avrdude/avrdude/par.c

463 lines
10 KiB
C

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2000-2006 Brian S. Dean <bsd@bsdhome.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* $Id$ */
#include "ac_cfg.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
# include "freebsd_ppi.h"
#elif defined(__linux__)
# include "linux_ppdev.h"
#elif defined(__sun__) || defined(__sun) /* Solaris */
# include "solaris_ecpp.h"
#endif
#include "avrdude.h"
#include "avr.h"
#include "pindefs.h"
#include "pgm.h"
#include "ppi.h"
#include "bitbang.h"
#if HAVE_PARPORT
struct ppipins_t {
int pin;
int reg;
int bit;
int inverted;
};
static struct ppipins_t ppipins[] = {
{ 1, PPICTRL, 0x01, 1 },
{ 2, PPIDATA, 0x01, 0 },
{ 3, PPIDATA, 0x02, 0 },
{ 4, PPIDATA, 0x04, 0 },
{ 5, PPIDATA, 0x08, 0 },
{ 6, PPIDATA, 0x10, 0 },
{ 7, PPIDATA, 0x20, 0 },
{ 8, PPIDATA, 0x40, 0 },
{ 9, PPIDATA, 0x80, 0 },
{ 10, PPISTATUS, 0x40, 0 },
{ 11, PPISTATUS, 0x80, 1 },
{ 12, PPISTATUS, 0x20, 0 },
{ 13, PPISTATUS, 0x10, 0 },
{ 14, PPICTRL, 0x02, 1 },
{ 15, PPISTATUS, 0x08, 0 },
{ 16, PPICTRL, 0x04, 0 },
{ 17, PPICTRL, 0x08, 1 }
};
#define NPINS (sizeof(ppipins)/sizeof(struct ppipins_t))
static int par_setpin(PROGRAMMER * pgm, int pin, int value)
{
int inverted;
inverted = pin & PIN_INVERSE;
pin &= PIN_MASK;
if (pin < 1 || pin > 17)
return -1;
pin--;
if (ppipins[pin].inverted)
inverted = !inverted;
if (inverted)
value = !value;
if (value)
ppi_set(&pgm->fd, ppipins[pin].reg, ppipins[pin].bit);
else
ppi_clr(&pgm->fd, ppipins[pin].reg, ppipins[pin].bit);
if (pgm->ispdelay > 1)
bitbang_delay(pgm->ispdelay);
return 0;
}
static void par_setmany(PROGRAMMER * pgm, unsigned int pinset, int value)
{
int pin;
for (pin = 1; pin <= 17; pin++) {
if (pinset & (1 << pin))
par_setpin(pgm, pin, value);
}
}
static int par_getpin(PROGRAMMER * pgm, int pin)
{
int value;
int inverted;
inverted = pin & PIN_INVERSE;
pin &= PIN_MASK;
if (pin < 1 || pin > 17)
return -1;
pin--;
value = ppi_get(&pgm->fd, ppipins[pin].reg, ppipins[pin].bit);
if (value)
value = 1;
if (ppipins[pin].inverted)
inverted = !inverted;
if (inverted)
value = !value;
return value;
}
static int par_highpulsepin(PROGRAMMER * pgm, int pin)
{
int inverted;
inverted = pin & PIN_INVERSE;
pin &= PIN_MASK;
if (pin < 1 || pin > 17)
return -1;
pin--;
if (ppipins[pin].inverted)
inverted = !inverted;
if (inverted) {
ppi_clr(&pgm->fd, ppipins[pin].reg, ppipins[pin].bit);
if (pgm->ispdelay > 1)
bitbang_delay(pgm->ispdelay);
ppi_set(&pgm->fd, ppipins[pin].reg, ppipins[pin].bit);
if (pgm->ispdelay > 1)
bitbang_delay(pgm->ispdelay);
} else {
ppi_set(&pgm->fd, ppipins[pin].reg, ppipins[pin].bit);
if (pgm->ispdelay > 1)
bitbang_delay(pgm->ispdelay);
ppi_clr(&pgm->fd, ppipins[pin].reg, ppipins[pin].bit);
if (pgm->ispdelay > 1)
bitbang_delay(pgm->ispdelay);
}
return 0;
}
static char * pins_to_str(unsigned int pmask)
{
static char buf[64];
int pin;
char b2[8];
buf[0] = 0;
for (pin = 1; pin <= 17; pin++) {
if (pmask & (1 << pin)) {
sprintf(b2, "%d", pin);
if (buf[0] != 0)
strcat(buf, ",");
strcat(buf, b2);
}
}
return buf;
}
/*
* apply power to the AVR processor
*/
static void par_powerup(PROGRAMMER * pgm)
{
par_setmany(pgm, pgm->pinno[PPI_AVR_VCC], 1); /* power up */
usleep(100000);
}
/*
* remove power from the AVR processor
*/
static void par_powerdown(PROGRAMMER * pgm)
{
par_setmany(pgm, pgm->pinno[PPI_AVR_VCC], 0); /* power down */
}
static void par_disable(PROGRAMMER * pgm)
{
par_setmany(pgm, pgm->pinno[PPI_AVR_BUFF], 1); /* turn off */
}
static void par_enable(PROGRAMMER * pgm)
{
/*
* Prepare to start talking to the connected device - pull reset low
* first, delay a few milliseconds, then enable the buffer. This
* sequence allows the AVR to be reset before the buffer is enabled
* to avoid a short period of time where the AVR may be driving the
* programming lines at the same time the programmer tries to. Of
* course, if a buffer is being used, then the /RESET line from the
* programmer needs to be directly connected to the AVR /RESET line
* and not via the buffer chip.
*/
par_setpin(pgm, pgm->pinno[PIN_AVR_RESET], 0);
usleep(1);
/*
* enable the 74367 buffer, if connected; this signal is active low
*/
par_setmany(pgm, pgm->pinno[PPI_AVR_BUFF], 0);
}
static int par_open(PROGRAMMER * pgm, char * port)
{
int rc;
bitbang_check_prerequisites(pgm);
ppi_open(port, &pgm->fd);
if (pgm->fd.ifd < 0) {
fprintf(stderr, "%s: failed to open parallel port \"%s\"\n\n",
progname, port);
exit(1);
}
/*
* save pin values, so they can be restored when device is closed
*/
rc = ppi_getall(&pgm->fd, PPIDATA);
if (rc < 0) {
fprintf(stderr, "%s: error reading status of ppi data port\n", progname);
return -1;
}
pgm->ppidata = rc;
rc = ppi_getall(&pgm->fd, PPICTRL);
if (rc < 0) {
fprintf(stderr, "%s: error reading status of ppi ctrl port\n", progname);
return -1;
}
pgm->ppictrl = rc;
return 0;
}
static void par_close(PROGRAMMER * pgm)
{
/*
* Restore pin values before closing,
* but ensure that buffers are turned off.
*/
ppi_setall(&pgm->fd, PPIDATA, pgm->ppidata);
ppi_setall(&pgm->fd, PPICTRL, pgm->ppictrl);
par_setmany(pgm, pgm->pinno[PPI_AVR_BUFF], 1);
/*
* Handle exit specs.
*/
switch (pgm->exit_reset) {
case EXIT_RESET_ENABLED:
par_setpin(pgm, pgm->pinno[PIN_AVR_RESET], 0);
break;
case EXIT_RESET_DISABLED:
par_setpin(pgm, pgm->pinno[PIN_AVR_RESET], 1);
break;
case EXIT_RESET_UNSPEC:
/* Leave it alone. */
break;
}
switch (pgm->exit_datahigh) {
case EXIT_DATAHIGH_ENABLED:
ppi_setall(&pgm->fd, PPIDATA, 0xff);
break;
case EXIT_DATAHIGH_DISABLED:
ppi_setall(&pgm->fd, PPIDATA, 0x00);
break;
case EXIT_DATAHIGH_UNSPEC:
/* Leave it alone. */
break;
}
switch (pgm->exit_vcc) {
case EXIT_VCC_ENABLED:
par_setmany(pgm, pgm->pinno[PPI_AVR_VCC], 1);
break;
case EXIT_VCC_DISABLED:
par_setmany(pgm, pgm->pinno[PPI_AVR_VCC], 0);
break;
case EXIT_VCC_UNSPEC:
/* Leave it alone. */
break;
}
ppi_close(&pgm->fd);
pgm->fd.ifd = -1;
}
static void par_display(PROGRAMMER * pgm, const char * p)
{
char vccpins[64];
char buffpins[64];
if (pgm->pinno[PPI_AVR_VCC]) {
snprintf(vccpins, sizeof(vccpins), "%s",
pins_to_str(pgm->pinno[PPI_AVR_VCC]));
}
else {
strcpy(vccpins, " (not used)");
}
if (pgm->pinno[PPI_AVR_BUFF]) {
snprintf(buffpins, sizeof(buffpins), "%s",
pins_to_str(pgm->pinno[PPI_AVR_BUFF]));
}
else {
strcpy(buffpins, " (not used)");
}
fprintf(stderr,
"%s VCC = %s\n"
"%s BUFF = %s\n"
"%s RESET = %d\n"
"%s SCK = %d\n"
"%s MOSI = %d\n"
"%s MISO = %d\n"
"%s ERR LED = %d\n"
"%s RDY LED = %d\n"
"%s PGM LED = %d\n"
"%s VFY LED = %d\n",
p, vccpins,
p, buffpins,
p, pgm->pinno[PIN_AVR_RESET],
p, pgm->pinno[PIN_AVR_SCK],
p, pgm->pinno[PIN_AVR_MOSI],
p, pgm->pinno[PIN_AVR_MISO],
p, pgm->pinno[PIN_LED_ERR],
p, pgm->pinno[PIN_LED_RDY],
p, pgm->pinno[PIN_LED_PGM],
p, pgm->pinno[PIN_LED_VFY]);
}
/*
* parse the -E string
*/
static int par_parseexitspecs(PROGRAMMER * pgm, char *s)
{
char *cp;
while ((cp = strtok(s, ","))) {
if (strcmp(cp, "reset") == 0) {
pgm->exit_reset = EXIT_RESET_ENABLED;
}
else if (strcmp(cp, "noreset") == 0) {
pgm->exit_reset = EXIT_RESET_DISABLED;
}
else if (strcmp(cp, "vcc") == 0) {
pgm->exit_vcc = EXIT_VCC_ENABLED;
}
else if (strcmp(cp, "novcc") == 0) {
pgm->exit_vcc = EXIT_VCC_DISABLED;
}
else if (strcmp(cp, "d_high") == 0) {
pgm->exit_datahigh = EXIT_DATAHIGH_ENABLED;
}
else if (strcmp(cp, "d_low") == 0) {
pgm->exit_datahigh = EXIT_DATAHIGH_DISABLED;
}
else {
return -1;
}
s = 0; /* strtok() should be called with the actual string only once */
}
return 0;
}
void par_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "PPI");
pgm->exit_vcc = EXIT_VCC_UNSPEC;
pgm->exit_reset = EXIT_RESET_UNSPEC;
pgm->exit_datahigh = EXIT_DATAHIGH_UNSPEC;
pgm->rdy_led = bitbang_rdy_led;
pgm->err_led = bitbang_err_led;
pgm->pgm_led = bitbang_pgm_led;
pgm->vfy_led = bitbang_vfy_led;
pgm->initialize = bitbang_initialize;
pgm->display = par_display;
pgm->enable = par_enable;
pgm->disable = par_disable;
pgm->powerup = par_powerup;
pgm->powerdown = par_powerdown;
pgm->program_enable = bitbang_program_enable;
pgm->chip_erase = bitbang_chip_erase;
pgm->cmd = bitbang_cmd;
pgm->cmd_tpi = bitbang_cmd_tpi;
pgm->spi = bitbang_spi;
pgm->open = par_open;
pgm->close = par_close;
pgm->setpin = par_setpin;
pgm->getpin = par_getpin;
pgm->highpulsepin = par_highpulsepin;
pgm->parseexitspecs = par_parseexitspecs;
pgm->read_byte = avr_read_byte_default;
pgm->write_byte = avr_write_byte_default;
}
#else /* !HAVE_PARPORT */
void par_initpgm(PROGRAMMER * pgm)
{
fprintf(stderr,
"%s: parallel port access not available in this configuration\n",
progname);
}
#endif /* HAVE_PARPORT */