949 lines
27 KiB
C
949 lines
27 KiB
C
|
|
/*
|
|
* avrdude - A Downloader/Uploader for AVR device programmers
|
|
* Copyright (C) 2003-2004 Theodore A. Roth <troth@openavr.org>
|
|
* some code:
|
|
* Copyright (C) 2011-2012 Roger E. Wolff <R.E.Wolff@BitWizard.nl>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
/* $Id$ */
|
|
|
|
/* ft245r -- FT245R/FT232R Synchronous BitBangMode Programmer
|
|
default pin assign
|
|
FT232R / FT245R
|
|
miso = 1; # RxD / D1
|
|
sck = 0; # RTS / D0
|
|
mosi = 2; # TxD / D2
|
|
reset = 4; # DTR / D4
|
|
*/
|
|
|
|
/*
|
|
The ft232r is very similar, or even "identical" in the synchronous
|
|
bitbang mode that we use here.
|
|
|
|
This allows boards that have an ft232r for communication and an avr
|
|
as the processor to function as their own "ICSP". Boards that fit
|
|
this description include the Arduino Duemilanove, Arduino Diecimila,
|
|
Arduino NG (http://arduino.cc/it/main/boards) and the BitWizard
|
|
ftdi_atmega board (http://www.bitwizard.nl/wiki/index.php/FTDI_ATmega)
|
|
|
|
The Arduinos have to be patched to bring some of the control lines
|
|
to the ICSP header. The BitWizard board already has the neccessary
|
|
wiring on the PCB.
|
|
|
|
How to add the wires to an arduino is documented here:
|
|
http://www.geocities.jp/arduino_diecimila/bootloader/index_en.html
|
|
*/
|
|
|
|
|
|
#include "ac_cfg.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <sys/time.h>
|
|
#include <unistd.h>
|
|
#include <stdint.h>
|
|
|
|
#include "avrdude.h"
|
|
#include "libavrdude.h"
|
|
|
|
#include "bitbang.h"
|
|
#include "ft245r.h"
|
|
#include "usbdevs.h"
|
|
|
|
#if defined(_WIN32)
|
|
#include <windows.h>
|
|
#endif
|
|
|
|
#if defined(HAVE_LIBFTDI1) && defined(HAVE_LIBUSB_1_0)
|
|
# if defined(HAVE_LIBUSB_1_0_LIBUSB_H)
|
|
# include <libusb-1.0/libusb.h>
|
|
# else
|
|
# include <libusb.h>
|
|
# endif
|
|
# include <libftdi1/ftdi.h>
|
|
#elif defined(HAVE_LIBFTDI) && defined(HAVE_USB_H)
|
|
/* ftdi.h includes usb.h */
|
|
#include <ftdi.h>
|
|
#else
|
|
#warning No libftdi or libusb support. Install libftdi1/libusb-1.0 or libftdi/libusb and run configure/make again.
|
|
#define DO_NOT_BUILD_FT245R
|
|
#endif
|
|
|
|
#ifndef HAVE_PTHREAD_H
|
|
|
|
static int ft245r_nopthread_open (struct programmer_t *pgm, char * name) {
|
|
avrdude_message("%s: error: no pthread support. Please compile again with pthread installed."
|
|
#if defined(_WIN32)
|
|
" See http://sourceware.org/pthreads-win32/."
|
|
#endif
|
|
"\n",
|
|
progname);
|
|
|
|
return -1;
|
|
}
|
|
|
|
void ft245r_initpgm(PROGRAMMER * pgm) {
|
|
strcpy(pgm->type, "ftdi_syncbb");
|
|
pgm->open = ft245r_nopthread_open;
|
|
}
|
|
|
|
#elif defined(DO_NOT_BUILD_FT245R)
|
|
|
|
static int ft245r_noftdi_open (struct programmer_t *pgm, char * name) {
|
|
avrdude_message("%s: error: no libftdi or libusb support. Install libftdi1/libusb-1.0 or libftdi/libusb and run configure/make again.\n",
|
|
progname);
|
|
|
|
return -1;
|
|
}
|
|
|
|
void ft245r_initpgm(PROGRAMMER * pgm) {
|
|
strcpy(pgm->type, "ftdi_syncbb");
|
|
pgm->open = ft245r_noftdi_open;
|
|
}
|
|
|
|
#else
|
|
|
|
#include <pthread.h>
|
|
|
|
#ifdef __APPLE__
|
|
/* Mac OS X defines sem_init but actually does not implement them */
|
|
#include <dispatch/dispatch.h>
|
|
|
|
typedef dispatch_semaphore_t sem_t;
|
|
|
|
#define sem_init(psem,x,val) *psem = dispatch_semaphore_create(val)
|
|
#define sem_post(psem) dispatch_semaphore_signal(*psem)
|
|
#define sem_wait(psem) dispatch_semaphore_wait(*psem, DISPATCH_TIME_FOREVER)
|
|
#else
|
|
#include <semaphore.h>
|
|
#endif
|
|
|
|
#define FT245R_CYCLES 2
|
|
#define FT245R_FRAGMENT_SIZE 512
|
|
#define REQ_OUTSTANDINGS 10
|
|
//#define USE_INLINE_WRITE_PAGE
|
|
|
|
#define FT245R_DEBUG 0
|
|
|
|
static struct ftdi_context *handle;
|
|
|
|
static unsigned char ft245r_ddr;
|
|
static unsigned char ft245r_out;
|
|
static unsigned char ft245r_in;
|
|
|
|
#define BUFSIZE 0x2000
|
|
|
|
// libftdi / libftd2xx compatibility functions.
|
|
|
|
static pthread_t readerthread;
|
|
static sem_t buf_data, buf_space;
|
|
static unsigned char buffer[BUFSIZE];
|
|
static int head, tail;
|
|
|
|
static void add_to_buf (unsigned char c) {
|
|
int nh;
|
|
|
|
sem_wait (&buf_space);
|
|
if (head == (BUFSIZE -1)) nh = 0;
|
|
else nh = head + 1;
|
|
|
|
if (nh == tail) {
|
|
avrdude_message("buffer overflow. Cannot happen!\n");
|
|
}
|
|
buffer[head] = c;
|
|
head = nh;
|
|
sem_post (&buf_data);
|
|
}
|
|
|
|
static void *reader (void *arg) {
|
|
struct ftdi_context *handle = (struct ftdi_context *)(arg);
|
|
unsigned char buf[0x1000];
|
|
int br, i;
|
|
|
|
while (1) {
|
|
pthread_testcancel();
|
|
br = ftdi_read_data (handle, buf, sizeof(buf));
|
|
for (i=0; i<br; i++)
|
|
add_to_buf (buf[i]);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int ft245r_send(PROGRAMMER * pgm, unsigned char * buf, size_t len) {
|
|
int rv;
|
|
|
|
rv = ftdi_write_data(handle, buf, len);
|
|
if (len != rv) return -1;
|
|
return 0;
|
|
}
|
|
|
|
static int ft245r_recv(PROGRAMMER * pgm, unsigned char * buf, size_t len) {
|
|
int i;
|
|
|
|
// Copy over data from the circular buffer..
|
|
// XXX This should timeout, and return error if there isn't enough
|
|
// data.
|
|
for (i=0; i<len; i++) {
|
|
sem_wait (&buf_data);
|
|
buf[i] = buffer[tail];
|
|
if (tail == (BUFSIZE -1)) tail = 0;
|
|
else tail++;
|
|
sem_post (&buf_space);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int ft245r_drain(PROGRAMMER * pgm, int display) {
|
|
int r;
|
|
unsigned char t;
|
|
|
|
// flush the buffer in the chip by changing the mode.....
|
|
r = ftdi_set_bitmode(handle, 0, BITMODE_RESET); // reset
|
|
if (r) return -1;
|
|
r = ftdi_set_bitmode(handle, ft245r_ddr, BITMODE_SYNCBB); // set Synchronuse BitBang
|
|
if (r) return -1;
|
|
|
|
// drain our buffer.
|
|
while (head != tail) {
|
|
ft245r_recv (pgm, &t, 1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int ft245r_chip_erase(PROGRAMMER * pgm, AVRPART * p) {
|
|
unsigned char cmd[4] = {0,0,0,0};
|
|
unsigned char res[4];
|
|
|
|
if (p->op[AVR_OP_CHIP_ERASE] == NULL) {
|
|
avrdude_message("chip erase instruction not defined for part \"%s\"\n",
|
|
p->desc);
|
|
return -1;
|
|
}
|
|
|
|
avr_set_bits(p->op[AVR_OP_CHIP_ERASE], cmd);
|
|
pgm->cmd(pgm, cmd, res);
|
|
usleep(p->chip_erase_delay);
|
|
return pgm->initialize(pgm, p);
|
|
}
|
|
|
|
|
|
static int ft245r_set_bitclock(PROGRAMMER * pgm) {
|
|
int r;
|
|
int rate = 0;
|
|
|
|
/* bitclock is second. 1us = 0.000001. Max rate for ft232r 750000 */
|
|
if(pgm->bitclock) {
|
|
rate = (uint32_t)(1.0/pgm->bitclock) * 2;
|
|
} else if (pgm->baudrate) {
|
|
rate = pgm->baudrate * 2;
|
|
} else {
|
|
rate = 150000; /* should work for all ftdi chips and the avr default internal clock of 1MHz */
|
|
}
|
|
|
|
if ((verbose>1) || FT245R_DEBUG) {
|
|
avrdude_message(" ft245r: spi bitclk %d -> ft baudrate %d\n",
|
|
rate / 2, rate);
|
|
}
|
|
r = ftdi_set_baudrate(handle, rate);
|
|
if (r) {
|
|
avrdude_message("Set baudrate (%d) failed with error '%s'.\n",
|
|
rate, ftdi_get_error_string (handle));
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int set_pin(PROGRAMMER * pgm, int pinname, int val) {
|
|
unsigned char buf[1];
|
|
|
|
if (pgm->pin[pinname].mask[0] == 0) {
|
|
// ignore not defined pins (might be the led or vcc or buff if not needed)
|
|
return 0;
|
|
}
|
|
|
|
ft245r_out = SET_BITS_0(ft245r_out,pgm,pinname,val);
|
|
buf[0] = ft245r_out;
|
|
|
|
ft245r_send (pgm, buf, 1);
|
|
ft245r_recv (pgm, buf, 1);
|
|
|
|
ft245r_in = buf[0];
|
|
return 0;
|
|
}
|
|
|
|
static int set_reset(PROGRAMMER * pgm, int value) {
|
|
return set_pin(pgm, PIN_AVR_RESET, value);
|
|
}
|
|
|
|
static int set_buff(PROGRAMMER * pgm, int value) {
|
|
return set_pin(pgm, PPI_AVR_BUFF, value);
|
|
}
|
|
|
|
static int set_vcc(PROGRAMMER * pgm, int value) {
|
|
return set_pin(pgm, PPI_AVR_VCC, value);
|
|
}
|
|
|
|
/* these functions are callbacks, which go into the
|
|
* PROGRAMMER data structure ("optional functions")
|
|
*/
|
|
static int set_led_pgm(struct programmer_t * pgm, int value) {
|
|
return set_pin(pgm, PIN_LED_PGM, value);
|
|
}
|
|
|
|
static int set_led_rdy(struct programmer_t * pgm, int value) {
|
|
return set_pin(pgm, PIN_LED_RDY, value);
|
|
}
|
|
|
|
static int set_led_err(struct programmer_t * pgm, int value) {
|
|
return set_pin(pgm, PIN_LED_ERR, value);
|
|
}
|
|
|
|
static int set_led_vfy(struct programmer_t * pgm, int value) {
|
|
return set_pin(pgm, PIN_LED_VFY, value);
|
|
}
|
|
|
|
/*
|
|
* apply power to the AVR processor
|
|
*/
|
|
static void ft245r_powerup(PROGRAMMER * pgm)
|
|
{
|
|
set_vcc(pgm, ON); /* power up */
|
|
usleep(100);
|
|
}
|
|
|
|
|
|
/*
|
|
* remove power from the AVR processor
|
|
*/
|
|
static void ft245r_powerdown(PROGRAMMER * pgm)
|
|
{
|
|
set_vcc(pgm, OFF); /* power down */
|
|
}
|
|
|
|
|
|
static void ft245r_disable(PROGRAMMER * pgm) {
|
|
set_buff(pgm, OFF);
|
|
}
|
|
|
|
|
|
static void ft245r_enable(PROGRAMMER * pgm) {
|
|
/*
|
|
* Prepare to start talking to the connected device - pull reset low
|
|
* first, delay a few milliseconds, then enable the buffer. This
|
|
* sequence allows the AVR to be reset before the buffer is enabled
|
|
* to avoid a short period of time where the AVR may be driving the
|
|
* programming lines at the same time the programmer tries to. Of
|
|
* course, if a buffer is being used, then the /RESET line from the
|
|
* programmer needs to be directly connected to the AVR /RESET line
|
|
* and not via the buffer chip.
|
|
*/
|
|
set_reset(pgm, OFF);
|
|
usleep(1);
|
|
set_buff(pgm, ON);
|
|
}
|
|
|
|
static int ft245r_cmd(PROGRAMMER * pgm, const unsigned char *cmd,
|
|
unsigned char *res);
|
|
/*
|
|
* issue the 'program enable' command to the AVR device
|
|
*/
|
|
static int ft245r_program_enable(PROGRAMMER * pgm, AVRPART * p) {
|
|
unsigned char cmd[4] = {0,0,0,0};
|
|
unsigned char res[4];
|
|
int i;
|
|
|
|
if (p->op[AVR_OP_PGM_ENABLE] == NULL) {
|
|
avrdude_message("%s: AVR_OP_PGM_ENABLE command not defined for %s\n",
|
|
progname, p->desc);
|
|
fflush(stderr);
|
|
return -1;
|
|
}
|
|
|
|
avr_set_bits(p->op[AVR_OP_PGM_ENABLE], cmd);
|
|
|
|
for(i = 0; i < 4; i++) {
|
|
ft245r_cmd(pgm, cmd, res);
|
|
|
|
if (res[p->pollindex-1] == p->pollvalue) return 0;
|
|
|
|
if ((verbose>=1) || FT245R_DEBUG) {
|
|
avrdude_message("%s: Program enable command not successful. Retrying.\n",
|
|
progname);
|
|
fflush(stderr);
|
|
}
|
|
set_pin(pgm, PIN_AVR_RESET, ON);
|
|
usleep(20);
|
|
set_pin(pgm, PIN_AVR_RESET, OFF);
|
|
|
|
if (i == 3) {
|
|
ft245r_drain(pgm, 0);
|
|
tail = head;
|
|
}
|
|
}
|
|
|
|
avrdude_message("%s: Device is not responding to program enable. Check connection.\n",
|
|
progname);
|
|
fflush(stderr);
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* initialize the AVR device and prepare it to accept commands
|
|
*/
|
|
static int ft245r_initialize(PROGRAMMER * pgm, AVRPART * p) {
|
|
|
|
ft245r_powerup(pgm);
|
|
|
|
set_reset(pgm, OFF);
|
|
usleep(5000); // 5ms
|
|
set_reset(pgm, ON);
|
|
usleep(5000); // 5ms
|
|
set_reset(pgm, OFF);
|
|
usleep(5000); // 5ms
|
|
|
|
return ft245r_program_enable(pgm, p);
|
|
}
|
|
|
|
static inline int set_data(PROGRAMMER * pgm, unsigned char *buf, unsigned char data) {
|
|
int j;
|
|
int buf_pos = 0;
|
|
unsigned char bit = 0x80;
|
|
|
|
for (j=0; j<8; j++) {
|
|
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_MOSI,data & bit);
|
|
|
|
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_SCK,0);
|
|
buf[buf_pos] = ft245r_out;
|
|
buf_pos++;
|
|
|
|
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_SCK,1);
|
|
buf[buf_pos] = ft245r_out;
|
|
buf_pos++;
|
|
|
|
bit >>= 1;
|
|
}
|
|
return buf_pos;
|
|
}
|
|
|
|
static inline unsigned char extract_data(PROGRAMMER * pgm, unsigned char *buf, int offset) {
|
|
int j;
|
|
int buf_pos = 1;
|
|
unsigned char bit = 0x80;
|
|
unsigned char r = 0;
|
|
|
|
buf += offset * (8 * FT245R_CYCLES);
|
|
for (j=0; j<8; j++) {
|
|
if (GET_BITS_0(buf[buf_pos],pgm,PIN_AVR_MISO)) {
|
|
r |= bit;
|
|
}
|
|
buf_pos += FT245R_CYCLES;
|
|
bit >>= 1;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/* to check data */
|
|
static inline unsigned char extract_data_out(PROGRAMMER * pgm, unsigned char *buf, int offset) {
|
|
int j;
|
|
int buf_pos = 1;
|
|
unsigned char bit = 0x80;
|
|
unsigned char r = 0;
|
|
|
|
buf += offset * (8 * FT245R_CYCLES);
|
|
for (j=0; j<8; j++) {
|
|
if (GET_BITS_0(buf[buf_pos],pgm,PIN_AVR_MOSI)) {
|
|
r |= bit;
|
|
}
|
|
buf_pos += FT245R_CYCLES;
|
|
bit >>= 1;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
/*
|
|
* transmit an AVR device command and return the results; 'cmd' and
|
|
* 'res' must point to at least a 4 byte data buffer
|
|
*/
|
|
static int ft245r_cmd(PROGRAMMER * pgm, const unsigned char *cmd,
|
|
unsigned char *res) {
|
|
int i,buf_pos;
|
|
unsigned char buf[128];
|
|
|
|
buf_pos = 0;
|
|
for (i=0; i<4; i++) {
|
|
buf_pos += set_data(pgm, buf+buf_pos, cmd[i]);
|
|
}
|
|
buf[buf_pos] = 0;
|
|
buf_pos++;
|
|
|
|
ft245r_send (pgm, buf, buf_pos);
|
|
ft245r_recv (pgm, buf, buf_pos);
|
|
res[0] = extract_data(pgm, buf, 0);
|
|
res[1] = extract_data(pgm, buf, 1);
|
|
res[2] = extract_data(pgm, buf, 2);
|
|
res[3] = extract_data(pgm, buf, 3);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* lower 8 pins are accepted, they might be also inverted */
|
|
static const struct pindef_t valid_pins = {{0xff},{0xff}} ;
|
|
|
|
static const struct pin_checklist_t pin_checklist[] = {
|
|
{ PIN_AVR_SCK, 1, &valid_pins},
|
|
{ PIN_AVR_MOSI, 1, &valid_pins},
|
|
{ PIN_AVR_MISO, 1, &valid_pins},
|
|
{ PIN_AVR_RESET,1, &valid_pins},
|
|
{ PPI_AVR_BUFF, 0, &valid_pins},
|
|
};
|
|
|
|
static int ft245r_open(PROGRAMMER * pgm, char * port) {
|
|
int rv;
|
|
int devnum = -1;
|
|
|
|
rv = pins_check(pgm,pin_checklist,sizeof(pin_checklist)/sizeof(pin_checklist[0]), true);
|
|
if(rv) {
|
|
pgm->display(pgm, progbuf);
|
|
return rv;
|
|
}
|
|
|
|
strcpy(pgm->port, port);
|
|
|
|
if (strcmp(port,DEFAULT_USB) != 0) {
|
|
if (strncasecmp("ft", port, 2) == 0) {
|
|
char *startptr = port + 2;
|
|
char *endptr = NULL;
|
|
devnum = strtol(startptr,&endptr,10);
|
|
if ((startptr==endptr) || (*endptr != '\0')) {
|
|
devnum = -1;
|
|
}
|
|
}
|
|
if (devnum < 0) {
|
|
avrdude_message("%s: invalid portname '%s': use 'ft[0-9]+'\n",
|
|
progname,port);
|
|
return -1;
|
|
}
|
|
} else {
|
|
devnum = 0;
|
|
}
|
|
|
|
handle = malloc (sizeof (struct ftdi_context));
|
|
ftdi_init(handle);
|
|
LNODEID usbpid = lfirst(pgm->usbpid);
|
|
int pid;
|
|
if (usbpid) {
|
|
pid = *(int *)(ldata(usbpid));
|
|
if (lnext(usbpid))
|
|
avrdude_message("%s: Warning: using PID 0x%04x, ignoring remaining PIDs in list\n",
|
|
progname, pid);
|
|
} else {
|
|
pid = USB_DEVICE_FT245;
|
|
}
|
|
rv = ftdi_usb_open_desc_index(handle,
|
|
pgm->usbvid?pgm->usbvid:USB_VENDOR_FTDI,
|
|
pid,
|
|
pgm->usbproduct[0]?pgm->usbproduct:NULL,
|
|
pgm->usbsn[0]?pgm->usbsn:NULL,
|
|
devnum);
|
|
if (rv) {
|
|
avrdude_message("can't open ftdi device %d. (%s)\n", devnum, ftdi_get_error_string(handle));
|
|
goto cleanup_no_usb;
|
|
}
|
|
|
|
ft245r_ddr =
|
|
pgm->pin[PIN_AVR_SCK].mask[0]
|
|
| pgm->pin[PIN_AVR_MOSI].mask[0]
|
|
| pgm->pin[PIN_AVR_RESET].mask[0]
|
|
| pgm->pin[PPI_AVR_BUFF].mask[0]
|
|
| pgm->pin[PPI_AVR_VCC].mask[0]
|
|
| pgm->pin[PIN_LED_ERR].mask[0]
|
|
| pgm->pin[PIN_LED_RDY].mask[0]
|
|
| pgm->pin[PIN_LED_PGM].mask[0]
|
|
| pgm->pin[PIN_LED_VFY].mask[0];
|
|
|
|
/* set initial values for outputs, no reset everything else is off */
|
|
ft245r_out = 0;
|
|
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_RESET,1);
|
|
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_SCK,0);
|
|
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_MOSI,0);
|
|
ft245r_out = SET_BITS_0(ft245r_out,pgm,PPI_AVR_BUFF,0);
|
|
ft245r_out = SET_BITS_0(ft245r_out,pgm,PPI_AVR_VCC,0);
|
|
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_LED_ERR,0);
|
|
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_LED_RDY,0);
|
|
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_LED_PGM,0);
|
|
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_LED_VFY,0);
|
|
|
|
|
|
rv = ftdi_set_bitmode(handle, ft245r_ddr, BITMODE_SYNCBB); // set Synchronous BitBang
|
|
if (rv) {
|
|
avrdude_message("%s: Synchronous BitBangMode is not supported (%s)\n",
|
|
progname, ftdi_get_error_string(handle));
|
|
goto cleanup;
|
|
}
|
|
|
|
rv = ft245r_set_bitclock(pgm);
|
|
if (rv) {
|
|
goto cleanup;
|
|
}
|
|
|
|
/* We start a new thread to read the output from the FTDI. This is
|
|
* necessary because otherwise we'll deadlock. We cannot finish
|
|
* writing because the ftdi cannot send the results because we
|
|
* haven't provided a read buffer yet. */
|
|
|
|
sem_init (&buf_data, 0, 0);
|
|
sem_init (&buf_space, 0, BUFSIZE);
|
|
pthread_create (&readerthread, NULL, reader, handle);
|
|
|
|
/*
|
|
* drain any extraneous input
|
|
*/
|
|
ft245r_drain (pgm, 0);
|
|
|
|
ft245r_send (pgm, &ft245r_out, 1);
|
|
ft245r_recv (pgm, &ft245r_in, 1);
|
|
|
|
return 0;
|
|
|
|
cleanup:
|
|
ftdi_usb_close(handle);
|
|
cleanup_no_usb:
|
|
ftdi_deinit (handle);
|
|
free(handle);
|
|
handle = NULL;
|
|
return -1;
|
|
}
|
|
|
|
|
|
static void ft245r_close(PROGRAMMER * pgm) {
|
|
if (handle) {
|
|
// I think the switch to BB mode and back flushes the buffer.
|
|
ftdi_set_bitmode(handle, 0, BITMODE_SYNCBB); // set Synchronous BitBang, all in puts
|
|
ftdi_set_bitmode(handle, 0, BITMODE_RESET); // disable Synchronous BitBang
|
|
pthread_cancel(readerthread);
|
|
pthread_join(readerthread, NULL);
|
|
ftdi_usb_close(handle);
|
|
ftdi_deinit (handle); // TODO this works with libftdi 0.20, but hangs with 1.0
|
|
free(handle);
|
|
handle = NULL;
|
|
}
|
|
}
|
|
|
|
static void ft245r_display(PROGRAMMER * pgm, const char * p) {
|
|
avrdude_message("%sPin assignment : 0..7 = DBUS0..7\n",p);/* , 8..11 = GPIO0..3\n",p);*/
|
|
pgm_display_generic_mask(pgm, p, SHOW_ALL_PINS);
|
|
}
|
|
|
|
static int ft245r_paged_write_gen(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
|
|
unsigned int page_size, unsigned int addr,
|
|
unsigned int n_bytes) {
|
|
unsigned long i, pa;
|
|
int rc;
|
|
|
|
for (i=0; i<n_bytes; i++, addr++) {
|
|
rc = avr_write_byte_default(pgm, p, m, addr, m->buf[addr]);
|
|
if (rc != 0) {
|
|
return -2;
|
|
}
|
|
|
|
if (m->paged) {
|
|
// Can this piece of code ever be activated?? Do AVRs exist that
|
|
// have paged non-flash memories? -- REW
|
|
// XXX Untested code below.
|
|
/*
|
|
* check to see if it is time to flush the page with a page
|
|
* write
|
|
*/
|
|
|
|
if (((addr % m->page_size) == m->page_size-1) || (i == n_bytes-1)) {
|
|
pa = addr - (addr % m->page_size);
|
|
|
|
rc = avr_write_page(pgm, p, m, pa);
|
|
if (rc != 0) {
|
|
return -2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return i;
|
|
}
|
|
|
|
static struct ft245r_request {
|
|
int addr;
|
|
int bytes;
|
|
int n;
|
|
struct ft245r_request *next;
|
|
} *req_head,*req_tail,*req_pool;
|
|
|
|
static void put_request(int addr, int bytes, int n) {
|
|
struct ft245r_request *p;
|
|
if (req_pool) {
|
|
p = req_pool;
|
|
req_pool = p->next;
|
|
} else {
|
|
p = malloc(sizeof(struct ft245r_request));
|
|
if (!p) {
|
|
avrdude_message("can't alloc memory\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
memset(p, 0, sizeof(struct ft245r_request));
|
|
p->addr = addr;
|
|
p->bytes = bytes;
|
|
p->n = n;
|
|
if (req_tail) {
|
|
req_tail->next = p;
|
|
req_tail = p;
|
|
} else {
|
|
req_head = req_tail = p;
|
|
}
|
|
}
|
|
|
|
static int do_request(PROGRAMMER * pgm, AVRMEM *m) {
|
|
struct ft245r_request *p;
|
|
int addr, bytes, j, n;
|
|
unsigned char buf[FT245R_FRAGMENT_SIZE+1+128];
|
|
|
|
if (!req_head) return 0;
|
|
p = req_head;
|
|
req_head = p->next;
|
|
if (!req_head) req_tail = req_head;
|
|
|
|
addr = p->addr;
|
|
bytes = p->bytes;
|
|
n = p->n;
|
|
memset(p, 0, sizeof(struct ft245r_request));
|
|
p->next = req_pool;
|
|
req_pool = p;
|
|
|
|
ft245r_recv(pgm, buf, bytes);
|
|
for (j=0; j<n; j++) {
|
|
m->buf[addr++] = extract_data(pgm, buf , (j * 4 + 3));
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int ft245r_paged_write_flash(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
|
|
int page_size, int addr, int n_bytes) {
|
|
unsigned int i,j;
|
|
int addr_save,buf_pos,do_page_write,req_count;
|
|
unsigned char buf[FT245R_FRAGMENT_SIZE+1+128];
|
|
|
|
req_count = 0;
|
|
for (i=0; i<n_bytes; ) {
|
|
addr_save = addr;
|
|
buf_pos = 0;
|
|
do_page_write = 0;
|
|
for (j=0; j< FT245R_FRAGMENT_SIZE/8/FT245R_CYCLES/4; j++) {
|
|
buf_pos += set_data(pgm, buf+buf_pos, (addr & 1)?0x48:0x40 );
|
|
buf_pos += set_data(pgm, buf+buf_pos, (addr >> 9) & 0xff );
|
|
buf_pos += set_data(pgm, buf+buf_pos, (addr >> 1) & 0xff );
|
|
buf_pos += set_data(pgm, buf+buf_pos, m->buf[addr]);
|
|
addr ++;
|
|
i++;
|
|
if ( (m->paged) &&
|
|
(((i % m->page_size) == 0) || (i == n_bytes))) {
|
|
do_page_write = 1;
|
|
break;
|
|
}
|
|
}
|
|
#if defined(USE_INLINE_WRITE_PAGE)
|
|
if (do_page_write) {
|
|
int addr_wk = addr_save - (addr_save % m->page_size);
|
|
/* If this device has a "load extended address" command, issue it. */
|
|
if (m->op[AVR_OP_LOAD_EXT_ADDR]) {
|
|
unsigned char cmd[4];
|
|
OPCODE *lext = m->op[AVR_OP_LOAD_EXT_ADDR];
|
|
|
|
memset(cmd, 0, 4);
|
|
avr_set_bits(lext, cmd);
|
|
avr_set_addr(lext, cmd, addr_wk/2);
|
|
buf_pos += set_data(pgm, buf+buf_pos, cmd[0]);
|
|
buf_pos += set_data(pgm, buf+buf_pos, cmd[1]);
|
|
buf_pos += set_data(pgm, buf+buf_pos, cmd[2]);
|
|
buf_pos += set_data(pgm, buf+buf_pos, cmd[3]);
|
|
}
|
|
buf_pos += set_data(pgm, buf+buf_pos, 0x4C); /* Issue Page Write */
|
|
buf_pos += set_data(pgm, buf+buf_pos,(addr_wk >> 9) & 0xff);
|
|
buf_pos += set_data(pgm, buf+buf_pos,(addr_wk >> 1) & 0xff);
|
|
buf_pos += set_data(pgm, buf+buf_pos, 0);
|
|
}
|
|
#endif
|
|
if (i >= n_bytes) {
|
|
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_SCK,0); // sck down
|
|
buf[buf_pos++] = ft245r_out;
|
|
}
|
|
ft245r_send(pgm, buf, buf_pos);
|
|
put_request(addr_save, buf_pos, 0);
|
|
//ft245r_sync(pgm);
|
|
#if 0
|
|
avrdude_message("send addr 0x%04x bufsize %d [%02x %02x] page_write %d\n",
|
|
addr_save,buf_pos,
|
|
extract_data_out(pgm, buf , (0*4 + 3) ),
|
|
extract_data_out(pgm, buf , (1*4 + 3) ),
|
|
do_page_write);
|
|
#endif
|
|
req_count++;
|
|
if (req_count > REQ_OUTSTANDINGS)
|
|
do_request(pgm, m);
|
|
if (do_page_write) {
|
|
#if defined(USE_INLINE_WRITE_PAGE)
|
|
while (do_request(pgm, m))
|
|
;
|
|
usleep(m->max_write_delay);
|
|
#else
|
|
int addr_wk = addr_save - (addr_save % m->page_size);
|
|
int rc;
|
|
while (do_request(pgm, m))
|
|
;
|
|
rc = avr_write_page(pgm, p, m, addr_wk);
|
|
if (rc != 0) {
|
|
return -2;
|
|
}
|
|
#endif
|
|
req_count = 0;
|
|
}
|
|
}
|
|
while (do_request(pgm, m))
|
|
;
|
|
return i;
|
|
}
|
|
|
|
|
|
static int ft245r_paged_write(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
|
|
unsigned int page_size, unsigned int addr, unsigned int n_bytes) {
|
|
if (strcmp(m->desc, "flash") == 0) {
|
|
return ft245r_paged_write_flash(pgm, p, m, page_size, addr, n_bytes);
|
|
} else if (strcmp(m->desc, "eeprom") == 0) {
|
|
return ft245r_paged_write_gen(pgm, p, m, page_size, addr, n_bytes);
|
|
} else {
|
|
return -2;
|
|
}
|
|
}
|
|
|
|
static int ft245r_paged_load_gen(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
|
|
unsigned int page_size, unsigned int addr,
|
|
int n_bytes) {
|
|
unsigned char rbyte;
|
|
unsigned long i;
|
|
int rc;
|
|
|
|
for (i=0; i<n_bytes; i++) {
|
|
rc = avr_read_byte_default(pgm, p, m, i+addr, &rbyte);
|
|
if (rc != 0) {
|
|
return -2;
|
|
}
|
|
m->buf[i+addr] = rbyte;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ft245r_paged_load_flash(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
|
|
unsigned int page_size, unsigned int addr,
|
|
unsigned int n_bytes) {
|
|
unsigned long i,j,n;
|
|
int addr_save,buf_pos;
|
|
int req_count = 0;
|
|
unsigned char buf[FT245R_FRAGMENT_SIZE+1];
|
|
|
|
for (i=0; i<n_bytes; ) {
|
|
buf_pos = 0;
|
|
addr_save = addr;
|
|
for (j=0; j< FT245R_FRAGMENT_SIZE/8/FT245R_CYCLES/4; j++) {
|
|
if (i >= n_bytes) break;
|
|
buf_pos += set_data(pgm, buf+buf_pos, (addr & 1)?0x28:0x20 );
|
|
buf_pos += set_data(pgm, buf+buf_pos, (addr >> 9) & 0xff );
|
|
buf_pos += set_data(pgm, buf+buf_pos, (addr >> 1) & 0xff );
|
|
buf_pos += set_data(pgm, buf+buf_pos, 0);
|
|
addr ++;
|
|
i++;
|
|
}
|
|
if (i >= n_bytes) {
|
|
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_SCK,0); // sck down
|
|
buf[buf_pos++] = ft245r_out;
|
|
}
|
|
n = j;
|
|
ft245r_send(pgm, buf, buf_pos);
|
|
put_request(addr_save, buf_pos, n);
|
|
req_count++;
|
|
if (req_count > REQ_OUTSTANDINGS)
|
|
do_request(pgm, m);
|
|
|
|
}
|
|
while (do_request(pgm, m))
|
|
;
|
|
return 0;
|
|
}
|
|
|
|
static int ft245r_paged_load(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
|
|
unsigned int page_size, unsigned int addr,
|
|
unsigned int n_bytes) {
|
|
if (strcmp(m->desc, "flash") == 0) {
|
|
return ft245r_paged_load_flash(pgm, p, m, page_size, addr, n_bytes);
|
|
} else if (strcmp(m->desc, "eeprom") == 0) {
|
|
return ft245r_paged_load_gen(pgm, p, m, page_size, addr, n_bytes);
|
|
} else {
|
|
return -2;
|
|
}
|
|
}
|
|
|
|
void ft245r_initpgm(PROGRAMMER * pgm) {
|
|
strcpy(pgm->type, "ftdi_syncbb");
|
|
|
|
/*
|
|
* mandatory functions
|
|
*/
|
|
pgm->initialize = ft245r_initialize;
|
|
pgm->display = ft245r_display;
|
|
pgm->enable = ft245r_enable;
|
|
pgm->disable = ft245r_disable;
|
|
pgm->program_enable = ft245r_program_enable;
|
|
pgm->chip_erase = ft245r_chip_erase;
|
|
pgm->cmd = ft245r_cmd;
|
|
pgm->open = ft245r_open;
|
|
pgm->close = ft245r_close;
|
|
pgm->read_byte = avr_read_byte_default;
|
|
pgm->write_byte = avr_write_byte_default;
|
|
|
|
/*
|
|
* optional functions
|
|
*/
|
|
pgm->paged_write = ft245r_paged_write;
|
|
pgm->paged_load = ft245r_paged_load;
|
|
|
|
pgm->rdy_led = set_led_rdy;
|
|
pgm->err_led = set_led_err;
|
|
pgm->pgm_led = set_led_pgm;
|
|
pgm->vfy_led = set_led_vfy;
|
|
pgm->powerup = ft245r_powerup;
|
|
pgm->powerdown = ft245r_powerdown;
|
|
|
|
handle = NULL;
|
|
}
|
|
|
|
#endif
|
|
|
|
const char ft245r_desc[] = "FT245R/FT232R Synchronous BitBangMode Programmer";
|