avrdude/butterfly.c

694 lines
15 KiB
C

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2003-2004 Theodore A. Roth <troth@openavr.org>
* Copyright (C) 2005 Joerg Wunsch <j@uriah.heep.sax.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* $Id$ */
/*
* avrdude interface for the serial programming mode of the Atmel butterfly
* evaluation board. This board features a bootloader which uses a protocol
* very similar, but not identical, to the one described in application note
* avr910.
*
* Actually, the butterfly uses a predecessor of the avr910 protocol
* which is described in application notes avr109 (generic AVR
* bootloader) and avr911 (opensource programmer). This file now
* fully handles the features present in avr109. It should probably
* be renamed to avr109, but we rather stick with the old name inside
* the file. We'll provide aliases for "avr109" and "avr911" in
* avrdude.conf so users could call it by these name as well.
*/
#include "ac_cfg.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <ctype.h>
#include "avr.h"
#include "pgm.h"
#include "butterfly.h"
#include "serial.h"
extern char * progname;
extern int do_cycles;
static char has_auto_incr_addr;
static unsigned buffersize = 0;
/* These two defines are only for debugging. Will remove them once it starts
working. */
#define show_func_info() \
fprintf(stderr, "%s: line %d: called %s()\n", \
__FILE__, __LINE__, __FUNCTION__)
#define no_show_func_info()
static int butterfly_send(PROGRAMMER * pgm, char * buf, size_t len)
{
no_show_func_info();
return serial_send(pgm->fd, (unsigned char *)buf, len);
}
static int butterfly_recv(PROGRAMMER * pgm, char * buf, size_t len)
{
int rv;
no_show_func_info();
rv = serial_recv(pgm->fd, (unsigned char *)buf, len);
if (rv < 0) {
fprintf(stderr,
"%s: butterfly_recv(): programmer is not responding\n",
progname);
exit(1);
}
return 0;
}
static int butterfly_drain(PROGRAMMER * pgm, int display)
{
no_show_func_info();
return serial_drain(pgm->fd, display);
}
static void butterfly_vfy_cmd_sent(PROGRAMMER * pgm, char * errmsg)
{
char c;
butterfly_recv(pgm, &c, 1);
if (c != '\r') {
fprintf(stderr, "%s: error: programmer did not respond to command: %s\n",
progname, errmsg);
exit(1);
}
}
static int butterfly_rdy_led(PROGRAMMER * pgm, int value)
{
no_show_func_info();
/* Do nothing. */
return 0;
}
static int butterfly_err_led(PROGRAMMER * pgm, int value)
{
no_show_func_info();
/* Do nothing. */
return 0;
}
static int butterfly_pgm_led(PROGRAMMER * pgm, int value)
{
no_show_func_info();
/* Do nothing. */
return 0;
}
static int butterfly_vfy_led(PROGRAMMER * pgm, int value)
{
no_show_func_info();
/* Do nothing. */
return 0;
}
/*
* issue the 'chip erase' command to the butterfly board
*/
static int butterfly_chip_erase(PROGRAMMER * pgm, AVRPART * p)
{
no_show_func_info();
butterfly_send(pgm, "e", 1);
butterfly_vfy_cmd_sent(pgm, "chip erase");
return 0;
}
static void butterfly_enter_prog_mode(PROGRAMMER * pgm)
{
butterfly_send(pgm, "P", 1);
butterfly_vfy_cmd_sent(pgm, "enter prog mode");
}
static void butterfly_leave_prog_mode(PROGRAMMER * pgm)
{
butterfly_send(pgm, "L", 1);
butterfly_vfy_cmd_sent(pgm, "leave prog mode");
}
/*
* issue the 'program enable' command to the AVR device
*/
static int butterfly_program_enable(PROGRAMMER * pgm, AVRPART * p)
{
no_show_func_info();
return -1;
}
/*
* apply power to the AVR processor
*/
static void butterfly_powerup(PROGRAMMER * pgm)
{
no_show_func_info();
/* Do nothing. */
return;
}
/*
* remove power from the AVR processor
*/
static void butterfly_powerdown(PROGRAMMER * pgm)
{
no_show_func_info();
/* Do nothing. */
return;
}
/*
* initialize the AVR device and prepare it to accept commands
*/
static int butterfly_initialize(PROGRAMMER * pgm, AVRPART * p)
{
char id[8];
char sw[2];
char hw[2];
char buf[10];
char type;
char c;
int dev_supported = 0;
no_show_func_info();
/*
* Send some ESC to activate butterfly bootloader. This is not needed
* for plain avr109 bootloaders but does not harm there either.
*/
fprintf(stderr, "Connecting to programmer: ");
do {
putc('.', stderr);
butterfly_send(pgm, "\033", 1);
butterfly_drain(pgm, 0);
butterfly_send(pgm, "S", 1);
butterfly_recv(pgm, &c, 1);
if (c != '?') {
putc('\n', stderr);
/*
* Got a useful response, continue getting the programmer
* identifier. Programmer returns exactly 7 chars _without_
* the null.
*/
id[0] = c;
butterfly_recv(pgm, &id[1], sizeof(id)-2);
id[sizeof(id)-1] = '\0';
}
} while (c == '?');
/* Get the HW and SW versions to see if the programmer is present. */
butterfly_send(pgm, "V", 1);
butterfly_recv(pgm, sw, sizeof(sw));
butterfly_send(pgm, "v", 1);
butterfly_recv(pgm, hw, 1); /* first, read only _one_ byte */
if (hw[0]!='?') {
butterfly_recv(pgm, &hw[1], 1);/* now, read second byte */
};
/* Get the programmer type (serial or parallel). Expect serial. */
butterfly_send(pgm, "p", 1);
butterfly_recv(pgm, &type, 1);
fprintf(stderr, "Found programmer: Id = \"%s\"; type = %c\n", id, type);
fprintf(stderr, " Software Version = %c.%c; ", sw[0], sw[1]);
if (hw[0]=='?') {
fprintf(stderr, "No Hardware Version given.\n");
} else {
fprintf(stderr, "Hardware Version = %c.%c\n", hw[0], hw[1]);
};
/* See if programmer supports autoincrement of address. */
butterfly_send(pgm, "a", 1);
butterfly_recv(pgm, &has_auto_incr_addr, 1);
if (has_auto_incr_addr == 'Y')
fprintf(stderr, "Programmer supports auto addr increment.\n");
/* Check support for buffered memory access, abort if not available */
butterfly_send(pgm, "b", 1);
butterfly_recv(pgm, &c, 1);
if (c != 'Y') {
fprintf(stderr,
"%s: error: buffered memory access not supported. Maybe it isn't\n"\
"a butterfly/AVR109 but a AVR910 device?\n", progname);
exit(1);
};
butterfly_recv(pgm, &c, 1);
buffersize = c<<8;
butterfly_recv(pgm, &c, 1);
buffersize += c;
fprintf(stderr,
"Programmer supports buffered memory access with buffersize=%i bytes.\n",
buffersize);
/* Get list of devices that the programmer supports. */
butterfly_send(pgm, "t", 1);
fprintf(stderr, "\nProgrammer supports the following devices:\n");
while (1) {
butterfly_recv(pgm, &c, 1);
if (c == 0)
break;
fprintf(stderr, " Device code: 0x%02x\n", c);
/* FIXME: Need to lookup devcode and report the device. */
if (p->avr910_devcode == c)
dev_supported = 1;
};
fprintf(stderr,"\n");
if (!dev_supported) {
/* FIXME: if nothing matched, we should rather compare the device
signatures. */
fprintf(stderr,
"%s: error: selected device is not supported by programmer: %s\n",
progname, p->id);
}
/* Tell the programmer which part we selected. */
buf[0] = 'T';
buf[1] = p->avr910_devcode;
butterfly_send(pgm, buf, 2);
butterfly_vfy_cmd_sent(pgm, "select device");
if (dev_supported)
butterfly_enter_prog_mode(pgm);
return dev_supported? 0: -1;
}
static void butterfly_disable(PROGRAMMER * pgm)
{
no_show_func_info();
butterfly_leave_prog_mode(pgm);
return;
}
static void butterfly_enable(PROGRAMMER * pgm)
{
no_show_func_info();
return;
}
static int butterfly_open(PROGRAMMER * pgm, char * port)
{
no_show_func_info();
strcpy(pgm->port, port);
/*
* If baudrate was not specified use 19200 Baud
*/
if(pgm->baudrate == 0) {
pgm->baudrate = 19200;
}
pgm->fd = serial_open(port, pgm->baudrate);
/*
* drain any extraneous input
*/
butterfly_drain (pgm, 0);
return 0;
}
static void butterfly_close(PROGRAMMER * pgm)
{
no_show_func_info();
/* "exit programmer" added by Martin Thomas 2/2004 */
butterfly_send(pgm, "E", 1);
serial_close(pgm->fd);
pgm->fd = -1;
}
static void butterfly_display(PROGRAMMER * pgm, char * p)
{
no_show_func_info();
return;
}
static void butterfly_set_addr(PROGRAMMER * pgm, unsigned long addr)
{
char cmd[3];
cmd[0] = 'A';
cmd[1] = (addr >> 8) & 0xff;
cmd[2] = addr & 0xff;
butterfly_send(pgm, cmd, sizeof(cmd));
butterfly_vfy_cmd_sent(pgm, "set addr");
}
static int butterfly_write_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned long addr, unsigned char value)
{
char cmd[6];
int size;
no_show_func_info();
if ((strcmp(m->desc, "flash") == 0) || (strcmp(m->desc, "eeprom") == 0))
{
cmd[0] = 'B';
cmd[1] = 0;
if ((cmd[3] = toupper(m->desc[0])) == 'E') { /* write to eeprom */
cmd[2] = 1;
cmd[4] = value;
size = 5;
} else { /* write to flash */
/* @@@ not yet implemented */
cmd[2] = 2;
size = 6;
return -1;
}
butterfly_set_addr(pgm, addr);
}
else if (strcmp(m->desc, "lock") == 0)
{
cmd[0] = 'l';
cmd[1] = value;
size = 2;
}
else
return -1;
butterfly_send(pgm, cmd, size);
butterfly_vfy_cmd_sent(pgm, "write byte");
return 0;
}
static int butterfly_read_byte_flash(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned long addr, unsigned char * value)
{
static int cached = 0;
static unsigned char cvalue;
static unsigned long caddr;
if (cached && ((caddr + 1) == addr)) {
*value = cvalue;
cached = 0;
}
else {
char buf[2];
butterfly_set_addr(pgm, addr >> 1);
butterfly_send(pgm, "g\000\002F", 4);
/* Read back the program mem word (MSB first) */
butterfly_recv(pgm, buf, sizeof(buf));
if ((addr & 0x01) == 0) {
*value = buf[1];
cached = 1;
cvalue = buf[0];
caddr = addr;
}
else {
*value = buf[0];
}
}
return 0;
}
static int butterfly_read_byte_eeprom(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned long addr, unsigned char * value)
{
butterfly_set_addr(pgm, addr);
butterfly_send(pgm, "g\000\001E", 4);
butterfly_recv(pgm, (char *)value, 1);
return 0;
}
static int butterfly_read_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned long addr, unsigned char * value)
{
char cmd;
no_show_func_info();
if (strcmp(m->desc, "flash") == 0) {
return butterfly_read_byte_flash(pgm, p, m, addr, value);
}
if (strcmp(m->desc, "eeprom") == 0) {
return butterfly_read_byte_eeprom(pgm, p, m, addr, value);
}
if (strcmp(m->desc, "lfuse") == 0) {
cmd = 'F';
}
else if (strcmp(m->desc, "hfuse") == 0) {
cmd = 'N';
}
else if (strcmp(m->desc, "efuse") == 0) {
cmd = 'Q';
}
else if (strcmp(m->desc, "lock") == 0) {
cmd = 'r';
}
else
return -1;
butterfly_send(pgm, &cmd, 1);
butterfly_recv(pgm, (char *)value, 1);
return *value == '?'? -1: 0;
}
static int butterfly_paged_write(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
int page_size, int n_bytes)
{
unsigned int addr = 0;
unsigned int max_addr = n_bytes;
char *cmd;
unsigned int blocksize = buffersize;
if (strcmp(m->desc, "flash") && strcmp(m->desc, "eeprom"))
return -2;
if (m->desc[0] == 'e')
blocksize = 1; /* Write to eeprom single bytes only */
butterfly_set_addr(pgm, addr);
#if 0
usleep(1000000);
butterfly_send(pgm, "y", 1);
butterfly_vfy_cmd_sent(pgm, "clear LED");
#endif
cmd = malloc(4+blocksize);
if (!cmd) return -1;
cmd[0] = 'B';
cmd[3] = toupper(m->desc[0]);
while (addr < max_addr) {
if ((max_addr - addr) < blocksize) {
blocksize = max_addr - addr;
};
memcpy(&cmd[4], &m->buf[addr], blocksize);
cmd[1] = (blocksize >> 8) & 0xff;
cmd[2] = blocksize & 0xff;
butterfly_send(pgm, cmd, 4+blocksize);
butterfly_vfy_cmd_sent(pgm, "write block");
addr += blocksize;
report_progress (addr, max_addr, NULL);
} /* while */
free(cmd);
return addr;
}
static int butterfly_paged_load(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
int page_size, int n_bytes)
{
unsigned int addr = 0;
unsigned int max_addr = n_bytes;
int rd_size = 1;
/* check parameter syntax: only "flash" or "eeprom" is allowed */
if (strcmp(m->desc, "flash") && strcmp(m->desc, "eeprom"))
return -2;
{ /* use buffered mode */
char cmd[4];
int blocksize = buffersize;
cmd[0] = 'g';
cmd[3] = toupper(m->desc[0]);
butterfly_set_addr(pgm, addr);
while (addr < max_addr) {
if ((max_addr - addr) < blocksize) {
blocksize = max_addr - addr;
};
cmd[1] = (blocksize >> 8) & 0xff;
cmd[2] = blocksize & 0xff;
butterfly_send(pgm, cmd, 4);
butterfly_recv(pgm, (char *)&m->buf[addr], blocksize);
addr += blocksize;
report_progress (addr, max_addr, NULL);
} /* while */
}
return addr * rd_size;
}
/* Signature byte reads are always 3 bytes. */
static int butterfly_read_sig_bytes(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m)
{
unsigned char tmp;
no_show_func_info();
if (m->size < 3) {
fprintf(stderr, "%s: memsize too small for sig byte read", progname);
return -1;
}
butterfly_send(pgm, "s", 1);
butterfly_recv(pgm, (char *)m->buf, 3);
/* Returned signature has wrong order. */
tmp = m->buf[2];
m->buf[2] = m->buf[0];
m->buf[0] = tmp;
return 3;
}
void butterfly_initpgm(PROGRAMMER * pgm)
{
no_show_func_info();
strcpy(pgm->type, "avr910");
/*
* mandatory functions
*/
pgm->rdy_led = butterfly_rdy_led;
pgm->err_led = butterfly_err_led;
pgm->pgm_led = butterfly_pgm_led;
pgm->vfy_led = butterfly_vfy_led;
pgm->initialize = butterfly_initialize;
pgm->display = butterfly_display;
pgm->enable = butterfly_enable;
pgm->disable = butterfly_disable;
pgm->powerup = butterfly_powerup;
pgm->powerdown = butterfly_powerdown;
pgm->program_enable = butterfly_program_enable;
pgm->chip_erase = butterfly_chip_erase;
/* pgm->cmd not supported, use default error message */
pgm->open = butterfly_open;
pgm->close = butterfly_close;
/*
* optional functions
*/
pgm->write_byte = butterfly_write_byte;
pgm->read_byte = butterfly_read_byte;
pgm->paged_write = butterfly_paged_write;
pgm->paged_load = butterfly_paged_load;
pgm->read_sig_bytes = butterfly_read_sig_bytes;
}