avrdude/src/ft245r.c

1253 lines
34 KiB
C

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2003-2004 Theodore A. Roth <troth@openavr.org>
* some code:
* Copyright (C) 2011-2012 Roger E. Wolff <R.E.Wolff@BitWizard.nl>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* $Id$ */
/* ft245r -- FT245R/FT232R Synchronous BitBangMode Programmer
default pin assign
FT232R / FT245R
sdi = 1; # RxD / D1
sck = 0; # RTS / D0
sdo = 2; # TxD / D2
reset = 4; # DTR / D4
*/
/*
The ft232r is very similar, or even "identical" in the synchronous
bitbang mode that we use here.
This allows boards that have an ft232r for communication and an avr
as the processor to function as their own "ICSP". Boards that fit
this description include the Arduino Duemilanove, Arduino Diecimila,
Arduino NG (http://arduino.cc/it/main/boards) and the BitWizard
ftdi_atmega board (http://www.bitwizard.nl/wiki/index.php/FTDI_ATmega)
The Arduinos have to be patched to bring some of the control lines
to the ICSP header. The BitWizard board already has the neccessary
wiring on the PCB.
How to add the wires to an arduino is documented here:
http://www.geocities.jp/arduino_diecimila/bootloader/index_en.html
*/
#include "ac_cfg.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/time.h>
#include <unistd.h>
#include <stdint.h>
#include <math.h>
#include "avrdude.h"
#include "libavrdude.h"
#include "bitbang.h"
#include "ft245r.h"
#include "usbdevs.h"
#include "tpi.h"
#define TPIPCR_GT_0b 0x07
#define TPI_STOP_BITS 0x03
#if defined(HAVE_LIBFTDI1) && defined(HAVE_LIBUSB_1_0)
# if defined(HAVE_LIBUSB_1_0_LIBUSB_H)
# include <libusb-1.0/libusb.h>
# else
# include <libusb.h>
# endif
# include <libftdi1/ftdi.h>
#elif defined(HAVE_LIBFTDI)
#include <ftdi.h>
#else
#ifdef _MSC_VER
#pragma message("No libftdi or libusb support. Install libftdi1/libusb-1.0 or libftdi/libusb and run configure/make again.")
#else
#warning No libftdi or libusb support. Install libftdi1/libusb-1.0 or libftdi/libusb and run configure/make again.
#endif
#define DO_NOT_BUILD_FT245R
#endif
#if defined(DO_NOT_BUILD_FT245R)
static int ft245r_noftdi_open(PROGRAMMER *pgm, const char *name) {
pmsg_error("no libftdi or libusb support; install libftdi1/libusb-1.0 or libftdi/libusb and run configure/make\n");
return -1;
}
void ft245r_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "ftdi_syncbb");
pgm->open = ft245r_noftdi_open;
}
#else
#define FT245R_CYCLES 2
#define FT245R_CMD_SIZE (4 * 8*FT245R_CYCLES)
#define FT245R_FRAGMENT_SIZE (8 * FT245R_CMD_SIZE)
#define REQ_OUTSTANDINGS 10
#define FT245R_DEBUG 0
/*
Some revisions of the FTDI chips mess up the timing in bitbang mode
unless the bitclock is set to the max (3MHz). For example, see:
http://www.ftdichip.com/Support/Documents/TechnicalNotes/TN_120_FT232R%20Errata%20Technical%20Note.pdf
To work around this problem, set the macro below to 1 to always set
the bitclock to 3MHz and then issue the same byte repeatedly to get
the desired timing.
*/
#define FT245R_BITBANG_VARIABLE_PULSE_WIDTH_WORKAROUND 0
static struct ftdi_context *handle;
#if FT245R_BITBANG_VARIABLE_PULSE_WIDTH_WORKAROUND
static unsigned int baud_multiplier;
#else
# define baud_multiplier 1 // this let's C compiler optimize
#endif
static unsigned char ft245r_ddr;
static unsigned char ft245r_out;
#define FT245R_BUFSIZE 0x2000 // receive buffer size
#define FT245R_MIN_FIFO_SIZE 128 // min of FTDI RX/TX FIFO size
static struct {
int len; // # of bytes in transmit buffer
uint8_t buf[FT245R_MIN_FIFO_SIZE]; // transmit buffer
} tx;
static struct {
int discard; // # of bytes to discard during read
int pending; // # of bytes that have been written since last read
int len; // # of bytes in receive buffer
int wr; // write pointer
int rd; // read pointer
uint8_t buf[FT245R_BUFSIZE]; // receive ring buffer
} rx;
static int ft245r_cmd(const PROGRAMMER *pgm, const unsigned char *cmd,
unsigned char *res);
static int ft245r_tpi_tx(const PROGRAMMER *pgm, uint8_t byte);
static int ft245r_tpi_rx(const PROGRAMMER *pgm, uint8_t *bytep);
// Discard all data from the receive buffer.
static void ft245r_rx_buf_purge(const PROGRAMMER *pgm) {
rx.len = 0;
rx.rd = rx.wr = 0;
}
static void ft245r_rx_buf_put(const PROGRAMMER *pgm, uint8_t byte) {
rx.len++;
rx.buf[rx.wr++] = byte;
if (rx.wr >= sizeof(rx.buf))
rx.wr = 0;
}
static uint8_t ft245r_rx_buf_get(const PROGRAMMER *pgm) {
rx.len--;
uint8_t byte = rx.buf[rx.rd++];
if (rx.rd >= sizeof(rx.buf))
rx.rd = 0;
return byte;
}
/* Fill receive buffer with data from the FTDI receive FIFO. */
static int ft245r_fill(const PROGRAMMER *pgm) {
uint8_t raw[FT245R_MIN_FIFO_SIZE];
int i, nread;
nread = ftdi_read_data(handle, raw, rx.pending);
if (nread < 0)
return -1;
rx.pending -= nread;
#if FT245R_DEBUG
msg_info("%s: read %d bytes (pending=%d)\n", __func__, nread, rx.pending);
#endif
for (i = 0; i < nread; ++i)
ft245r_rx_buf_put(pgm, raw[i]);
return nread;
}
static int ft245r_rx_buf_fill_and_get(const PROGRAMMER *pgm) {
while (rx.len == 0)
{
int result = ft245r_fill(pgm);
if (result < 0)
{
return result;
}
}
return ft245r_rx_buf_get(pgm);
}
/* Flush pending TX data to the FTDI send FIFO. */
static int ft245r_flush(const PROGRAMMER *pgm) {
int rv, len = tx.len, avail;
uint8_t *src = tx.buf;
if (!len)
return 0;
while (len > 0) {
avail = FT245R_MIN_FIFO_SIZE - rx.pending;
if (avail <= 0) {
avail = ft245r_fill(pgm);
if (avail < 0) {
pmsg_error("fill returned %d: %s\n", avail, ftdi_get_error_string(handle));
return -1;
}
}
if (avail > len)
avail = len;
#if FT245R_DEBUG
msg_info("%s: writing %d bytes\n", __func__, avail);
#endif
rv = ftdi_write_data(handle, src, avail);
if (rv != avail) {
msg_error("write returned %d (expected %d): %s\n", rv, avail, ftdi_get_error_string(handle));
return -1;
}
src += avail;
len -= avail;
rx.pending += avail;
}
tx.len = 0;
return 0;
}
static int ft245r_send2(const PROGRAMMER *pgm, unsigned char *buf, size_t len,
bool discard_rx_data) {
int i, j;
for (i = 0; i < len; ++i) {
for (j = 0; j < baud_multiplier; ++j) {
if (discard_rx_data)
++rx.discard;
tx.buf[tx.len++] = buf[i];
if (tx.len >= FT245R_MIN_FIFO_SIZE)
ft245r_flush(pgm);
}
}
return 0;
}
static int ft245r_send(const PROGRAMMER *pgm, unsigned char *buf, size_t len) {
return ft245r_send2(pgm, buf, len, false);
}
static int ft245r_send_and_discard(const PROGRAMMER *pgm, unsigned char *buf,
size_t len) {
return ft245r_send2(pgm, buf, len, true);
}
static int ft245r_recv(const PROGRAMMER *pgm, unsigned char *buf, size_t len) {
int i, j;
ft245r_flush(pgm);
ft245r_fill(pgm);
#if FT245R_DEBUG
msg_info("%s: discarding %d, consuming %zu bytes\n", __func__, rx.discard, len);
#endif
while (rx.discard > 0) {
int result = ft245r_rx_buf_fill_and_get(pgm);
if (result < 0)
{
return result;
}
--rx.discard;
}
for (i = 0; i < len; ++i)
{
int result = ft245r_rx_buf_fill_and_get(pgm);
if (result < 0)
{
return result;
}
buf[i] = (uint8_t)result;
for (j = 1; j < baud_multiplier; ++j)
{
result = ft245r_rx_buf_fill_and_get(pgm);
if (result < 0)
{
return result;
}
}
}
return 0;
}
static int ft245r_drain(const PROGRAMMER *pgm, int display) {
int r;
// flush the buffer in the chip by changing the mode ...
r = ftdi_set_bitmode(handle, 0, BITMODE_RESET); // reset
if (r) return -1;
r = ftdi_set_bitmode(handle, ft245r_ddr, BITMODE_SYNCBB); // set Synchronuse BitBang
if (r) return -1;
// drain our buffer.
ft245r_rx_buf_purge(pgm);
return 0;
}
/* Ensure any pending writes are sent to the FTDI chip before sleeping. */
static void ft245r_usleep(const PROGRAMMER *pgm, useconds_t usec) {
ft245r_flush(pgm);
usleep(usec);
}
static int ft245r_chip_erase(const PROGRAMMER *pgm, const AVRPART *p) {
unsigned char cmd[4] = {0,0,0,0};
unsigned char res[4];
if (p->prog_modes & PM_TPI)
return avr_tpi_chip_erase(pgm, p);
if (p->op[AVR_OP_CHIP_ERASE] == NULL) {
msg_error("chip erase instruction not defined for part %s\n", p->desc);
return -1;
}
avr_set_bits(p->op[AVR_OP_CHIP_ERASE], cmd);
pgm->cmd(pgm, cmd, res);
ft245r_usleep(pgm, p->chip_erase_delay);
return pgm->initialize(pgm, p);
}
static int ft245r_set_bitclock(const PROGRAMMER *pgm) {
// libftdi1 multiplies bitbang baudrate by 4:
int r, rate = 0, ftdi_rate = 3000000 / 4;
/* bitclock is second. 1us = 0.000001. Max rate for ft232r 750000 */
if(pgm->bitclock) {
rate = (uint32_t)(1.0/pgm->bitclock);
} else if (pgm->baudrate) {
rate = pgm->baudrate;
} else {
rate = 150000; /* should work for all ftdi chips and the avr default internal clock of 1MHz */
}
#if FT245R_BITBANG_VARIABLE_PULSE_WIDTH_WORKAROUND
if (rate > 0 && rate < ftdi_rate)
baud_multiplier = round((ftdi_rate + rate - 1) / rate);
else
baud_multiplier = 1;
#else
ftdi_rate = rate;
#endif
msg_notice2("%s: bitclk %d -> FTDI rate %d, baud multiplier %d\n",
__func__, rate, ftdi_rate, baud_multiplier);
r = ftdi_set_baudrate(handle, ftdi_rate);
if (r) {
msg_error("set baudrate %d failed with error '%s'\n", rate, ftdi_get_error_string (handle));
return -1;
}
return 0;
}
static int get_pin(const PROGRAMMER *pgm, int pinname) {
uint8_t byte;
ft245r_flush(pgm);
if (ftdi_read_pins(handle, &byte) != 0)
return -1;
if (FT245R_DEBUG)
msg_info("%s: in 0x%02x\n", __func__, byte);
return GET_BITS_0(byte, pgm, pinname) != 0;
}
static int set_pin(const PROGRAMMER *pgm, int pinname, int val) {
unsigned char buf[1];
if (pgm->pin[pinname].mask[0] == 0) {
// ignore not defined pins (might be the led or vcc or buff if not needed)
return 0;
}
ft245r_out = SET_BITS_0(ft245r_out,pgm,pinname,val);
buf[0] = ft245r_out;
ft245r_send_and_discard(pgm, buf, 1);
return 0;
}
static int set_sck(const PROGRAMMER *pgm, int value) {
return set_pin(pgm, PIN_AVR_SCK, value);
}
static int set_reset(const PROGRAMMER *pgm, int value) {
return set_pin(pgm, PIN_AVR_RESET, value);
}
static int set_buff(const PROGRAMMER *pgm, int value) {
return set_pin(pgm, PPI_AVR_BUFF, value);
}
static int set_vcc(const PROGRAMMER *pgm, int value) {
return set_pin(pgm, PPI_AVR_VCC, value);
}
/* these functions are callbacks, which go into the
* PROGRAMMER data structure ("optional functions")
*/
static int set_led_pgm(const PROGRAMMER *pgm, int value) {
return set_pin(pgm, PIN_LED_PGM, value);
}
static int set_led_rdy(const PROGRAMMER *pgm, int value) {
return set_pin(pgm, PIN_LED_RDY, value);
}
static int set_led_err(const PROGRAMMER *pgm, int value) {
return set_pin(pgm, PIN_LED_ERR, value);
}
static int set_led_vfy(const PROGRAMMER *pgm, int value) {
return set_pin(pgm, PIN_LED_VFY, value);
}
/*
* apply power to the AVR processor
*/
static void ft245r_powerup(const PROGRAMMER *pgm) {
set_vcc(pgm, ON); /* power up */
ft245r_usleep(pgm, 100);
}
/*
* remove power from the AVR processor
*/
static void ft245r_powerdown(const PROGRAMMER *pgm) {
set_vcc(pgm, OFF); /* power down */
}
static void ft245r_disable(const PROGRAMMER *pgm) {
set_buff(pgm, OFF);
}
static void ft245r_enable(PROGRAMMER *pgm, const AVRPART *p) {
/*
* Prepare to start talking to the connected device - pull reset low
* first, delay a few milliseconds, then enable the buffer. This
* sequence allows the AVR to be reset before the buffer is enabled
* to avoid a short period of time where the AVR may be driving the
* programming lines at the same time the programmer tries to. Of
* course, if a buffer is being used, then the /RESET line from the
* programmer needs to be directly connected to the AVR /RESET line
* and not via the buffer chip.
*/
set_reset(pgm, OFF);
ft245r_usleep(pgm, 1);
set_buff(pgm, ON);
}
/*
* issue the 'program enable' command to the AVR device
*/
static int ft245r_program_enable(const PROGRAMMER *pgm, const AVRPART *p) {
unsigned char cmd[4] = {0,0,0,0};
unsigned char res[4];
int i;
if (p->prog_modes & PM_TPI)
return avr_tpi_program_enable(pgm, p, TPIPCR_GT_0b);
if (p->op[AVR_OP_PGM_ENABLE] == NULL) {
pmsg_error("AVR_OP_PGM_ENABLE command not defined for %s\n", p->desc);
fflush(stderr);
return -1;
}
avr_set_bits(p->op[AVR_OP_PGM_ENABLE], cmd);
for(i = 0; i < 4; i++) {
ft245r_cmd(pgm, cmd, res);
if (res[p->pollindex-1] == p->pollvalue) return 0;
if (FT245R_DEBUG) {
pmsg_notice("program enable command not successful, retrying\n");
fflush(stderr);
}
set_pin(pgm, PIN_AVR_RESET, ON);
ft245r_usleep(pgm, 20);
set_pin(pgm, PIN_AVR_RESET, OFF);
if (i == 3) {
ft245r_drain(pgm, 0);
ft245r_rx_buf_purge(pgm);
}
}
pmsg_error("device is not responding to program enable; check connection\n");
fflush(stderr);
return -1;
}
/*
* initialize the AVR device and prepare it to accept commands
*/
static int ft245r_initialize(const PROGRAMMER *pgm, const AVRPART *p) {
/* Apply power between VCC and GND while RESET and SCK are set to “0”. In some systems,
* the programmer can not guarantee that SCK is held low during power-up. In this
* case, RESET must be given a positive pulse of at least two CPU clock cycles duration
* after SCK has been set to “0”.
*/
set_sck(pgm, OFF);
ft245r_powerup(pgm);
set_reset(pgm, OFF);
ft245r_usleep(pgm, 5000); // 5ms
set_reset(pgm, ON);
ft245r_usleep(pgm, 5000); // 5ms
set_reset(pgm, OFF);
/* Wait for at least 20 ms and enable serial programming by sending the Programming
* Enable serial instruction to pin SDO.
*/
ft245r_usleep(pgm, 20000); // 20ms
if (p->prog_modes & PM_TPI) {
bool io_link_ok = true;
uint8_t byte;
int i;
/* Since there is a single TPIDATA line, SDO and SDI must be
linked together through a 1kOhm resistor. Verify that
everything we send on SDO gets mirrored back on SDI. */
set_pin(pgm, PIN_AVR_SDO, 0);
if (get_pin(pgm, PIN_AVR_SDI) != 0) {
io_link_ok = false;
if(ovsigck) {
pmsg_warning("SDO->SDI 0 failed\n");
} else {
pmsg_error("SDO->SDI 0 failed\n");
return -1;
}
}
set_pin(pgm, PIN_AVR_SDO, 1);
if (get_pin(pgm, PIN_AVR_SDI) != 1) {
io_link_ok = false;
if(ovsigck) {
pmsg_warning("SDO->SDI 1 failed\n");
} else {
pmsg_error("SDO->SDI 1 failed\n");
return -1;
}
}
if (io_link_ok)
msg_notice2("SDO-SDI link present\n");
/* keep TPIDATA high for 16 clock cycles */
set_pin(pgm, PIN_AVR_SDO, 1);
for (i = 0; i < 16; i++) {
set_sck(pgm, 1);
set_sck(pgm, 0);
}
/* remove extra guard timing bits */
ft245r_tpi_tx(pgm, TPI_CMD_SSTCS | TPI_REG_TPIPCR);
ft245r_tpi_tx(pgm, 0x7);
/* read TPI ident reg */
ft245r_tpi_tx(pgm, TPI_CMD_SLDCS | TPI_REG_TPIIR);
ft245r_tpi_rx(pgm, &byte);
if (byte != 0x80) {
msg_error("TPIIR 0x%02x not correct\n", byte);
return -1;
}
}
return ft245r_program_enable(pgm, p);
}
static inline void add_bit(const PROGRAMMER *pgm, unsigned char *buf, int *buf_pos,
uint8_t bit) {
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_SDO, bit);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_SCK,0);
buf[*buf_pos] = ft245r_out;
(*buf_pos)++;
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_SCK,1);
buf[*buf_pos] = ft245r_out;
(*buf_pos)++;
}
static inline int set_data(const PROGRAMMER *pgm, unsigned char *buf, unsigned char data) {
int j;
int buf_pos = 0;
unsigned char bit = 0x80;
for (j=0; j<8; j++) {
add_bit(pgm, buf, &buf_pos, (data & bit) != 0);
bit >>= 1;
}
return buf_pos;
}
static inline unsigned char extract_data(const PROGRAMMER *pgm, unsigned char *buf, int offset) {
int j;
int buf_pos = FT245R_CYCLES; /* SDI data is valid AFTER rising SCK edge,
i.e. in next clock cycle */
unsigned char bit = 0x80;
unsigned char r = 0;
buf += offset * (8 * FT245R_CYCLES);
for (j=0; j<8; j++) {
if (GET_BITS_0(buf[buf_pos],pgm,PIN_AVR_SDI)) {
r |= bit;
}
buf_pos += FT245R_CYCLES;
bit >>= 1;
}
return r;
}
/* to check data */
#if 0
static inline unsigned char extract_data_out(const PROGRAMMER *pgm, unsigned char *buf, int offset) {
int j;
int buf_pos = 1;
unsigned char bit = 0x80;
unsigned char r = 0;
buf += offset * (8 * FT245R_CYCLES);
for (j=0; j<8; j++) {
if (GET_BITS_0(buf[buf_pos],pgm,PIN_AVR_SDO)) {
r |= bit;
}
buf_pos += FT245R_CYCLES;
bit >>= 1;
}
return r;
}
#endif
/*
* transmit an AVR device command and return the results; 'cmd' and
* 'res' must point to at least a 4 byte data buffer
*/
static int ft245r_cmd(const PROGRAMMER *pgm, const unsigned char *cmd,
unsigned char *res) {
int i,buf_pos;
unsigned char buf[128];
buf_pos = 0;
for (i=0; i<4; i++) {
buf_pos += set_data(pgm, buf+buf_pos, cmd[i]);
}
buf[buf_pos] = 0;
buf_pos++;
ft245r_send (pgm, buf, buf_pos);
ft245r_recv (pgm, buf, buf_pos);
res[0] = extract_data(pgm, buf, 0);
res[1] = extract_data(pgm, buf, 1);
res[2] = extract_data(pgm, buf, 2);
res[3] = extract_data(pgm, buf, 3);
return 0;
}
static inline uint8_t extract_tpi_data(const PROGRAMMER *pgm, unsigned char *buf,
int *buf_pos) {
uint8_t bit = 0x1, byte = 0;
int j;
for (j = 0; j < 8; j++) {
(*buf_pos)++; // skip over falling clock edge
if (GET_BITS_0(buf[(*buf_pos)++], pgm, PIN_AVR_SDI))
byte |= bit;
bit <<= 1;
}
return byte;
}
static inline int set_tpi_data(const PROGRAMMER *pgm, unsigned char *buf,
uint8_t byte) {
uint8_t bit = 0x1, parity = 0;
int j, buf_pos = 0;
// start bit:
add_bit(pgm, buf, &buf_pos, 0);
// 8 data bits:
for (j = 0; j < 8; j++) {
add_bit(pgm, buf, &buf_pos, (byte & bit) != 0);
parity ^= (byte & bit) != 0;
bit <<= 1;
}
// parity bit:
add_bit(pgm, buf, &buf_pos, parity);
// stop bits:
add_bit(pgm, buf, &buf_pos, 1);
add_bit(pgm, buf, &buf_pos, 1);
return buf_pos;
}
static int ft245r_tpi_tx(const PROGRAMMER *pgm, uint8_t byte) {
uint8_t buf[128];
int len;
len = set_tpi_data(pgm, buf, byte);
ft245r_send_and_discard(pgm, buf, len);
return 0;
}
static int ft245r_tpi_rx(const PROGRAMMER *pgm, uint8_t *bytep) {
uint8_t buf[128], bit, parity;
int i, buf_pos = 0, len = 0;
uint32_t res, m, byte;
/* Allow for up to 4 bits before we must see start bit; during
that time, we must keep the SDO line high. */
for (i = 0; i < 2; ++i)
len += set_data(pgm, &buf[len], 0xff);
ft245r_send(pgm, buf, len);
ft245r_recv(pgm, buf, len);
res = (extract_tpi_data(pgm, buf, &buf_pos)
| ((uint32_t) extract_tpi_data(pgm, buf, &buf_pos) << 8));
/* Look for start bit: */
m = 0x1;
while (m & res)
m <<= 1;
if (m >= 0x10) {
pmsg_error("start bit missing (res=0x%04x)\n", res);
return -1;
}
byte = parity = 0;
for (i = 0; i < 8; ++i) {
m <<= 1;
bit = (res & m) != 0;
parity ^= bit;
byte |= bit << i;
}
m <<= 1;
if (((res & m) != 0) != parity) {
pmsg_error("parity bit wrong\n");
return -1;
}
if (((res & (m << 1)) == 0) || ((res & (m << 2))) == 0) {
pmsg_error("stop bits wrong\n");
return -1;
}
*bytep = (uint8_t) byte;
return 0;
}
static int ft245r_cmd_tpi(const PROGRAMMER *pgm, const unsigned char *cmd,
int cmd_len, unsigned char *res, int res_len) {
int i, ret = 0;
pgm->pgm_led(pgm, ON);
for (i = 0; i < cmd_len; ++i)
ft245r_tpi_tx(pgm, cmd[i]);
for (i = 0; i < res_len; ++i)
if ((ret = ft245r_tpi_rx(pgm, &res[i])) < 0)
break;
if (verbose >= 2) {
msg_notice2("%s: [ ", __func__);
for (i = 0; i < cmd_len; i++)
msg_notice2("%02X ", cmd[i]);
msg_notice2("] [ ");
for(i = 0; i < res_len; i++)
msg_notice2("%02X ", res[i]);
msg_notice2("]\n");
}
pgm->pgm_led(pgm, OFF);
return ret;
}
/* lower 8 pins are accepted, they might be also inverted */
static const struct pindef_t valid_pins = {{0xff},{0xff}} ;
static const struct pin_checklist_t pin_checklist[] = {
{ PIN_AVR_SCK, 1, &valid_pins},
{ PIN_AVR_SDO, 1, &valid_pins},
{ PIN_AVR_SDI, 1, &valid_pins},
{ PIN_AVR_RESET,1, &valid_pins},
{ PPI_AVR_BUFF, 0, &valid_pins},
};
static int ft245r_open(PROGRAMMER *pgm, const char *port) {
int rv;
int devnum = -1;
char device[9] = "";
rv = pins_check(pgm,pin_checklist,sizeof(pin_checklist)/sizeof(pin_checklist[0]), true);
if(rv) {
pgm->display(pgm, progbuf);
return rv;
}
strcpy(pgm->port, port);
// read device string cut after 8 chars (max. length of serial number)
if ((sscanf(port, "usb:%8s", device) != 1)) {
pmsg_notice("ft245r_open(): no device identifier in portname, using default\n");
pgm->usbsn = cache_string("");
devnum = 0;
} else {
if (strlen(device) == 8 ){ // serial number
pmsg_notice2("ft245r_open(): serial number parsed as: %s\n", device);
// copy serial number to pgm struct
pgm->usbsn = cache_string(device);
// and use first device with matching serial (should be unique)
devnum = 0;
}
else if (strncmp("ft", device, 2) || strlen(device) <= 8) { // classic device number
char *startptr = device + 2;
char *endptr = NULL;
devnum = strtol(startptr,&endptr,10);
if ((startptr==endptr) || (*endptr != '\0')) {
devnum = -1;
}
pmsg_notice2("ft245r_open(): device number parsed as: %d\n", devnum);
}
}
// if something went wrong before abort with helpful message
if (devnum < 0) {
pmsg_error("invalid portname '%s': use^ 'ft[0-9]+' or serial number\n", port);
return -1;
}
handle = malloc (sizeof (struct ftdi_context));
ftdi_init(handle);
LNODEID usbpid = lfirst(pgm->usbpid);
int pid;
if (usbpid) {
pid = *(int *)(ldata(usbpid));
if (lnext(usbpid))
pmsg_warning("using PID 0x%04x, ignoring remaining PIDs in list\n", pid);
} else {
pid = USB_DEVICE_FT245;
}
rv = ftdi_usb_open_desc_index(handle,
pgm->usbvid?pgm->usbvid:USB_VENDOR_FTDI,
pid,
pgm->usbproduct[0]?pgm->usbproduct:NULL,
pgm->usbsn[0]?pgm->usbsn:NULL,
devnum);
if (rv) {
pmsg_error("cannot open ftdi device: %s\n", ftdi_get_error_string(handle));
goto cleanup_no_usb;
}
ft245r_ddr =
pgm->pin[PIN_AVR_SCK].mask[0]
| pgm->pin[PIN_AVR_SDO].mask[0]
| pgm->pin[PIN_AVR_RESET].mask[0]
| pgm->pin[PPI_AVR_BUFF].mask[0]
| pgm->pin[PPI_AVR_VCC].mask[0]
| pgm->pin[PIN_LED_ERR].mask[0]
| pgm->pin[PIN_LED_RDY].mask[0]
| pgm->pin[PIN_LED_PGM].mask[0]
| pgm->pin[PIN_LED_VFY].mask[0];
/* set initial values for outputs, no reset everything else is off */
ft245r_out = 0;
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_RESET,1);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_SCK,0);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_SDO,0);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PPI_AVR_BUFF,0);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PPI_AVR_VCC,0);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_LED_ERR,0);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_LED_RDY,0);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_LED_PGM,0);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_LED_VFY,0);
rv = ftdi_set_latency_timer(handle, 1);
if (rv) {
pmsg_error("unable to set latency timer to 1 (%s)\n", ftdi_get_error_string(handle));
goto cleanup;
}
rv = ftdi_set_bitmode(handle, ft245r_ddr, BITMODE_SYNCBB); // set Synchronous BitBang
if (rv) {
pmsg_error("synchronous BitBangMode is not supported (%s)\n", ftdi_get_error_string(handle));
goto cleanup;
}
rv = ft245r_set_bitclock(pgm);
if (rv) {
goto cleanup;
}
/*
* drain any extraneous input
*/
ft245r_drain (pgm, 0);
ft245r_send_and_discard(pgm, &ft245r_out, 1);
return 0;
cleanup:
ftdi_usb_close(handle);
cleanup_no_usb:
ftdi_deinit (handle);
free(handle);
handle = NULL;
return -1;
}
static void ft245r_close(PROGRAMMER * pgm) {
if (handle) {
// I think the switch to BB mode and back flushes the buffer.
ftdi_set_bitmode(handle, 0, BITMODE_SYNCBB); // set Synchronous BitBang, all in puts
ftdi_set_bitmode(handle, 0, BITMODE_RESET); // disable Synchronous BitBang
ftdi_usb_close(handle);
ftdi_deinit (handle);
free(handle);
handle = NULL;
}
}
static void ft245r_display(const PROGRAMMER *pgm, const char *p) {
msg_info("%sPin assignment : 0..7 = DBUS0..7\n", p); // , 8..11 = GPIO0..3\n",p);
pgm_display_generic_mask(pgm, p, SHOW_ALL_PINS);
}
static int ft245r_paged_write_gen(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size, unsigned int addr, unsigned int n_bytes) {
for(int i=0; i < (int) n_bytes; i++, addr++)
if(avr_write_byte_default(pgm, p, m, addr, m->buf[addr]) != 0)
return -2;
return n_bytes;
}
static struct ft245r_request {
int addr;
int bytes;
int n;
struct ft245r_request *next;
} *req_head,*req_tail,*req_pool;
static void put_request(int addr, int bytes, int n) {
struct ft245r_request *p;
if (req_pool) {
p = req_pool;
req_pool = p->next;
} else {
p = malloc(sizeof(struct ft245r_request));
if (!p) {
msg_error("cannot alloc memory\n");
exit(1);
}
}
memset(p, 0, sizeof(struct ft245r_request));
p->addr = addr;
p->bytes = bytes;
p->n = n;
if (req_tail) {
req_tail->next = p;
req_tail = p;
} else {
req_head = req_tail = p;
}
}
static int do_request(const PROGRAMMER *pgm, const AVRMEM *m) {
struct ft245r_request *p;
int addr, bytes, j, n;
unsigned char buf[FT245R_FRAGMENT_SIZE+1+128];
if (!req_head) return 0;
p = req_head;
req_head = p->next;
if (!req_head) req_tail = req_head;
addr = p->addr;
bytes = p->bytes;
n = p->n;
memset(p, 0, sizeof(struct ft245r_request));
p->next = req_pool;
req_pool = p;
ft245r_recv(pgm, buf, bytes);
for (j=0; j<n; j++) {
m->buf[addr++] = extract_data(pgm, buf , (j * 4 + 3));
}
return 1;
}
static int ft245r_paged_write_flash(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size, unsigned int addr, unsigned int n_bytes) {
int i, j, addr_save, buf_pos, req_count, do_page_write;
unsigned char buf[FT245R_FRAGMENT_SIZE+1];
unsigned char cmd[4];
if(m->op[AVR_OP_LOADPAGE_LO] == NULL || m->op[AVR_OP_LOADPAGE_HI] == NULL) {
msg_error("AVR_OP_LOADPAGE_HI/LO command not defined for %s\n", p->desc);
return -1;
}
do_page_write = req_count = i = j = buf_pos = 0;
addr_save = addr;
while(i < (int) n_bytes) {
int spi = addr&1? AVR_OP_LOADPAGE_HI: AVR_OP_LOADPAGE_LO;
// put the SPI loadpage command as FT245R_CMD_SIZE bytes into buffer
memset(cmd, 0, sizeof cmd);
avr_set_bits(m->op[spi], cmd);
avr_set_addr(m->op[spi], cmd, addr/2);
avr_set_input(m->op[spi], cmd, m->buf[addr]);
for(int k=0; k<sizeof cmd; k++)
buf_pos += set_data(pgm, buf+buf_pos, cmd[k]);
i++; j++; addr++;
if(m->paged && (i%m->page_size == 0 || i >= (int) n_bytes))
do_page_write = 1;
// page boundary, finished or buffer exhausted? queue up requests
if(do_page_write || i >= (int) n_bytes || j >= FT245R_FRAGMENT_SIZE/FT245R_CMD_SIZE) {
if(i >= n_bytes) {
ft245r_out = SET_BITS_0(ft245r_out, pgm, PIN_AVR_SCK, 0); // SCK down
buf[buf_pos++] = ft245r_out;
} else {
// stretch sequence to allow correct readout, see extract_data()
buf[buf_pos] = buf[buf_pos - 1];
buf_pos++;
}
ft245r_send(pgm, buf, buf_pos);
put_request(addr_save, buf_pos, 0);
if(++req_count > REQ_OUTSTANDINGS)
do_request(pgm, m);
if(do_page_write) {
while(do_request(pgm, m))
continue;
if(avr_write_page(pgm, p, m, addr_save - (addr_save % m->page_size)) != 0)
return -2;
do_page_write = req_count = 0;
}
// reset buffer variables
j = buf_pos = 0;
addr_save = addr;
}
}
while(do_request(pgm, m))
continue;
return n_bytes;
}
static int ft245r_paged_write(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size, unsigned int addr, unsigned int n_bytes) {
if(!n_bytes)
return 0;
if(strcmp(m->desc, "flash") == 0)
return ft245r_paged_write_flash(pgm, p, m, page_size, addr, n_bytes);
if(strcmp(m->desc, "eeprom") == 0)
return ft245r_paged_write_gen(pgm, p, m, page_size, addr, n_bytes);
return -2;
}
static int ft245r_paged_load_gen(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size, unsigned int addr, unsigned int n_bytes) {
for(int i=0; i < (int) n_bytes; i++) {
unsigned char rbyte;
if(avr_read_byte_default(pgm, p, m, addr+i, &rbyte) != 0)
return -2;
m->buf[addr+i] = rbyte;
}
return 0;
}
static int ft245r_paged_load_flash(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size, unsigned int addr, unsigned int n_bytes) {
int i, j, addr_save, buf_pos, req_count;
unsigned char buf[FT245R_FRAGMENT_SIZE+1];
unsigned char cmd[4];
if(m->op[AVR_OP_READ_LO] == NULL || m->op[AVR_OP_READ_HI] == NULL) {
msg_error("AVR_OP_READ_HI/LO command not defined for %s\n", p->desc);
return -1;
}
// always called with addr at page boundary, and n_bytes == m->page_size;
// hence, OK to prepend load extended address command (at most) once
if(m->op[AVR_OP_LOAD_EXT_ADDR]) {
memset(cmd, 0, sizeof cmd);
avr_set_bits(m->op[AVR_OP_LOAD_EXT_ADDR], cmd);
avr_set_addr(m->op[AVR_OP_LOAD_EXT_ADDR], cmd, addr/2);
buf_pos = 0;
for(int k=0; k<sizeof cmd; k++)
buf_pos += set_data(pgm, buf+buf_pos, cmd[k]);
ft245r_send_and_discard(pgm, buf, buf_pos);
}
req_count = i = j = buf_pos = 0;
addr_save = addr;
while(i < (int) n_bytes) {
int spi = addr&1? AVR_OP_READ_HI: AVR_OP_READ_LO;
// put the SPI read command as FT245R_CMD_SIZE bytes into buffer
memset(cmd, 0, sizeof cmd);
avr_set_bits(m->op[spi], cmd);
avr_set_addr(m->op[spi], cmd, addr/2);
for(int k=0; k<sizeof cmd; k++)
buf_pos += set_data(pgm, buf+buf_pos, cmd[k]);
i++; j++; addr++;
// finished or buffer exhausted? queue up requests
if(i >= (int) n_bytes || j >= FT245R_FRAGMENT_SIZE/FT245R_CMD_SIZE) {
if(i >= (int) n_bytes) {
ft245r_out = SET_BITS_0(ft245r_out, pgm, PIN_AVR_SCK, 0); // SCK down
buf[buf_pos++] = ft245r_out;
} else {
// stretch sequence to allow correct readout, see extract_data()
buf[buf_pos] = buf[buf_pos - 1];
buf_pos++;
}
ft245r_send(pgm, buf, buf_pos);
put_request(addr_save, buf_pos, j);
if(++req_count > REQ_OUTSTANDINGS)
do_request(pgm, m);
// reset buffer variables
j = buf_pos = 0;
addr_save = addr;
}
}
while(do_request(pgm, m))
continue;
return 0;
}
static int ft245r_paged_load(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size, unsigned int addr, unsigned int n_bytes) {
if(!n_bytes)
return 0;
if(strcmp(m->desc, "flash") == 0)
return ft245r_paged_load_flash(pgm, p, m, page_size, addr, n_bytes);
if(strcmp(m->desc, "eeprom") == 0)
return ft245r_paged_load_gen(pgm, p, m, page_size, addr, n_bytes);
return -2;
}
void ft245r_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "ftdi_syncbb");
/*
* mandatory functions
*/
pgm->initialize = ft245r_initialize;
pgm->display = ft245r_display;
pgm->enable = ft245r_enable;
pgm->disable = ft245r_disable;
pgm->program_enable = ft245r_program_enable;
pgm->chip_erase = ft245r_chip_erase;
pgm->cmd = ft245r_cmd;
pgm->cmd_tpi = ft245r_cmd_tpi;
pgm->open = ft245r_open;
pgm->close = ft245r_close;
pgm->read_byte = avr_read_byte_default;
pgm->write_byte = avr_write_byte_default;
/*
* optional functions
*/
pgm->paged_write = ft245r_paged_write;
pgm->paged_load = ft245r_paged_load;
pgm->rdy_led = set_led_rdy;
pgm->err_led = set_led_err;
pgm->pgm_led = set_led_pgm;
pgm->vfy_led = set_led_vfy;
pgm->powerup = ft245r_powerup;
pgm->powerdown = ft245r_powerdown;
handle = NULL;
}
#endif
const char ft245r_desc[] = "FT245R/FT232R Synchronous BitBangMode Programmer";