPE_PRODSIG;
} else if (strncmp(mem->desc, "lock", 4) == 0) {
cmd[1] = MTYPE_LOCK_BITS;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "calibration") == 0) {
cmd[1] = MTYPE_OSCCAL_BYTE;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "signature") == 0) {
cmd[1] = MTYPE_SIGN_JTAG;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
}
if (unsupp)
return -1;
if (need_progmode) {
if (jtagmkII_program_enable(pgm) < 0)
return -1;
} else {
if (jtagmkII_program_disable(pgm) < 0)
return -1;
}
u32_to_b4(cmd + 2, writesize);
u32_to_b4(cmd + 6, addr);
cmd[10] = writedata;
cmd[11] = writedata2;
tries = 0;
retry:
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_write_byte(): Sending write memory command: ",
progname);
jtagmkII_send(pgm, cmd, 10 + writesize);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_write_byte(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
if (tries++ < 3)
goto retry;
avrdude_message(MSG_INFO, "%s: jtagmkII_write_byte(): "
"fatal timeout/error communicating with programmer (status %d)\n",
progname, status);
goto fail;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
avrdude_message(MSG_NOTICE2, "0x%02x (%d bytes msg)\n", resp[0], status);
if (resp[0] != RSP_OK) {
avrdude_message(MSG_INFO, "%s: jtagmkII_write_byte(): "
"bad response to write memory command: %s\n",
progname, jtagmkII_get_rc(resp[0]));
goto fail;
}
free(resp);
return 0;
fail:
free(resp);
return -1;
}
/*
* Set the JTAG clock. The actual frequency is quite a bit of
* guesswork, based on the values claimed by AVR Studio. Inside the
* JTAG ICE, the value is the delay count of a delay loop between the
* JTAG clock edges. A count of 0 bypasses the delay loop.
*
* As the STK500 expresses it as a period length (and we actualy do
* program a period length as well), we rather call it by that name.
*/
static int jtagmkII_set_sck_period(PROGRAMMER * pgm, double v)
{
unsigned char dur;
v = 1 / v; /* convert to frequency */
if (v >= 6.4e6)
dur = 0;
else if (v >= 2.8e6)
dur = 1;
else if (v >= 20.9e3)
dur = (unsigned char)(5.35e6 / v);
else
dur = 255;
return jtagmkII_setparm(pgm, PAR_OCD_JTAG_CLK, &dur);
}
/*
* Read an emulator parameter. As the maximal parameter length is 4
* bytes by now, we always copy out 4 bytes to *value, so the caller
* must have allocated sufficient space.
*/
int jtagmkII_getparm(PROGRAMMER * pgm, unsigned char parm,
unsigned char * value)
{
int status;
unsigned char buf[2], *resp, c;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_getparm()\n", progname);
buf[0] = CMND_GET_PARAMETER;
buf[1] = parm;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_getparm(): "
"Sending get parameter command (parm 0x%02x): ",
progname, parm);
jtagmkII_send(pgm, buf, 2);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_getparm(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return -1;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
avrdude_message(MSG_NOTICE2, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
if (c != RSP_PARAMETER) {
avrdude_message(MSG_INFO, "%s: jtagmkII_getparm(): "
"bad response to get parameter command: %s\n",
progname, jtagmkII_get_rc(c));
free(resp);
return -1;
}
memcpy(value, resp + 1, 4);
free(resp);
return 0;
}
/*
* Write an emulator parameter.
*/
static int jtagmkII_setparm(PROGRAMMER * pgm, unsigned char parm,
unsigned char * value)
{
int status;
/*
* As the maximal parameter length is 4 bytes, we use a fixed-length
* buffer, as opposed to malloc()ing it.
*/
unsigned char buf[2 + 4], *resp, c;
size_t size;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_setparm()\n", progname);
switch (parm) {
case PAR_HW_VERSION: size = 2; break;
case PAR_FW_VERSION: size = 4; break;
case PAR_EMULATOR_MODE: size = 1; break;
case PAR_BAUD_RATE: size = 1; break;
case PAR_OCD_VTARGET: size = 2; break;
case PAR_OCD_JTAG_CLK: size = 1; break;
case PAR_TIMERS_RUNNING: size = 1; break;
case PAR_EXTERNAL_RESET: size = 1; break;
case PAR_DAISY_CHAIN_INFO: size = 4; break;
case PAR_PDI_OFFSET_START:
case PAR_PDI_OFFSET_END: size = 4; break;
default:
avrdude_message(MSG_INFO, "%s: jtagmkII_setparm(): unknown parameter 0x%02x\n",
progname, parm);
return -1;
}
buf[0] = CMND_SET_PARAMETER;
buf[1] = parm;
memcpy(buf + 2, value, size);
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_setparm(): "
"Sending set parameter command (parm 0x%02x, %u bytes): ",
progname, parm, (unsigned)size);
jtagmkII_send(pgm, buf, size + 2);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_setparm(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return -1;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
avrdude_message(MSG_NOTICE2, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
free(resp);
if (c != RSP_OK) {
avrdude_message(MSG_INFO, "%s: jtagmkII_setparm(): "
"bad response to set parameter command: %s\n",
progname, jtagmkII_get_rc(c));
return -1;
}
return 0;
}
static void jtagmkII_display(PROGRAMMER * pgm, const char * p)
{
unsigned char hw[4], fw[4];
if (jtagmkII_getparm(pgm, PAR_HW_VERSION, hw) < 0 ||
jtagmkII_getparm(pgm, PAR_FW_VERSION, fw) < 0)
return;
avrdude_message(MSG_INFO, "%sM_MCU HW version: %d\n", p, hw[0]);
avrdude_message(MSG_INFO, "%sM_MCU FW version: %d.%02d\n", p, fw[1], fw[0]);
avrdude_message(MSG_INFO, "%sS_MCU HW version: %d\n", p, hw[1]);
avrdude_message(MSG_INFO, "%sS_MCU FW version: %d.%02d\n", p, fw[3], fw[2]);
avrdude_message(MSG_INFO, "%sSerial number : %02x:%02x:%02x:%02x:%02x:%02x\n",
p, PDATA(pgm)->serno[0], PDATA(pgm)->serno[1], PDATA(pgm)->serno[2], PDATA(pgm)->serno[3], PDATA(pgm)->serno[4], PDATA(pgm)->serno[5]);
jtagmkII_print_parms1(pgm, p);
return;
}
static void jtagmkII_print_parms1(PROGRAMMER * pgm, const char * p)
{
unsigned char vtarget[4], jtag_clock[4];
char clkbuf[20];
double clk;
if (jtagmkII_getparm(pgm, PAR_OCD_VTARGET, vtarget) < 0)
return;
avrdude_message(MSG_INFO, "%sVtarget : %.1f V\n", p,
b2_to_u16(vtarget) / 1000.0);
if ((pgm->flag & PGM_FL_IS_JTAG)) {
if (jtagmkII_getparm(pgm, PAR_OCD_JTAG_CLK, jtag_clock) < 0)
return;
if (jtag_clock[0] == 0) {
strcpy(clkbuf, "6.4 MHz");
clk = 6.4e6;
} else if (jtag_clock[0] == 1) {
strcpy(clkbuf, "2.8 MHz");
clk = 2.8e6;
} else if (jtag_clock[0] <= 5) {
sprintf(clkbuf, "%.1f MHz", 5.35 / (double)jtag_clock[0]);
clk = 5.35e6 / (double)jtag_clock[0];
} else {
sprintf(clkbuf, "%.1f kHz", 5.35e3 / (double)jtag_clock[0]);
clk = 5.35e6 / (double)jtag_clock[0];
avrdude_message(MSG_INFO, "%sJTAG clock : %s (%.1f us)\n", p, clkbuf,
1.0e6 / clk);
}
}
return;
}
static void jtagmkII_print_parms(PROGRAMMER * pgm)
{
jtagmkII_print_parms1(pgm, "");
}
static unsigned char jtagmkII_memtype(PROGRAMMER * pgm, AVRPART * p, unsigned long addr)
{
if ( p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI) ) {
if (addr >= PDATA(pgm)->boot_start)
return MTYPE_BOOT_FLASH;
else
return MTYPE_FLASH;
} else {
return MTYPE_FLASH_PAGE;
}
}
static unsigned int jtagmkII_memaddr(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m, unsigned long addr)
{
/*
* Xmega devices handled by V7+ firmware don't want to be told their
* m->offset within the write memory command.
*/
if (PDATA(pgm)->fwver >= 0x700 && (p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI)) != 0) {
if (addr >= PDATA(pgm)->boot_start)
/*
* all memories but "flash" are smaller than boot_start anyway, so
* no need for an extra check we are operating on "flash"
*/
return addr - PDATA(pgm)->boot_start;
else
/* normal flash, or anything else */
return addr;
}
/*
* Old firmware, or non-Xmega device. Non-Xmega (and non-AVR32)
* devices always have an m->offset of 0, so we don't have to
* distinguish them here.
*/
return addr + m->offset;
}
#ifdef __OBJC__
#pragma mark -
#endif
static int jtagmkII_avr32_reset(PROGRAMMER * pgm, unsigned char val,
unsigned char ret1, unsigned char ret2)
{
int status;
unsigned char buf[3], *resp;
avrdude_message(MSG_NOTICE, "%s: jtagmkII_avr32_reset(%2.2x)\n",
progname, val);
buf[0] = CMND_GET_IR;
buf[1] = 0x0C;
status = jtagmkII_send(pgm, buf, 2);
if(status < 0) return -1;
status = jtagmkII_recv(pgm, &resp);
if (status != 2 || resp[0] != 0x87 || resp[1] != ret1) {
avrdude_message(MSG_NOTICE, "%s: jtagmkII_avr32_reset(): "
"Get_IR, expecting %2.2x but got %2.2x\n",
progname, ret1, resp[1]);
//return -1;
}
buf[0] = CMND_GET_xxx;
buf[1] = 5;
buf[2] = val;
status = jtagmkII_send(pgm, buf, 3);
if(status < 0) return -1;
status = jtagmkII_recv(pgm, &resp);
if (status != 2 || resp[0] != 0x87 || resp[1] != ret2) {
avrdude_message(MSG_NOTICE, "%s: jtagmkII_avr32_reset(): "
"Get_XXX, expecting %2.2x but got %2.2x\n",
progname, ret2, resp[1]);
//return -1;
}
return 0;
}
// At init: AVR32_RESET_READ_IR | AVR32_RESET_READ_READ_CHIPINFO
static int jtagmkII_reset32(PROGRAMMER * pgm, unsigned short flags)
{
int status, j, lineno;
unsigned char *resp, buf[3];
unsigned long val=0;
avrdude_message(MSG_NOTICE, "%s: jtagmkII_reset32(%2.2x)\n",
progname, flags);
status = -1;
// Happens at the start of a programming operation
if(flags & AVR32_RESET_READ) {
buf[0] = CMND_GET_IR;
buf[1] = 0x11;
status = jtagmkII_send(pgm, buf, 2);
if(status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_recv(pgm, &resp);
if (status != 2 || resp[0] != 0x87 || resp[1] != 01)
{lineno = __LINE__; goto eRR;};
}
if(flags & (AVR32_RESET_WRITE | AVR32_SET4RUNNING)) {
// AVR_RESET(0x1F)
status = jtagmkII_avr32_reset(pgm, 0x1F, 0x01, 0x00);
if(status < 0) {lineno = __LINE__; goto eRR;}
// AVR_RESET(0x07)
status = jtagmkII_avr32_reset(pgm, 0x07, 0x11, 0x1F);
if(status < 0) {lineno = __LINE__; goto eRR;}
}
//if(flags & AVR32_RESET_COMMON)
{
val = jtagmkII_read_SABaddr(pgm, AVR32_DS, 0x01);
if(val != 0) {lineno = __LINE__; goto eRR;}
val = jtagmkII_read_SABaddr(pgm, AVR32_DC, 0x01);
if(val != 0) {lineno = __LINE__; goto eRR;}
}
if(flags & (AVR32_RESET_READ | AVR32_RESET_CHIP_ERASE)) {
status = jtagmkII_write_SABaddr(pgm, AVR32_DC, 0x01,
AVR32_DC_DBE | AVR32_DC_DBR);
if(status < 0) return -1;
}
if(flags & (AVR32_RESET_WRITE | AVR32_SET4RUNNING)) {
status = jtagmkII_write_SABaddr(pgm, AVR32_DC, 0x01,
AVR32_DC_ABORT | AVR32_DC_RESET | AVR32_DC_DBE | AVR32_DC_DBR);
if(status < 0) return -1;
for(j=0; j<21; ++j) {
val = jtagmkII_read_SABaddr(pgm, AVR32_DS, 0x01);
}
if(val != 0x04000000) {lineno = __LINE__; goto eRR;}
// AVR_RESET(0x00)
status = jtagmkII_avr32_reset(pgm, 0x00, 0x01, 0x07);
if(status < 0) {lineno = __LINE__; goto eRR;}
}
// if(flags & (AVR32_RESET_READ | AVR32_RESET_WRITE))
{
for(j=0; j<2; ++j) {
val = jtagmkII_read_SABaddr(pgm, AVR32_DS, 0x01);
if(val == ERROR_SAB) {lineno = __LINE__; goto eRR;}
if((val&0x05000020) != 0x05000020) {lineno = __LINE__; goto eRR;}
}
}
//if(flags & (AVR32_RESET_READ | AVR32_RESET_WRITE | AVR32_RESET_CHIP_ERASE))
{
status = jtagmkII_write_SABaddr(pgm, AVR32_DINST, 0x01, 0xe7b00044); // mtdr 272, R0
if(status < 0) {lineno = __LINE__; goto eRR;}
val = jtagmkII_read_SABaddr(pgm, AVR32_DCSR, 0x01);
if(val != 0x00000001) {lineno = __LINE__; goto eRR;}
val = jtagmkII_read_SABaddr(pgm, AVR32_DCCPU, 0x01);
if(val != 0x00000000) {lineno = __LINE__; goto eRR;}
}
// Read chip configuration - common for all
if(flags & (AVR32_RESET_READ | AVR32_RESET_WRITE | AVR32_RESET_CHIP_ERASE)) {
for(j=0; j<2; ++j) {
val = jtagmkII_read_SABaddr(pgm, AVR32_DS, 0x01);
if(val == ERROR_SAB) {lineno = __LINE__; goto eRR;}
if((val&0x05000020) != 0x05000020) {lineno = __LINE__; goto eRR;}
}
status = jtagmkII_write_SABaddr(pgm, AVR32_DINST, 0x01, 0xe7b00044); // mtdr 272, R0
if(status < 0) {lineno = __LINE__; goto eRR;}
val = jtagmkII_read_SABaddr(pgm, AVR32_DCSR, 0x01);
if(val != 0x00000001) {lineno = __LINE__; goto eRR;}
val = jtagmkII_read_SABaddr(pgm, AVR32_DCCPU, 0x01);
if(val != 0x00000000) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, AVR32_DINST, 0x01, 0xe1b00040); // mfsr R0, 256
if(status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, AVR32_DINST, 0x01, 0xe7b00044); // mtdr 272, R0
if(status < 0) {lineno = __LINE__; goto eRR;}
val = jtagmkII_read_SABaddr(pgm, AVR32_DCSR, 0x01);
if(val != 0x00000001) {lineno = __LINE__; goto eRR;}
val = jtagmkII_read_SABaddr(pgm, AVR32_DCCPU, 0x01);
if(val == ERROR_SAB) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, AVR32_DCEMU, 0x01, 0x00000000);
if(status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, AVR32_DINST, 0x01, 0xe5b00045); // mtdr R0, 276
if(status < 0) {lineno = __LINE__; goto eRR;}
val = jtagmkII_read_SABaddr(pgm, AVR32_DS, 0x01);
if(val == ERROR_SAB) {lineno = __LINE__; goto eRR;}
if((val&0x05000020) != 0x05000020) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, AVR32_DINST, 0x01, 0xe7b00044); // mtdr 272, R0
if(status < 0) {lineno = __LINE__; goto eRR;}
val = jtagmkII_read_SABaddr(pgm, AVR32_DCSR, 0x01);
if(val != 0x00000001) {lineno = __LINE__; goto eRR;}
val = jtagmkII_read_SABaddr(pgm, AVR32_DCCPU, 0x01);
if(val != 0x00000000) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, AVR32_DINST, 0x01, 0xe1b00041); // mfsr R0, 260
if(status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, AVR32_DINST, 0x01, 0xe7b00044); // mtdr 272, R0
if(status < 0) {lineno = __LINE__; goto eRR;}
val = jtagmkII_read_SABaddr(pgm, AVR32_DCSR, 0x01);
if(val != 0x00000001) {lineno = __LINE__; goto eRR;}
val = jtagmkII_read_SABaddr(pgm, AVR32_DCCPU, 0x01);
if(val == ERROR_SAB) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, AVR32_DCEMU, 0x01, 0x00000000);
if(status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, AVR32_DINST, 0x01, 0xe5b00045); // mtdr R0, 276
if(status < 0) {lineno = __LINE__; goto eRR;}
val = jtagmkII_read_SABaddr(pgm, 0x00000010, 0x06); // need to recheck who does this...
if(val != 0x00000000) {lineno = __LINE__; goto eRR;}
}
if(flags & AVR32_RESET_CHIP_ERASE) {
status = jtagmkII_avr32_reset(pgm, 0x1f, 0x01, 0x00);
if(status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_avr32_reset(pgm, 0x01, 0x11, 0x1f);
if(status < 0) {lineno = __LINE__; goto eRR;}
}
if(flags & AVR32_SET4RUNNING) {
status = jtagmkII_write_SABaddr(pgm, AVR32_DINST, 0x01, 0xe1b00014); // mfsr R0, 80
if(status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, AVR32_DINST, 0x01, 0xe7b00044); // mtdr 272, R0
if(status < 0) {lineno = __LINE__; goto eRR;}
val = jtagmkII_read_SABaddr(pgm, AVR32_DCSR, 0x01);
if(val != 0x00000001) {lineno = __LINE__; goto eRR;}
val = jtagmkII_read_SABaddr(pgm, AVR32_DCCPU, 0x01);
if(val == ERROR_SAB) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, AVR32_DCEMU, 0x01, 0x00000000);
if(status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, AVR32_DINST, 0x01, 0xe5b00045); // mfdr R0, 276
if(status < 0) {lineno = __LINE__; goto eRR;}
val = jtagmkII_read_SABaddr(pgm, AVR32_DS, 0x01);
if(val == ERROR_SAB) {lineno = __LINE__; goto eRR;}
if((val&0x05000020) != 0x05000020) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, AVR32_DINST, 0x01, 0xd623d703); // retd
if(status < 0) {lineno = __LINE__; goto eRR;}
}
return 0;
eRR:
avrdude_message(MSG_INFO, "%s: jtagmkII_reset32(): "
"failed at line %d (status=%x val=%lx)\n",
progname, lineno, status, val);
return -1;
}
static int jtagmkII_smc_init32(PROGRAMMER * pgm)
{
int status, lineno;
unsigned long val;
// HMATRIX 0xFFFF1000
status = jtagmkII_write_SABaddr(pgm, 0xffff1018, 0x05, 0x04000000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1024, 0x05, 0x04000000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1008, 0x05, 0x04000000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1078, 0x05, 0x04000000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1088, 0x05, 0x04000000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1018, 0x05, 0x08000000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1024, 0x05, 0x08000000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1008, 0x05, 0x08000000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1078, 0x05, 0x08000000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1088, 0x05, 0x08000000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1018, 0x05, 0x10000000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1024, 0x05, 0x10000000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1008, 0x05, 0x10000000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1078, 0x05, 0x10000000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1088, 0x05, 0x10000000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1018, 0x05, 0x00020000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1024, 0x05, 0x00020000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1008, 0x05, 0x00020000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1078, 0x05, 0x00020000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1088, 0x05, 0x00020000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1018, 0x05, 0x02000000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1024, 0x05, 0x02000000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1008, 0x05, 0x02000000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1078, 0x05, 0x02000000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xffff1088, 0x05, 0x02000000);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xfffe1c00, 0x05, 0x00010001);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xfffe1c04, 0x05, 0x05070a0b);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xfffe1c08, 0x05, 0x000b000c);
if (status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_write_SABaddr(pgm, 0xfffe1c0c, 0x05, 0x00031103);
if (status < 0) {lineno = __LINE__; goto eRR;}
// switchToClockSource
val = jtagmkII_read_SABaddr(pgm, 0xffff0c28, 0x05);
if (val != 0x00000000) {lineno = __LINE__; goto eRR;} // OSC 0
status = jtagmkII_write_SABaddr(pgm, 0xffff0c28, 0x05, 0x0000607);
if (status < 0) {lineno = __LINE__; goto eRR;}
val = jtagmkII_read_SABaddr(pgm, 0xffff0c00, 0x05);
if (val != 0x00000000) {lineno = __LINE__; goto eRR;} // PLL 0
status = jtagmkII_write_SABaddr(pgm, 0xffff0c00, 0x05, 0x0000004);
if (status < 0) {lineno = __LINE__; goto eRR;} // Power Manager
status = jtagmkII_write_SABaddr(pgm, 0xffff0c00, 0x05, 0x0000005);
if (status < 0) {lineno = __LINE__; goto eRR;}
usleep(1000000);
val = jtagmkII_read_SABaddr(pgm, 0xfffe1408, 0x05);
if (val != 0x0000a001) {lineno = __LINE__; goto eRR;} // PLL 0
// need a small delay to let clock stabliize
usleep(50*1000);
return 0;
eRR:
avrdude_message(MSG_INFO, "%s: jtagmkII_smc_init32(): "
"failed at line %d\n",
progname, lineno);
return -1;
}
/*
* initialize the AVR device and prepare it to accept commands
*/
static int jtagmkII_initialize32(PROGRAMMER * pgm, AVRPART * p)
{
int status, j;
unsigned char buf[6], *resp;
if (jtagmkII_setparm(pgm, PAR_DAISY_CHAIN_INFO, PDATA(pgm)->jtagchain) < 0) {
avrdude_message(MSG_INFO, "%s: jtagmkII_initialize(): Failed to setup JTAG chain\n",
progname);
return -1;
}
free(PDATA(pgm)->flash_pagecache);
free(PDATA(pgm)->eeprom_pagecache);
if ((PDATA(pgm)->flash_pagecache = malloc(PDATA(pgm)->flash_pagesize)) == NULL) {
avrdude_message(MSG_INFO, "%s: jtagmkII_initialize(): Out of memory\n",
progname);
return -1;
}
if ((PDATA(pgm)->eeprom_pagecache = malloc(PDATA(pgm)->eeprom_pagesize)) == NULL) {
avrdude_message(MSG_INFO, "%s: jtagmkII_initialize32(): Out of memory\n",
progname);
free(PDATA(pgm)->flash_pagecache);
return -1;
}
PDATA(pgm)->flash_pageaddr = PDATA(pgm)->eeprom_pageaddr = (unsigned long)-1L;
for(j=0; j<2; ++j) {
buf[0] = CMND_GET_IR;
buf[1] = 0x1;
if(jtagmkII_send(pgm, buf, 2) < 0)
return -1;
status = jtagmkII_recv(pgm, &resp);
if(status <= 0 || resp[0] != 0x87) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_initialize32(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return -1;
}
free(resp);
memset(buf, 0, sizeof(buf));
buf[0] = CMND_GET_xxx;
buf[1] = 0x20;
if(jtagmkII_send(pgm, buf, 6) < 0)
return -1;
status = jtagmkII_recv(pgm, &resp);
if(status <= 0 || resp[0] != 0x87) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_initialize32(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return -1;
}
if (status != 5 ||
resp[2] != p->signature[0] ||
resp[3] != p->signature[1] ||
resp[4] != p->signature[2]) {
avrdude_message(MSG_INFO, "%s: Expected signature for %s is %02X %02X %02X\n",
progname, p->desc,
p->signature[0], p->signature[1], p->signature[2]);
if (!ovsigck) {
avrdude_message(MSG_INFO, "%sDouble check chip, "
"or use -F to override this check.\n",
progbuf);
return -1;
}
}
free(resp);
}
return 0;
}
static int jtagmkII_chip_erase32(PROGRAMMER * pgm, AVRPART * p)
{
int status=0, loops;
unsigned char *resp, buf[3], x, ret[4], *retP;
unsigned long val=0;
unsigned int lineno;
avrdude_message(MSG_NOTICE, "%s: jtagmkII_chip_erase32()\n",
progname);
status = jtagmkII_reset32(pgm, AVR32_RESET_CHIP_ERASE);
if(status != 0) {lineno = __LINE__; goto eRR;}
// sequence of IR transitions
ret[0] = 0x01;
ret[1] = 0x05;
ret[2] = 0x01;
ret[3] = 0x00;
retP = ret;
for(loops=0; loops<1000; ++loops) {
buf[0] = CMND_GET_IR;
buf[1] = 0x0F;
status = jtagmkII_send(pgm, buf, 2);
if(status < 0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_recv(pgm, &resp);
if (status != 2 || resp[0] != 0x87) {
{lineno = __LINE__; goto eRR;}
}
x = resp[1];
free(resp);
if(x == *retP) ++retP;
if(*retP == 0x00) break;
}
if(loops == 1000) {lineno = __LINE__; goto eRR;}
status = jtagmkII_avr32_reset(pgm, 0x00, 0x01, 0x01);
if(status < 0) {lineno = __LINE__; goto eRR;}
val = jtagmkII_read_SABaddr(pgm, 0x00000010, 0x06);
if(val != 0x00000000) {lineno = __LINE__; goto eRR;}
// AVR32 "special"
buf[0] = CMND_SET_PARAMETER;
buf[1] = 0x03;
buf[2] = 0x02;
jtagmkII_send(pgm, buf, 3);
status = jtagmkII_recv(pgm, &resp);
if(status < 0 || resp[0] != RSP_OK) {lineno = __LINE__; goto eRR;}
free(resp);
return 0;
eRR:
avrdude_message(MSG_INFO, "%s: jtagmkII_reset32(): "
"failed at line %d (status=%x val=%lx)\n",
progname, lineno, status, val);
return -1;
}
static unsigned long jtagmkII_read_SABaddr(PROGRAMMER * pgm, unsigned long addr,
unsigned int prefix)
{
unsigned char buf[6], *resp;
int status;
unsigned long val;
unsigned long otimeout = serial_recv_timeout;
serial_recv_timeout = 256;
buf[0] = CMND_READ_SAB;
buf[1] = prefix;
u32_to_b4r(&buf[2], addr);
if(jtagmkII_send(pgm, buf, 6) < 0)
return ERROR_SAB;
status = jtagmkII_recv(pgm, &resp);
if(status <= 0 || resp[0] != 0x87) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_read_SABaddr(): "
"timeout/error communicating with programmer (status %d) resp=%x\n",
progname, status, resp[0]);
serial_recv_timeout = otimeout;
if(status > 0) {
int i;
avrdude_message(MSG_INFO, "Cmd: ");
for(i=0; i<6; ++i) avrdude_message(MSG_INFO, "%2.2x ", buf[i]);
avrdude_message(MSG_INFO, "\n");
avrdude_message(MSG_INFO, "Data: ");
for(i=0; i<status; ++i) avrdude_message(MSG_INFO, "%2.2x ", resp[i]);
avrdude_message(MSG_INFO, "\n");
}
return ERROR_SAB;
}
if(status != 5) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_read_SABaddr(): "
"wrong number of bytes (status %d)\n",
progname, status);
serial_recv_timeout = otimeout;
return ERROR_SAB;
}
val = b4_to_u32r(&resp[1]);
free(resp);
if (verbose) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_read_SABaddr(): "
"OCD Register %lx -> %4.4lx\n",
progname, addr, val);
}
serial_recv_timeout = otimeout;
return val;
}
static int jtagmkII_write_SABaddr(PROGRAMMER * pgm, unsigned long addr,
unsigned int prefix, unsigned long val)
{
unsigned char buf[10], *resp;
int status;
buf[0] = CMND_WRITE_SAB;
buf[1] = prefix;
u32_to_b4r(&buf[2], addr);
u32_to_b4r(&buf[6], val);
if(jtagmkII_send(pgm, buf, 10) < 0)
return -1;
status = jtagmkII_recv(pgm, &resp);
if(status <= 0 || resp[0] != RSP_OK) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_write_SABaddr(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return -1;
}
if (verbose) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_write_SABaddr(): "
"OCD Register %lx -> %4.4lx\n",
progname, addr, val);
}
return 0;
}
static int jtagmkII_open32(PROGRAMMER * pgm, char * port)
{
int status;
unsigned char buf[6], *resp;
union pinfo pinfo;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_open32()\n", progname);
/*
* The JTAG ICE mkII always starts with a baud rate of 19200 Bd upon
* attaching. If the config file or command-line parameters specify
* a higher baud rate, we switch to it later on, after establishing
* the connection with the ICE.
*/
pinfo.serialinfo.baud = 19200;
pinfo.serialinfo.cflags = SERIAL_8N1;
/*
* If the port name starts with "usb", divert the serial routines
* to the USB ones. The serial_open() function for USB overrides
* the meaning of the "baud" parameter to be the USB device ID to
* search for.
*/
if (strncmp(port, "usb", 3) == 0) {
#if defined(HAVE_LIBUSB)
serdev = &usb_serdev;
pinfo.usbinfo.vid = USB_VENDOR_ATMEL;
pinfo.usbinfo.flags = 0;
pinfo.usbinfo.pid = USB_DEVICE_JTAGICEMKII;
pgm->fd.usb.max_xfer = USBDEV_MAX_XFER_MKII;
pgm->fd.usb.rep = USBDEV_BULK_EP_READ_MKII;
pgm->fd.usb.wep = USBDEV_BULK_EP_WRITE_MKII;
pgm->fd.usb.eep = 0; /* no seperate EP for events */
#else
avrdude_message(MSG_INFO, "avrdude was compiled without usb support.\n");
return -1;
#endif
}
strcpy(pgm->port, port);
if (serial_open(port, pinfo, &pgm->fd)==-1) {
return -1;
}
/*
* drain any extraneous input
*/
jtagmkII_drain(pgm, 0);
status = jtagmkII_getsync(pgm, -1);
if(status < 0) return -1;
// AVR32 "special"
buf[0] = CMND_SET_PARAMETER;
buf[1] = 0x2D;
buf[2] = 0x03;
jtagmkII_send(pgm, buf, 3);
status = jtagmkII_recv(pgm, &resp);
if(status < 0 || resp[0] != RSP_OK)
return -1;
free(resp);
buf[1] = 0x03;
buf[2] = 0x02;
jtagmkII_send(pgm, buf, 3);
status = jtagmkII_recv(pgm, &resp);
if(status < 0 || resp[0] != RSP_OK)
return -1;
free(resp);
buf[1] = 0x03;
buf[2] = 0x04;
jtagmkII_send(pgm, buf, 3);
status = jtagmkII_recv(pgm, &resp);
if(status < 0 || resp[0] != RSP_OK)
return -1;
free(resp);
return 0;
}
static void jtagmkII_close32(PROGRAMMER * pgm)
{
int status, lineno;
unsigned char *resp, buf[3], c;
unsigned long val=0;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_close32()\n", progname);
// AVR32 "special"
buf[0] = CMND_SET_PARAMETER;
buf[1] = 0x03;
buf[2] = 0x02;
jtagmkII_send(pgm, buf, 3);
status = jtagmkII_recv(pgm, &resp);
if(status < 0 || resp[0] != RSP_OK) {lineno = __LINE__; goto eRR;}
free(resp);
buf[0] = CMND_SIGN_OFF;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_close(): Sending sign-off command: ",
progname);
jtagmkII_send(pgm, buf, 1);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_INFO, "%s: jtagmkII_close(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
avrdude_message(MSG_NOTICE2, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
free(resp);
if (c != RSP_OK) {
avrdude_message(MSG_INFO, "%s: jtagmkII_close(): "
"bad response to sign-off command: %s\n",
progname, jtagmkII_get_rc(c));
}
ret:
serial_close(&pgm->fd);
pgm->fd.ifd = -1;
return;
eRR:
avrdude_message(MSG_INFO, "%s: jtagmkII_reset32(): "
"failed at line %d (status=%x val=%lx)\n",
progname, lineno, status, val);
goto ret;
}
static int jtagmkII_paged_load32(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
unsigned int block_size;
unsigned int maxaddr = addr + n_bytes;
unsigned char cmd[7];
unsigned char *resp;
int lineno, status;
unsigned long val=0;
long otimeout = serial_recv_timeout;
avrdude_message(MSG_NOTICE2, "%s: jtagmkII_paged_load32(.., %s, %d, %d)\n",
progname, m->desc, page_size, n_bytes);
serial_recv_timeout = 256;
if(!(p->flags & AVRPART_WRITE)) {
status = jtagmkII_reset32(pgm, AVR32_RESET_READ);
if(status != 0) {lineno = __LINE__; goto eRR;}
}
// Init SMC and set clocks
if(!(p->flags & AVRPART_INIT_SMC)) {
status = jtagmkII_smc_init32(pgm);
if(status != 0) {lineno = __LINE__; goto eRR;} // PLL 0
p->flags |= AVRPART_INIT_SMC;
}
// Init SMC and set clocks
if(!(p->flags & AVRPART_INIT_SMC)) {
status = jtagmkII_smc_init32(pgm);
if(status != 0) {lineno = __LINE__; goto eRR;} // PLL 0
p->flags |= AVRPART_INIT_SMC;
}
//avrdude_message(MSG_INFO, "\n pageSize=%d bytes=%d pages=%d m->offset=0x%x pgm->page_size %d\n",
// page_size, n_bytes, pages, m->offset, pgm->page_size);
cmd[0] = CMND_READ_MEMORY32;
cmd[1] = 0x40;
cmd[2] = 0x05;
for (; addr < maxaddr; addr += block_size) {
block_size = ((maxaddr-addr) < pgm->page_size) ? (maxaddr - addr) : pgm->page_size;
avrdude_message(MSG_DEBUG, "%s: jtagmkII_paged_load32(): "
"block_size at addr %d is %d\n",
progname, addr, block_size);
u32_to_b4r(cmd + 3, m->offset + addr);
status = jtagmkII_send(pgm, cmd, 7);
if(status<0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_recv(pgm, &resp);
if(status<0) {lineno = __LINE__; goto eRR;}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
avrdude_message(MSG_NOTICE2, "0x%02x (%d bytes msg)\n", resp[0], status);
if (resp[0] != 0x87) {
avrdude_message(MSG_INFO, "%s: jtagmkII_paged_load32(): "
"bad response to write memory command: %s\n",
progname, jtagmkII_get_rc(resp[0]));
free(resp);
return -1;
}
memcpy(m->buf + addr, resp + 1, block_size);
free(resp);
}
serial_recv_timeout = otimeout;
status = jtagmkII_reset32(pgm, AVR32_SET4RUNNING);
if(status < 0) {lineno = __LINE__; goto eRR;}
return addr;
eRR:
serial_recv_timeout = otimeout;
avrdude_message(MSG_INFO, "%s: jtagmkII_paged_load32(): "
"failed at line %d (status=%x val=%lx)\n",
progname, lineno, status, val);
return -1;
}
static int jtagmkII_paged_write32(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
unsigned int block_size;
unsigned char *cmd=NULL;
unsigned char *resp;
int lineno, status, pages, sPageNum, pageNum, blocks;
unsigned long val=0;
unsigned long otimeout = serial_recv_timeout;
unsigned int maxaddr = addr + n_bytes;
serial_recv_timeout = 256;
if(n_bytes == 0) return -1;
status = jtagmkII_reset32(pgm, AVR32_RESET_WRITE);
if(status != 0) {lineno = __LINE__; goto eRR;}
p->flags |= AVRPART_WRITE;
pages = (n_bytes - addr - 1)/page_size + 1;
sPageNum = addr/page_size;
//avrdude_message(MSG_INFO, "\n pageSize=%d bytes=%d pages=%d m->offset=0x%x pgm->page_size %d\n",
// page_size, n_bytes, pages, m->offset, pgm->page_size);
// Before any errors can happen
if ((cmd = malloc(pgm->page_size + 10)) == NULL) {
avrdude_message(MSG_INFO, "%s: jtagmkII_paged_write32(): Out of memory\n", progname);
return -1;
}
// Init SMC and set clocks
if(!(p->flags & AVRPART_INIT_SMC)) {
status = jtagmkII_smc_init32(pgm);
if(status != 0) {lineno = __LINE__; goto eRR;} // PLL 0
p->flags |= AVRPART_INIT_SMC;
}
// First unlock the pages
for(pageNum=sPageNum; pageNum < pages; ++pageNum) {
status =jtagmkII_flash_lock32(pgm, 0, pageNum);
if(status < 0) {lineno = __LINE__; goto eRR;}
}
// Then erase them (guess could do this in the same loop above?)
for(pageNum=sPageNum; pageNum < pages; ++pageNum) {
status =jtagmkII_flash_erase32(pgm, pageNum);
if(status < 0) {lineno = __LINE__; goto eRR;}
}
cmd[0] = CMND_WRITE_MEMORY32;
u32_to_b4r(&cmd[1], 0x40000000); // who knows
cmd[5] = 0x5;
for(pageNum=sPageNum; pageNum < pages; ++pageNum) {
status = jtagmkII_flash_clear_pagebuffer32(pgm);
if(status != 0) {lineno = __LINE__; goto eRR;}
for(blocks=0; blocks<2; ++blocks) {
block_size = ((maxaddr-addr) < pgm->page_size) ? (maxaddr - addr) : pgm->page_size;
avrdude_message(MSG_DEBUG, "%s: jtagmkII_paged_write32(): "
"block_size at addr %d is %d\n",
progname, addr, block_size);
u32_to_b4r(cmd + 6, m->offset + addr);
memset(cmd + 10, 0xff, pgm->page_size);
memcpy(cmd + 10, m->buf + addr, block_size);
status = jtagmkII_send(pgm, cmd, pgm->page_size + 10);
if(status<0) {lineno = __LINE__; goto eRR;}
status = jtagmkII_recv(pgm, &resp);
if (status<0) {lineno = __LINE__; goto eRR;}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
avrdude_message(MSG_NOTICE2, "0x%02x (%d bytes msg)\n", resp[0], status);
if (resp[0] != RSP_OK) {
avrdude_message(MSG_INFO, "%s: jtagmkII_paged_write32(): "
"bad response to write memory command: %s\n",
progname, jtagmkII_get_rc(resp[0]));
free(resp);
free(cmd);
return -1;
}
free(resp);
addr += block_size;
}
status = jtagmkII_flash_write_page32(pgm, pageNum);
if(status < 0) {lineno = __LINE__; goto eRR;}
}
serial_recv_timeout = otimeout;
status = jtagmkII_reset32(pgm, AVR32_SET4RUNNING); // AVR32_SET4RUNNING | AVR32_RELEASE_JTAG
if(status < 0) {lineno = __LINE__; goto eRR;}
free(cmd);
return addr;
eRR:
serial_recv_timeout = otimeout;
free(cmd);
avrdude_message(MSG_INFO, "%s: jtagmkII_paged_write32(): "
"failed at line %d (status=%x val=%lx)\n",
progname, lineno, status, val);
return -1;
}
static int jtagmkII_flash_lock32(PROGRAMMER * pgm, unsigned char lock, unsigned int page)
{
int status, lineno, i;
unsigned long val, cmd=0;
for(i=0; i<256; ++i) {
val = jtagmkII_read_SABaddr(pgm, AVR32_FLASHC_FSR, 0x05);
if(val == ERROR_SAB) continue;
if(val & AVR32_FLASHC_FSR_RDY) break;
}
if(val == ERROR_SAB) {lineno = __LINE__; goto eRR;}
if(!(val&AVR32_FLASHC_FSR_RDY)) {lineno = __LINE__; goto eRR;} // Flash better be ready
page <<= 8;
cmd = AVR32_FLASHC_FCMD_KEY | page | (lock ? AVR32_FLASHC_FCMD_LOCK : AVR32_FLASHC_FCMD_UNLOCK);
status = jtagmkII_write_SABaddr(pgm, AVR32_FLASHC_FCMD, 0x05, cmd);
if (status < 0) {lineno = __LINE__; goto eRR;}
return 0;
eRR:
avrdude_message(MSG_INFO, "%s: jtagmkII_flash_lock32(): "
"failed at line %d page %d cmd %8.8lx\n",
progname, lineno, page, cmd);
return -1;
}
static int jtagmkII_flash_erase32(PROGRAMMER * pgm, unsigned int page)
{
int status, lineno, i;
unsigned long val=0, cmd=0, err=0;
for(i=0; i<256; ++i) {
val = jtagmkII_read_SABaddr(pgm, AVR32_FLASHC_FSR, 0x05);
if(val == ERROR_SAB) continue;
if(val & AVR32_FLASHC_FSR_RDY) break;
}
if(val == ERROR_SAB) {lineno = __LINE__; goto eRR;}
if(!(val&AVR32_FLASHC_FSR_RDY)) {lineno = __LINE__; goto eRR;} // Flash better be ready
page <<= 8;
cmd = AVR32_FLASHC_FCMD_KEY | page | AVR32_FLASHC_FCMD_ERASE_PAGE;
status = jtagmkII_write_SABaddr(pgm, AVR32_FLASHC_FCMD, 0x05, cmd);
if (status < 0) {lineno = __LINE__; goto eRR;}
//avrdude_message(MSG_INFO, "ERASE %x -> %x\n", cmd, AVR32_FLASHC_FCMD);
err = 0;
for(i=0; i<256; ++i) {
val = jtagmkII_read_SABaddr(pgm, AVR32_FLASHC_FSR, 0x05);
if(val == ERROR_SAB) continue;
err |= val;
if(val & AVR32_FLASHC_FSR_RDY) break;
}
if(val == ERROR_SAB) {lineno = __LINE__; goto eRR;}
if(!(val & AVR32_FLASHC_FSR_RDY)) {lineno = __LINE__; goto eRR;}
if(err & AVR32_FLASHC_FSR_ERR) {lineno = __LINE__; goto eRR;}
return 0;
eRR:
avrdude_message(MSG_INFO, "%s: jtagmkII_flash_erase32(): "
"failed at line %d page %d cmd %8.8lx val %lx\n",
progname, lineno, page, cmd, val);
return -1;
}
static int jtagmkII_flash_write_page32(PROGRAMMER * pgm, unsigned int page)
{
int status, lineno, i;
unsigned long val=0, cmd, err;
page <<= 8;
cmd = AVR32_FLASHC_FCMD_KEY | page | AVR32_FLASHC_FCMD_WRITE_PAGE;
status = jtagmkII_write_SABaddr(pgm, AVR32_FLASHC_FCMD, 0x05, cmd);
if (status < 0) {lineno = __LINE__; goto eRR;}
err = 0;
for(i=0; i<256; ++i) {
val = jtagmkII_read_SABaddr(pgm, AVR32_FLASHC_FSR, 0x05);
if(val == ERROR_SAB) continue;
err |= val;
if(val & AVR32_FLASHC_FSR_RDY) break;
}
if(val == ERROR_SAB) {lineno = __LINE__; goto eRR;}
if(!(val & AVR32_FLASHC_FSR_RDY)) {lineno = __LINE__; goto eRR;}
if(err & AVR32_FLASHC_FSR_ERR) {lineno = __LINE__; goto eRR;}
return 0;
eRR:
avrdude_message(MSG_INFO, "%s: jtagmkII_flash_write_page32(): "
"failed at line %d page %d cmd %8.8lx val %lx\n",
progname, lineno, page, cmd, val);
return -1;
}
static int jtagmkII_flash_clear_pagebuffer32(PROGRAMMER * pgm)
{
int status, lineno, i;
unsigned long val=0, cmd, err;
cmd = AVR32_FLASHC_FCMD_KEY | AVR32_FLASHC_FCMD_CLEAR_PAGE_BUFFER;
status = jtagmkII_write_SABaddr(pgm, AVR32_FLASHC_FCMD, 0x05, cmd);
if (status < 0) {lineno = __LINE__; goto eRR;}
err = 0;
for(i=0; i<256; ++i) {
val = jtagmkII_read_SABaddr(pgm, AVR32_FLASHC_FSR, 0x05);
if(val == ERROR_SAB) continue;
err |= val;
if(val & AVR32_FLASHC_FSR_RDY) break;
}
if(val == ERROR_SAB) {lineno = __LINE__; goto eRR;}
if(!(val & AVR32_FLASHC_FSR_RDY)) {lineno = __LINE__; goto eRR;}
if(err & AVR32_FLASHC_FSR_ERR) {lineno = __LINE__; goto eRR;}
return 0;
eRR:
avrdude_message(MSG_INFO, "%s: jtagmkII_flash_clear_pagebuffer32(): "
"failed at line %d cmd %8.8lx val %lx\n",
progname, lineno, cmd, val);
return -1;
}
#ifdef __OBJC__
#pragma mark -
#endif
const char jtagmkII_desc[] = "Atmel JTAG ICE mkII";
void jtagmkII_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "JTAGMKII");
/*
* mandatory functions
*/
pgm->initialize = jtagmkII_initialize;
pgm->display = jtagmkII_display;
pgm->enable = jtagmkII_enable;
pgm->disable = jtagmkII_disable;
pgm->program_enable = jtagmkII_program_enable_INFO;
pgm->chip_erase = jtagmkII_chip_erase;
pgm->open = jtagmkII_open;
pgm->close = jtagmkII_close;
pgm->read_byte = jtagmkII_read_byte;
pgm->write_byte = jtagmkII_write_byte;
/*
* optional functions
*/
pgm->paged_write = jtagmkII_paged_write;
pgm->paged_load = jtagmkII_paged_load;
pgm->page_erase = jtagmkII_page_erase;
pgm->print_parms = jtagmkII_print_parms;
pgm->set_sck_period = jtagmkII_set_sck_period;
pgm->parseextparams = jtagmkII_parseextparms;
pgm->setup = jtagmkII_setup;
pgm->teardown = jtagmkII_teardown;
pgm->page_size = 256;
pgm->flag = PGM_FL_IS_JTAG;
}
const char jtagmkII_dw_desc[] = "Atmel JTAG ICE mkII in debugWire mode";
void jtagmkII_dw_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "JTAGMKII_DW");
/*
* mandatory functions
*/
pgm->initialize = jtagmkII_initialize;
pgm->display = jtagmkII_display;
pgm->enable = jtagmkII_enable;
pgm->disable = jtagmkII_disable;
pgm->program_enable = jtagmkII_program_enable_INFO;
pgm->chip_erase = jtagmkII_chip_erase_dw;
pgm->open = jtagmkII_open_dw;
pgm->close = jtagmkII_close;
pgm->read_byte = jtagmkII_read_byte;
pgm->write_byte = jtagmkII_write_byte;
/*
* optional functions
*/
pgm->paged_write = jtagmkII_paged_write;
pgm->paged_load = jtagmkII_paged_load;
pgm->print_parms = jtagmkII_print_parms;
pgm->setup = jtagmkII_setup;
pgm->teardown = jtagmkII_teardown;
pgm->page_size = 256;
pgm->flag = PGM_FL_IS_DW;
}
const char jtagmkII_pdi_desc[] = "Atmel JTAG ICE mkII in PDI mode";
void jtagmkII_pdi_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "JTAGMKII_PDI");
/*
* mandatory functions
*/
pgm->initialize = jtagmkII_initialize;
pgm->display = jtagmkII_display;
pgm->enable = jtagmkII_enable;
pgm->disable = jtagmkII_disable;
pgm->program_enable = jtagmkII_program_enable_INFO;
pgm->chip_erase = jtagmkII_chip_erase;
pgm->open = jtagmkII_open_pdi;
pgm->close = jtagmkII_close;
pgm->read_byte = jtagmkII_read_byte;
pgm->write_byte = jtagmkII_write_byte;
/*
* optional functions
*/
pgm->paged_write = jtagmkII_paged_write;
pgm->paged_load = jtagmkII_paged_load;
pgm->page_erase = jtagmkII_page_erase;
pgm->print_parms = jtagmkII_print_parms;
pgm->setup = jtagmkII_setup;
pgm->teardown = jtagmkII_teardown;
pgm->page_size = 256;
pgm->flag = PGM_FL_IS_PDI;
}
const char jtagmkII_dragon_desc[] = "Atmel AVR Dragon in JTAG mode";
void jtagmkII_dragon_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "DRAGON_JTAG");
/*
* mandatory functions
*/
pgm->initialize = jtagmkII_initialize;
pgm->display = jtagmkII_display;
pgm->enable = jtagmkII_enable;
pgm->disable = jtagmkII_disable;
pgm->program_enable = jtagmkII_program_enable_INFO;
pgm->chip_erase = jtagmkII_chip_erase;
pgm->open = jtagmkII_dragon_open;
pgm->close = jtagmkII_close;
pgm->read_byte = jtagmkII_read_byte;
pgm->write_byte = jtagmkII_write_byte;
/*
* optional functions
*/
pgm->paged_write = jtagmkII_paged_write;
pgm->paged_load = jtagmkII_paged_load;
pgm->page_erase = jtagmkII_page_erase;
pgm->print_parms = jtagmkII_print_parms;
pgm->set_sck_period = jtagmkII_set_sck_period;
pgm->parseextparams = jtagmkII_parseextparms;
pgm->setup = jtagmkII_setup;
pgm->teardown = jtagmkII_teardown;
pgm->page_size = 256;
pgm->flag = PGM_FL_IS_JTAG;
}
const char jtagmkII_dragon_dw_desc[] = "Atmel AVR Dragon in debugWire mode";
void jtagmkII_dragon_dw_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "DRAGON_DW");
/*
* mandatory functions
*/
pgm->initialize = jtagmkII_initialize;
pgm->display = jtagmkII_display;
pgm->enable = jtagmkII_enable;
pgm->disable = jtagmkII_disable;
pgm->program_enable = jtagmkII_program_enable_INFO;
pgm->chip_erase = jtagmkII_chip_erase_dw;
pgm->open = jtagmkII_dragon_open_dw;
pgm->close = jtagmkII_close;
pgm->read_byte = jtagmkII_read_byte;
pgm->write_byte = jtagmkII_write_byte;
/*
* optional functions
*/
pgm->paged_write = jtagmkII_paged_write;
pgm->paged_load = jtagmkII_paged_load;
pgm->print_parms = jtagmkII_print_parms;
pgm->setup = jtagmkII_setup;
pgm->teardown = jtagmkII_teardown;
pgm->page_size = 256;
pgm->flag = PGM_FL_IS_DW;
}
const char jtagmkII_avr32_desc[] = "Atmel JTAG ICE mkII in AVR32 mode";
void jtagmkII_avr32_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "JTAGMKII_AVR32");
/*
* mandatory functions
*/
pgm->initialize = jtagmkII_initialize32;
pgm->display = jtagmkII_display;
pgm->enable = jtagmkII_enable;
pgm->disable = jtagmkII_disable;
pgm->program_enable = jtagmkII_program_enable_INFO;
pgm->chip_erase = jtagmkII_chip_erase32;
pgm->open = jtagmkII_open32;
pgm->close = jtagmkII_close32;
pgm->read_byte = jtagmkII_read_byte;
pgm->write_byte = jtagmkII_write_byte;
/*
* optional functions
*/
pgm->paged_write = jtagmkII_paged_write32;
pgm->paged_load = jtagmkII_paged_load32;
pgm->print_parms = jtagmkII_print_parms;
//pgm->set_sck_period = jtagmkII_set_sck_period;
//pgm->parseextparams = jtagmkII_parseextparms;
pgm->setup = jtagmkII_setup;
pgm->teardown = jtagmkII_teardown;
pgm->page_size = 256;
pgm->flag = PGM_FL_IS_JTAG;
}
const char jtagmkII_dragon_pdi_desc[] = "Atmel AVR Dragon in PDI mode";
void jtagmkII_dragon_pdi_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "DRAGON_PDI");
/*
* mandatory functions
*/
pgm->initialize = jtagmkII_initialize;
pgm->display = jtagmkII_display;
pgm->enable = jtagmkII_enable;
pgm->disable = jtagmkII_disable;
pgm->program_enable = jtagmkII_program_enable_INFO;
pgm->chip_erase = jtagmkII_chip_erase;
pgm->open = jtagmkII_dragon_open_pdi;
pgm->close = jtagmkII_close;
pgm->read_byte = jtagmkII_read_byte;
pgm->write_byte = jtagmkII_write_byte;
/*
* optional functions
*/
pgm->paged_write = jtagmkII_paged_write;
pgm->paged_load = jtagmkII_paged_load;
pgm->page_erase = jtagmkII_page_erase;
pgm->print_parms = jtagmkII_print_parms;
pgm->setup = jtagmkII_setup;
pgm->teardown = jtagmkII_teardown;
pgm->page_size = 256;
pgm->flag = PGM_FL_IS_PDI;
}