avrdude/src/avrpart.c

810 lines
18 KiB
C

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2000-2004 Brian S. Dean <bsd@bsdhome.com>
* Copyright (C) 2006 Joerg Wunsch <j@uriah.heep.sax.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* $Id$ */
#include <stdlib.h>
#include <string.h>
#include "ac_cfg.h"
#include "avrdude.h"
#include "libavrdude.h"
/***
*** Elementary functions dealing with OPCODE structures
***/
OPCODE * avr_new_opcode(void)
{
OPCODE * m;
m = (OPCODE *)malloc(sizeof(*m));
if (m == NULL) {
avrdude_message(MSG_INFO, "avr_new_opcode(): out of memory\n");
exit(1);
}
memset(m, 0, sizeof(*m));
return m;
}
static OPCODE * avr_dup_opcode(OPCODE * op)
{
OPCODE * m;
/* this makes life easier */
if (op == NULL) {
return NULL;
}
m = (OPCODE *)malloc(sizeof(*m));
if (m == NULL) {
avrdude_message(MSG_INFO, "avr_dup_opcode(): out of memory\n");
exit(1);
}
memcpy(m, op, sizeof(*m));
return m;
}
void avr_free_opcode(OPCODE * op)
{
free(op);
}
/*
* avr_set_bits()
*
* Set instruction bits in the specified command based on the opcode.
*/
int avr_set_bits(OPCODE * op, unsigned char * cmd)
{
int i, j, bit;
unsigned char mask;
for (i=0; i<32; i++) {
if (op->bit[i].type == AVR_CMDBIT_VALUE || op->bit[i].type == AVR_CMDBIT_IGNORE) {
j = 3 - i / 8;
bit = i % 8;
mask = 1 << bit;
if (op->bit[i].value && op->bit[i].type == AVR_CMDBIT_VALUE)
cmd[j] = cmd[j] | mask;
else
cmd[j] = cmd[j] & ~mask;
}
}
return 0;
}
/*
* avr_set_addr()
*
* Set address bits in the specified command based on the opcode, and
* the address.
*/
int avr_set_addr(OPCODE * op, unsigned char * cmd, unsigned long addr)
{
int i, j, bit;
unsigned long value;
unsigned char mask;
for (i=0; i<32; i++) {
if (op->bit[i].type == AVR_CMDBIT_ADDRESS) {
j = 3 - i / 8;
bit = i % 8;
mask = 1 << bit;
value = addr >> op->bit[i].bitno & 0x01;
if (value)
cmd[j] = cmd[j] | mask;
else
cmd[j] = cmd[j] & ~mask;
}
}
return 0;
}
/*
* avr_set_input()
*
* Set input data bits in the specified command based on the opcode,
* and the data byte.
*/
int avr_set_input(OPCODE * op, unsigned char * cmd, unsigned char data)
{
int i, j, bit;
unsigned char value;
unsigned char mask;
for (i=0; i<32; i++) {
if (op->bit[i].type == AVR_CMDBIT_INPUT) {
j = 3 - i / 8;
bit = i % 8;
mask = 1 << bit;
value = data >> op->bit[i].bitno & 0x01;
if (value)
cmd[j] = cmd[j] | mask;
else
cmd[j] = cmd[j] & ~mask;
}
}
return 0;
}
/*
* avr_get_output()
*
* Retreive output data bits from the command results based on the
* opcode data.
*/
int avr_get_output(OPCODE * op, unsigned char * res, unsigned char * data)
{
int i, j, bit;
unsigned char value;
unsigned char mask;
for (i=0; i<32; i++) {
if (op->bit[i].type == AVR_CMDBIT_OUTPUT) {
j = 3 - i / 8;
bit = i % 8;
mask = 1 << bit;
value = ((res[j] & mask) >> bit) & 0x01;
value = value << op->bit[i].bitno;
if (value)
*data = *data | value;
else
*data = *data & ~value;
}
}
return 0;
}
/*
* avr_get_output_index()
*
* Calculate the byte number of the output data based on the
* opcode data.
*/
int avr_get_output_index(OPCODE * op)
{
int i, j;
for (i=0; i<32; i++) {
if (op->bit[i].type == AVR_CMDBIT_OUTPUT) {
j = 3 - i / 8;
return j;
}
}
return -1;
}
static char * avr_op_str(int op)
{
switch (op) {
case AVR_OP_READ : return "READ"; break;
case AVR_OP_WRITE : return "WRITE"; break;
case AVR_OP_READ_LO : return "READ_LO"; break;
case AVR_OP_READ_HI : return "READ_HI"; break;
case AVR_OP_WRITE_LO : return "WRITE_LO"; break;
case AVR_OP_WRITE_HI : return "WRITE_HI"; break;
case AVR_OP_LOADPAGE_LO : return "LOADPAGE_LO"; break;
case AVR_OP_LOADPAGE_HI : return "LOADPAGE_HI"; break;
case AVR_OP_LOAD_EXT_ADDR : return "LOAD_EXT_ADDR"; break;
case AVR_OP_WRITEPAGE : return "WRITEPAGE"; break;
case AVR_OP_CHIP_ERASE : return "CHIP_ERASE"; break;
case AVR_OP_PGM_ENABLE : return "PGM_ENABLE"; break;
default : return "<unknown opcode>"; break;
}
}
static char * bittype(int type)
{
switch (type) {
case AVR_CMDBIT_IGNORE : return "IGNORE"; break;
case AVR_CMDBIT_VALUE : return "VALUE"; break;
case AVR_CMDBIT_ADDRESS : return "ADDRESS"; break;
case AVR_CMDBIT_INPUT : return "INPUT"; break;
case AVR_CMDBIT_OUTPUT : return "OUTPUT"; break;
default : return "<unknown bit type>"; break;
}
}
/***
*** Elementary functions dealing with AVRMEM structures
***/
AVRMEM * avr_new_memtype(void)
{
AVRMEM * m;
m = (AVRMEM *)malloc(sizeof(*m));
if (m == NULL) {
avrdude_message(MSG_INFO, "avr_new_memtype(): out of memory\n");
exit(1);
}
memset(m, 0, sizeof(*m));
m->page_size = 1; // ensure not 0
return m;
}
AVRMEM_ALIAS * avr_new_memalias(void)
{
AVRMEM_ALIAS * m;
m = (AVRMEM_ALIAS *)malloc(sizeof(*m));
if (m == NULL) {
avrdude_message(MSG_INFO, "avr_new_memalias(): out of memory\n");
exit(1);
}
memset(m, 0, sizeof(*m));
return m;
}
/*
* Allocate and initialize memory buffers for each of the device's
* defined memory regions.
*/
int avr_initmem(AVRPART * p)
{
LNODEID ln;
AVRMEM * m;
for (ln=lfirst(p->mem); ln; ln=lnext(ln)) {
m = ldata(ln);
m->buf = (unsigned char *) malloc(m->size);
if (m->buf == NULL) {
avrdude_message(MSG_INFO, "%s: can't alloc buffer for %s size of %d bytes\n",
progname, m->desc, m->size);
return -1;
}
m->tags = (unsigned char *) malloc(m->size);
if (m->tags == NULL) {
avrdude_message(MSG_INFO, "%s: can't alloc buffer for %s size of %d bytes\n",
progname, m->desc, m->size);
return -1;
}
}
return 0;
}
AVRMEM * avr_dup_mem(AVRMEM * m)
{
AVRMEM * n;
int i;
n = avr_new_memtype();
*n = *m;
if (m->buf != NULL) {
n->buf = (unsigned char *)malloc(n->size);
if (n->buf == NULL) {
avrdude_message(MSG_INFO, "avr_dup_mem(): out of memory (memsize=%d)\n",
n->size);
exit(1);
}
memcpy(n->buf, m->buf, n->size);
}
if (m->tags != NULL) {
n->tags = (unsigned char *)malloc(n->size);
if (n->tags == NULL) {
avrdude_message(MSG_INFO, "avr_dup_mem(): out of memory (memsize=%d)\n",
n->size);
exit(1);
}
memcpy(n->tags, m->tags, n->size);
}
for (i = 0; i < AVR_OP_MAX; i++) {
n->op[i] = avr_dup_opcode(n->op[i]);
}
return n;
}
AVRMEM_ALIAS * avr_dup_memalias(AVRMEM_ALIAS * m)
{
AVRMEM_ALIAS * n;
n = avr_new_memalias();
*n = *m;
return n;
}
void avr_free_mem(AVRMEM * m)
{
int i;
if (m->buf != NULL) {
free(m->buf);
m->buf = NULL;
}
if (m->tags != NULL) {
free(m->tags);
m->tags = NULL;
}
for(i=0;i<sizeof(m->op)/sizeof(m->op[0]);i++)
{
if (m->op[i] != NULL)
{
avr_free_opcode(m->op[i]);
m->op[i] = NULL;
}
}
free(m);
}
void avr_free_memalias(AVRMEM_ALIAS * m)
{
free(m);
}
AVRMEM_ALIAS * avr_locate_memalias(AVRPART * p, char * desc)
{
AVRMEM_ALIAS * m, * match;
LNODEID ln;
int matches;
int l;
l = strlen(desc);
matches = 0;
match = NULL;
for (ln=lfirst(p->mem_alias); ln; ln=lnext(ln)) {
m = ldata(ln);
if (strncmp(desc, m->desc, l) == 0) {
match = m;
matches++;
}
}
if (matches == 1)
return match;
return NULL;
}
AVRMEM * avr_locate_mem_noalias(AVRPART * p, char * desc)
{
AVRMEM * m, * match;
LNODEID ln;
int matches;
int l;
l = strlen(desc);
matches = 0;
match = NULL;
for (ln=lfirst(p->mem); ln; ln=lnext(ln)) {
m = ldata(ln);
if (strncmp(desc, m->desc, l) == 0) {
match = m;
matches++;
}
}
if (matches == 1)
return match;
return NULL;
}
AVRMEM * avr_locate_mem(AVRPART * p, char * desc)
{
AVRMEM * m, * match;
AVRMEM_ALIAS * alias;
LNODEID ln;
int matches;
int l;
l = strlen(desc);
matches = 0;
match = NULL;
for (ln=lfirst(p->mem); ln; ln=lnext(ln)) {
m = ldata(ln);
if (strncmp(desc, m->desc, l) == 0) {
match = m;
matches++;
}
}
if (matches == 1)
return match;
/* not yet found: look for matching alias name */
alias = avr_locate_memalias(p, desc);
if (alias != NULL)
return alias->aliased_mem;
return NULL;
}
AVRMEM_ALIAS * avr_find_memalias(AVRPART * p, AVRMEM * m_orig)
{
AVRMEM_ALIAS * m;
LNODEID ln;
for (ln=lfirst(p->mem_alias); ln; ln=lnext(ln)) {
m = ldata(ln);
if (m->aliased_mem == m_orig)
return m;
}
return NULL;
}
void avr_mem_display(const char * prefix, FILE * f, AVRMEM * m, AVRPART * p,
int type, int verbose)
{
static unsigned int prev_mem_offset, prev_mem_size;
int i, j;
char * optr;
if (m == NULL) {
fprintf(f,
"%s Block Poll Page Polled\n"
"%sMemory Type Alias Mode Delay Size Indx Paged Size Size #Pages MinW MaxW ReadBack\n"
"%s----------- -------- ---- ----- ----- ---- ------ ------ ---- ------ ----- ----- ---------\n",
prefix, prefix, prefix);
}
else {
if (verbose > 2) {
fprintf(f,
"%s Block Poll Page Polled\n"
"%sMemory Type Alias Mode Delay Size Indx Paged Size Size #Pages MinW MaxW ReadBack\n"
"%s----------- -------- ---- ----- ----- ---- ------ ------ ---- ------ ----- ----- ---------\n",
prefix, prefix, prefix);
}
// Only print memory section if the previous section printed isn't identical
if(prev_mem_offset != m->offset || prev_mem_size != m->size || (strcmp(p->family_id, "") == 0)) {
prev_mem_offset = m->offset;
prev_mem_size = m->size;
AVRMEM_ALIAS *ap = avr_find_memalias(p, m);
/* Show alias if the current and the next memory section has the same offset
and size, we're not out of band and a family_id is present */
char * mem_desc_alias = ap? ap->desc: "";
fprintf(f,
"%s%-11s %-8s %4d %5d %5d %4d %-6s %6d %4d %6d %5d %5d 0x%02x 0x%02x\n",
prefix,
m->desc,
mem_desc_alias,
m->mode, m->delay, m->blocksize, m->pollindex,
m->paged ? "yes" : "no",
m->size,
m->page_size,
m->num_pages,
m->min_write_delay,
m->max_write_delay,
m->readback[0],
m->readback[1]);
}
if (verbose > 4) {
avrdude_message(MSG_TRACE2, "%s Memory Ops:\n"
"%s Oeration Inst Bit Bit Type Bitno Value\n"
"%s ----------- -------- -------- ----- -----\n",
prefix, prefix, prefix);
for (i=0; i<AVR_OP_MAX; i++) {
if (m->op[i]) {
for (j=31; j>=0; j--) {
if (j==31)
optr = avr_op_str(i);
else
optr = " ";
fprintf(f,
"%s %-11s %8d %8s %5d %5d\n",
prefix, optr, j,
bittype(m->op[i]->bit[j].type),
m->op[i]->bit[j].bitno,
m->op[i]->bit[j].value);
}
}
}
}
}
}
/*
* Elementary functions dealing with AVRPART structures
*/
AVRPART * avr_new_part(void)
{
AVRPART * p;
p = (AVRPART *)malloc(sizeof(AVRPART));
if (p == NULL) {
avrdude_message(MSG_INFO, "new_part(): out of memory\n");
exit(1);
}
memset(p, 0, sizeof(*p));
p->id[0] = 0;
p->desc[0] = 0;
p->reset_disposition = RESET_DEDICATED;
p->retry_pulse = PIN_AVR_SCK;
p->flags = AVRPART_SERIALOK | AVRPART_PARALLELOK | AVRPART_ENABLEPAGEPROGRAMMING;
p->config_file[0] = 0;
p->lineno = 0;
memset(p->signature, 0xFF, 3);
p->ctl_stack_type = CTL_STACK_NONE;
p->ocdrev = -1;
p->hvupdi_variant = -1;
p->mem = lcreat(NULL, 0);
p->mem_alias = lcreat(NULL, 0);
return p;
}
AVRPART * avr_dup_part(AVRPART * d)
{
AVRPART * p;
LISTID save, save2;
LNODEID ln, ln2;
int i;
p = avr_new_part();
save = p->mem;
save2 = p->mem_alias;
*p = *d;
p->mem = save;
p->mem_alias = save2;
for (ln=lfirst(d->mem); ln; ln=lnext(ln)) {
AVRMEM *m = ldata(ln);
AVRMEM *m2 = avr_dup_mem(m);
ladd(p->mem, m2);
// see if there is any alias for it
for (ln2=lfirst(d->mem_alias); ln2; ln2=lnext(ln2)) {
AVRMEM_ALIAS *a = ldata(ln2);
if (a->aliased_mem == m) {
// yes, duplicate it
AVRMEM_ALIAS *a2 = avr_dup_memalias(a);
// ... adjust the pointer ...
a2->aliased_mem = m2;
// ... and add to new list
ladd(p->mem_alias, a2);
}
}
}
for (i = 0; i < AVR_OP_MAX; i++) {
p->op[i] = avr_dup_opcode(p->op[i]);
}
return p;
}
void avr_free_part(AVRPART * d)
{
int i;
ldestroy_cb(d->mem, (void(*)(void *))avr_free_mem);
d->mem = NULL;
ldestroy_cb(d->mem_alias, (void(*)(void *))avr_free_memalias);
d->mem_alias = NULL;
for(i=0;i<sizeof(d->op)/sizeof(d->op[0]);i++)
{
if (d->op[i] != NULL)
{
avr_free_opcode(d->op[i]);
d->op[i] = NULL;
}
}
free(d);
}
AVRPART * locate_part(LISTID parts, char * partdesc)
{
LNODEID ln1;
AVRPART * p = NULL;
int found;
found = 0;
for (ln1=lfirst(parts); ln1 && !found; ln1=lnext(ln1)) {
p = ldata(ln1);
if ((strcasecmp(partdesc, p->id) == 0) ||
(strcasecmp(partdesc, p->desc) == 0))
found = 1;
}
if (found)
return p;
return NULL;
}
AVRPART * locate_part_by_avr910_devcode(LISTID parts, int devcode)
{
LNODEID ln1;
AVRPART * p = NULL;
for (ln1=lfirst(parts); ln1; ln1=lnext(ln1)) {
p = ldata(ln1);
if (p->avr910_devcode == devcode)
return p;
}
return NULL;
}
AVRPART * locate_part_by_signature(LISTID parts, unsigned char * sig,
int sigsize)
{
LNODEID ln1;
AVRPART * p = NULL;
int i;
if (sigsize == 3) {
for (ln1=lfirst(parts); ln1; ln1=lnext(ln1)) {
p = ldata(ln1);
for (i=0; i<3; i++)
if (p->signature[i] != sig[i])
break;
if (i == 3)
return p;
}
}
return NULL;
}
/*
* Iterate over the list of avrparts given as "avrparts", and
* call the callback function cb for each entry found. cb is being
* passed the following arguments:
* . the name of the avrpart (for -p)
* . the descriptive text given in the config file
* . the name of the config file this avrpart has been defined in
* . the line number of the config file this avrpart has been defined at
* . the "cookie" passed into walk_avrparts() (opaque client data)
*/
void walk_avrparts(LISTID avrparts, walk_avrparts_cb cb, void *cookie)
{
LNODEID ln1;
AVRPART * p;
for (ln1 = lfirst(avrparts); ln1; ln1 = lnext(ln1)) {
p = ldata(ln1);
cb(p->id, p->desc, p->config_file, p->lineno, cookie);
}
}
/*
* Compare function to sort the list of programmers
*/
static int sort_avrparts_compare(AVRPART * p1,AVRPART * p2)
{
if(p1 == NULL || p2 == NULL) {
return 0;
}
return strncasecmp(p1->desc,p2->desc,AVR_DESCLEN);
}
/*
* Sort the list of programmers given as "programmers"
*/
void sort_avrparts(LISTID avrparts)
{
lsort(avrparts,(int (*)(void*, void*)) sort_avrparts_compare);
}
static char * reset_disp_str(int r)
{
switch (r) {
case RESET_DEDICATED : return "dedicated";
case RESET_IO : return "possible i/o";
default : return "<invalid>";
}
}
void avr_display(FILE * f, AVRPART * p, const char * prefix, int verbose)
{
int i;
char * buf;
const char * px;
LNODEID ln;
AVRMEM * m;
fprintf( f, "%sAVR Part : %s\n", prefix, p->desc);
if (p->chip_erase_delay)
fprintf(f, "%sChip Erase delay : %d us\n", prefix, p->chip_erase_delay);
if (p->pagel)
fprintf(f, "%sPAGEL : P%02X\n", prefix, p->pagel);
if (p->bs2)
fprintf(f, "%sBS2 : P%02X\n", prefix, p->bs2);
fprintf( f, "%sRESET disposition : %s\n", prefix, reset_disp_str(p->reset_disposition));
fprintf( f, "%sRETRY pulse : %s\n", prefix, avr_pin_name(p->retry_pulse));
fprintf( f, "%sSerial program mode : %s\n", prefix, (p->flags & AVRPART_SERIALOK) ? "yes" : "no");
fprintf( f, "%sParallel program mode : %s\n", prefix, (p->flags & AVRPART_PARALLELOK) ?
((p->flags & AVRPART_PSEUDOPARALLEL) ? "pseudo" : "yes") : "no");
if(p->timeout)
fprintf(f, "%sTimeout : %d\n", prefix, p->timeout);
if(p->stabdelay)
fprintf(f, "%sStabDelay : %d\n", prefix, p->stabdelay);
if(p->cmdexedelay)
fprintf(f, "%sCmdexeDelay : %d\n", prefix, p->cmdexedelay);
if(p->synchloops)
fprintf(f, "%sSyncLoops : %d\n", prefix, p->synchloops);
if(p->bytedelay)
fprintf(f, "%sByteDelay : %d\n", prefix, p->bytedelay);
if(p->pollindex)
fprintf(f, "%sPollIndex : %d\n", prefix, p->pollindex);
if(p->pollvalue)
fprintf(f, "%sPollValue : 0x%02x\n", prefix, p->pollvalue);
fprintf( f, "%sMemory Detail :\n\n", prefix);
px = prefix;
i = strlen(prefix) + 5;
buf = (char *)malloc(i);
if (buf == NULL) {
/* ugh, this is not important enough to bail, just ignore it */
}
else {
strcpy(buf, prefix);
strcat(buf, " ");
px = buf;
}
if (verbose <= 2) {
avr_mem_display(px, f, NULL, p, 0, verbose);
}
for (ln=lfirst(p->mem); ln; ln=lnext(ln)) {
m = ldata(ln);
avr_mem_display(px, f, m, p, i, verbose);
}
if (buf)
free(buf);
}