avrdude/src/term.c

1426 lines
39 KiB
C

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2000-2004 Brian S. Dean <bsd@bsdhome.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* $Id$ */
#include "ac_cfg.h"
#include <ctype.h>
#include <string.h>
#include <stdio.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <stddef.h>
#include <stdarg.h>
#include <limits.h>
#include <unistd.h>
#include <errno.h>
#if defined(HAVE_LIBREADLINE)
#include <readline/readline.h>
#include <readline/history.h>
#ifdef _MSC_VER
#include "msvc/unistd.h"
#else
#include <unistd.h>
#endif
#ifdef WIN32
#include <windows.h>
#endif
#endif
#include "avrdude.h"
#include "term.h"
struct command {
char *name;
int (*func)(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]);
size_t fnoff;
char *desc;
};
static int cmd_dump (PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]);
static int cmd_write (PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]);
static int cmd_flush (PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]);
static int cmd_abort (PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]);
static int cmd_erase (PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]);
static int cmd_pgerase(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]);
static int cmd_sig (PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]);
static int cmd_part (PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]);
static int cmd_help (PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]);
static int cmd_quit (PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]);
static int cmd_send (PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]);
static int cmd_parms (PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]);
static int cmd_vtarg (PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]);
static int cmd_varef (PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]);
static int cmd_fosc (PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]);
static int cmd_sck (PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]);
static int cmd_spi (PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]);
static int cmd_pgm (PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]);
static int cmd_verbose(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]);
static int cmd_quell (PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]);
#define _fo(x) offsetof(PROGRAMMER, x)
struct command cmd[] = {
{ "dump", cmd_dump, _fo(read_byte_cached), "%s <memory> [<addr> <len> | <addr> ... | <addr> | ...]" },
{ "read", cmd_dump, _fo(read_byte_cached), "alias for dump" },
{ "write", cmd_write, _fo(write_byte_cached), "write <memory> <addr> <data>[,] {<data>[,]}" },
{ "", cmd_write, _fo(write_byte_cached), "write <memory> <addr> <len> <data>[,] {<data>[,]} ..." },
{ "flush", cmd_flush, _fo(flush_cache), "synchronise flash & EEPROM writes with the device" },
{ "abort", cmd_abort, _fo(reset_cache), "abort flash & EEPROM writes (reset the r/w cache)" },
{ "erase", cmd_erase, _fo(chip_erase_cached), "perform a chip erase" },
{ "pgerase", cmd_pgerase, _fo(page_erase), "pgerase <memory> <addr>" },
{ "sig", cmd_sig, _fo(open), "display device signature bytes" },
{ "part", cmd_part, _fo(open), "display the current part information" },
{ "send", cmd_send, _fo(cmd), "send a raw command: %s <b1> <b2> <b3> <b4>" },
{ "parms", cmd_parms, _fo(print_parms), "display adjustable parameters" },
{ "vtarg", cmd_vtarg, _fo(set_vtarget), "set <V[target]>" },
{ "varef", cmd_varef, _fo(set_varef), "set <V[aref]>" },
{ "fosc", cmd_fosc, _fo(set_fosc), "set <oscillator frequency>" },
{ "sck", cmd_sck, _fo(set_sck_period), "set <SCK period>" },
{ "spi", cmd_spi, _fo(setpin), "enter direct SPI mode" },
{ "pgm", cmd_pgm, _fo(setpin), "return to programming mode" },
{ "verbose", cmd_verbose, _fo(open), "change verbosity" },
{ "quell", cmd_quell, _fo(open), "set quell level for progress bars" },
{ "help", cmd_help, _fo(open), "show help message" },
{ "?", cmd_help, _fo(open), "same as help" },
{ "quit", cmd_quit, _fo(open), "quit after writing out cache for flash & EEPROM" }
};
#define NCMDS ((int)(sizeof(cmd)/sizeof(struct command)))
static int spi_mode = 0;
static int nexttok(char *buf, char **tok, char **next) {
unsigned char *q, *n;
q = (unsigned char *) buf;
while (isspace(*q))
q++;
/* isolate first token */
n = q;
uint8_t quotes = 0;
while (*n && (!isspace(*n) || quotes)) {
// Poor man's quote and escape processing
if (*n == '"' || *n == '\'')
quotes++;
else if(*n == '\\' && n[1])
n++;
else if (isspace(*n) && (n > q+1) && (n[-1] == '"' || n[-1] == '\''))
break;
n++;
}
if (*n) {
*n = 0;
n++;
}
/* find start of next token */
while (isspace(*n))
n++;
*tok = (char *) q;
*next = (char *) n;
return 0;
}
static int hexdump_line(char *buffer, unsigned char *p, int n, int pad) {
char *hexdata = "0123456789abcdef";
char *b = buffer;
int i = 0;
int j = 0;
for (i=0; i<n; i++) {
if (i && ((i % 8) == 0))
b[j++] = ' ';
b[j++] = hexdata[(p[i] & 0xf0) >> 4];
b[j++] = hexdata[(p[i] & 0x0f)];
if (i < 15)
b[j++] = ' ';
}
for (i=j; i<pad; i++)
b[i] = ' ';
b[i] = 0;
for (i=0; i<pad; i++) {
if (!((b[i] == '0') || (b[i] == ' ')))
return 0;
}
return 1;
}
static int chardump_line(char *buffer, unsigned char *p, int n, int pad) {
int i;
unsigned char b[128];
// Sanity check
n = n < 1? 1: n > sizeof b? sizeof b: n;
memcpy(b, p, n);
for (int i = 0; i < n; i++)
buffer[i] = isascii(b[i]) && isspace(b[i])? ' ':
isascii(b[i]) && isgraph(b[i])? b[i]: '.';
for (i = n; i < pad; i++)
buffer[i] = ' ';
buffer[i] = 0;
return 0;
}
static int hexdump_buf(FILE *f, int startaddr, unsigned char *buf, int len) {
char dst1[80];
char dst2[80];
int addr = startaddr;
unsigned char *p = (unsigned char *) buf;
while (len) {
int n = 16;
if (n > len)
n = len;
hexdump_line(dst1, p, n, 48);
chardump_line(dst2, p, n, 16);
term_out("%04x %s |%s|\n", addr, dst1, dst2);
len -= n;
addr += n;
p += n;
}
return 0;
}
static int cmd_dump(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]) {
if (argc < 2 || argc > 4) {
msg_error(
"Usage: %s <memory> <addr> <len>\n"
" %s <memory> <addr> ...\n"
" %s <memory> <addr>\n"
" %s <memory> ...\n"
" %s <memory>\n",
argv[0], argv[0], argv[0], argv[0], argv[0]);
return -1;
}
enum { read_size = 256 };
static const char *prevmem = "";
char *memtype = argv[1];
AVRMEM *mem = avr_locate_mem(p, memtype);
if (mem == NULL) {
pmsg_error("(dump) %s memory type not defined for part %s\n", memtype, p->desc);
return -1;
}
int maxsize = mem->size;
// Get start address if present
char *end_ptr;
static int addr = 0;
if (argc >= 3 && strcmp(argv[2], "...") != 0) {
addr = strtoul(argv[2], &end_ptr, 0);
if (*end_ptr || (end_ptr == argv[2])) {
pmsg_error("(dump) cannot parse address %s\n", argv[2]);
return -1;
} else if (addr < 0 || addr >= maxsize) {
pmsg_error("(dump) %s address 0x%05x is out of range [0, 0x%05x]\n", mem->desc, addr, maxsize-1);
return -1;
}
}
// Get no. bytes to read if present
static int len = read_size;
if (argc >= 3) {
prevmem = cache_string("");
if (strcmp(argv[argc - 1], "...") == 0) {
if (argc == 3)
addr = 0;
len = maxsize - addr;
} else if (argc == 4) {
len = strtol(argv[3], &end_ptr, 0);
if (*end_ptr || (end_ptr == argv[3])) {
pmsg_error("(dump) cannot parse length %s\n", argv[3]);
return -1;
}
} else {
len = read_size;
}
}
// No address or length specified
else if (argc == 2) {
if (strncmp(prevmem, memtype, strlen(memtype)) != 0) {
addr = 0;
len = read_size;
prevmem = cache_string(mem->desc);
}
if (addr >= maxsize)
addr = 0; // Wrap around
}
// Trim len if nessary to not read past the end of memory
if ((addr + len) > maxsize)
len = maxsize - addr;
uint8_t *buf = malloc(len);
if (buf == NULL) {
pmsg_error("(dump) out of memory\n");
return -1;
}
report_progress(0, 1, "Reading");
for (int i = 0; i < len; i++) {
int rc = pgm->read_byte_cached(pgm, p, mem, addr + i, &buf[i]);
if (rc != 0) {
report_progress(1, -1, NULL);
pmsg_error("(dump) error reading %s address 0x%05lx of part %s\n", mem->desc, (long) addr + i, p->desc);
if (rc == -1)
imsg_error("%*sread operation not supported on memory type %s\n", 7, "", mem->desc);
return -1;
}
report_progress(i, len, NULL);
}
report_progress(1, 1, NULL);
hexdump_buf(stdout, addr, buf, len);
term_out("\n");
free(buf);
addr = addr + len;
return 0;
}
static size_t maxstrlen(int argc, char **argv) {
size_t max = 0;
for(int i=0; i<argc; i++)
if(strlen(argv[i]) > max)
max = strlen(argv[i]);
return max;
}
// Change data item p of size bytes from big endian to little endian and vice versa
static void change_endian(void *p, int size) {
uint8_t tmp, *w = p;
for(int i=0; i<size/2; i++)
tmp = w[i], w[i] = w[size-i-1], w[size-i-1] = tmp;
}
// Looks like a double mantissa in hex or dec notation
static int is_mantissa_only(char *p) {
char *digs;
if(*p == '+' || *p == '-')
p++;
if(*p == '0' && (p[1] == 'x' || p[1] == 'X')) {
p += 2;
digs = "0123456789abcdefABCDEF";
} else
digs = "0123456789";
if(!*p)
return 0;
while(*p)
if(!strchr(digs, *p++))
return 0;
return 1;
}
static int cmd_write(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]) {
if (argc < 4) {
msg_error(
"Usage: write <memory> <addr> <data>[,] {<data>[,]}\n"
" write <memory> <addr> <len> <data>[,] {<data>[,]} ...\n"
"\n"
"Ellipsis ... writes <len> bytes padded by repeating the last <data> item.\n"
"\n"
"<data> can be hexadecimal, octal or decimal integers, floating point numbers\n"
"or C-style strings and characters. For integers, an optional case-insensitive\n"
"suffix specifies the data size: HH 8 bit, H/S 16 bit, L 32 bit, LL 64 bit.\n"
"Suffix D indicates a 64-bit double, F a 32-bit float, whilst a floating point\n"
"number without suffix defaults to 32-bit float. Hexadecimal floating point\n"
"notation is supported. An ambiguous trailing suffix, eg, 0x1.8D, is read as\n"
"no-suffix float where D is part of the mantissa; use a zero exponent 0x1.8p0D\n"
"to clarify.\n"
"\n"
"An optional U suffix makes integers unsigned. Ordinary 0x hex integers are\n"
"always treated as unsigned. +0x or -0x hex numbers are treated as signed\n"
"unless they have a U suffix. Unsigned integers cannot be larger than 2^64-1.\n"
"If n is an unsigned integer then -n is also a valid unsigned integer as in C.\n"
"Signed integers must fall into the [-2^63, 2^63-1] range or a correspondingly\n"
"smaller range when a suffix specifies a smaller type. Out of range signed\n"
"numbers trigger a warning.\n"
"\n"
"Ordinary 0x hex integers with n hex digits (counting leading zeros) use the\n"
"smallest size of 1, 2, 4 and 8 bytes that can accommodate any n-digit hex\n"
"integer. If an integer suffix specifies a size explicitly the corresponding\n"
"number of least significant bytes are written. Otherwise, signed and unsigned\n"
"integers alike occupy the smallest of 1, 2, 4, or 8 bytes needed to\n"
"accommodate them in their respective representation.\n"
);
return -1;
}
int i;
uint8_t write_mode; // Operation mode, "standard" or "fill"
uint8_t start_offset; // Which argc argument
int len; // Number of bytes to write to memory
char *memtype = argv[1]; // Memory name string
AVRMEM *mem = avr_locate_mem(p, memtype);
if (mem == NULL) {
pmsg_error("(write) %s memory type not defined for part %s\n", memtype, p->desc);
return -1;
}
int maxsize = mem->size;
char *end_ptr;
int addr = strtoul(argv[2], &end_ptr, 0);
if (*end_ptr || (end_ptr == argv[2])) {
pmsg_error("(write) cannot parse address %s\n", argv[2]);
return -1;
}
if (addr < 0 || addr >= maxsize) {
pmsg_error("(write) %s address 0x%05x is out of range [0, 0x%05x]\n", mem->desc, addr, maxsize-1);
return -1;
}
// Allocate a buffer guaranteed to be large enough
uint8_t *buf = calloc(mem->size + 8 + maxstrlen(argc-3, argv+3)+1, sizeof(uint8_t));
if (buf == NULL) {
pmsg_error("(write) out of memory\n");
return -1;
}
// Find the first argument to write to flash and how many arguments to parse and write
if (strcmp(argv[argc - 1], "...") == 0) {
write_mode = WRITE_MODE_FILL;
start_offset = 4;
len = strtoul(argv[3], &end_ptr, 0);
if (*end_ptr || (end_ptr == argv[3])) {
pmsg_error("(write ...) cannot parse length %s\n", argv[3]);
free(buf);
return -1;
}
} else {
write_mode = WRITE_MODE_STANDARD;
start_offset = 3;
len = argc - start_offset;
}
// Structure related to data that is being written to memory
struct Data {
// Data info
int bytes_grown;
uint8_t size;
char *str_ptr;
// Data union
union {
float f;
double d;
int64_t ll;
uint64_t ull;
uint8_t a[8];
};
} data = {
.bytes_grown = 0,
.size = 0,
.str_ptr = NULL,
.ull = 1
};
if(sizeof(long long) != sizeof(int64_t) || (data.a[0]^data.a[7]) != 1)
pmsg_error("(write) assumption on data types not met? "
"Check source and recompile\n");
bool is_big_endian = data.a[7];
for (i = start_offset; i < len + start_offset; i++) {
// Handle the next argument
if (i < argc - start_offset + 3) {
char *argi = argv[i];
size_t arglen = strlen(argi);
data.size = 0;
// Free string pointer if already allocated
if(data.str_ptr) {
free(data.str_ptr);
data.str_ptr = NULL;
}
// Remove trailing comma to allow cut and paste of lists
if(arglen > 0 && argi[arglen-1] == ',')
argi[--arglen] = 0;
// Try integers and assign data size
errno = 0;
data.ull = strtoull(argi, &end_ptr, 0);
if (!(end_ptr == argi || errno)) {
unsigned int nu=0, nl=0, nh=0, ns=0, nx=0;
char *p;
// Parse suffixes: ULL, LL, UL, L ... UHH, HH
for(p=end_ptr; *p; p++)
switch(toupper(*p)) {
case 'U': nu++; break;
case 'L': nl++; break;
case 'H': nh++; break;
case 'S': ns++; break;
default: nx++;
}
if(nx==0 && nu<2 && nl<3 && nh<3 && ns<2) { // Could be valid integer suffix
if(nu==0 || toupper(*end_ptr) == 'U' || toupper(p[-1]) == 'U') { // If U, then must be at start or end
bool is_hex = strncasecmp(argi, "0x", 2) == 0; // Ordinary hex: 0x... without explicit +/- sign
bool is_signed = !(nu || is_hex); // Neither explicitly unsigned nor ordinary hex
bool is_outside_int64_t = 0;
bool is_out_of_range = 0;
int nhexdigs = p-argi-2;
if(is_signed) { // Is input in range for int64_t?
errno = 0; (void) strtoll(argi, NULL, 0);
is_outside_int64_t = errno == ERANGE;
}
if(nl==0 && ns==0 && nh==0) { // No explicit data size
// Ordinary hex numbers have implicit size given by number of hex digits, including leading zeros
if(is_hex) {
data.size = nhexdigs > 8? 8: nhexdigs > 4? 4: nhexdigs > 2? 2: 1;
} else if(is_signed) {
// Smallest size that fits signed representation
data.size =
is_outside_int64_t? 8:
data.ll < INT32_MIN || data.ll > INT32_MAX? 8:
data.ll < INT16_MIN || data.ll > INT16_MAX? 4:
data.ll < INT8_MIN || data.ll > INT8_MAX? 2: 1;
} else {
// Smallest size that fits unsigned representation
data.size =
data.ull > UINT32_MAX? 8:
data.ull > UINT16_MAX? 4:
data.ull > UINT8_MAX? 2: 1;
}
} else if(nl==0 && nh==2 && ns==0) { // HH
data.size = 1;
if(is_outside_int64_t || (is_signed && (data.ll < INT8_MIN || data.ll > INT8_MAX))) {
is_out_of_range = 1;
data.ll = (int8_t) data.ll;
}
} else if(nl==0 && ((nh==1 && ns==0) || (nh==0 && ns==1))) { // H or S
data.size = 2;
if(is_outside_int64_t || (is_signed && (data.ll < INT16_MIN || data.ll > INT16_MAX))) {
is_out_of_range = 1;
data.ll = (int16_t) data.ll;
}
} else if(nl==1 && nh==0 && ns==0) { // L
data.size = 4;
if(is_outside_int64_t || (is_signed && (data.ll < INT32_MIN || data.ll > INT32_MAX))) {
is_out_of_range = 1;
data.ll = (int32_t) data.ll;
}
} else if(nl==2 && nh==0 && ns==0) { // LL
data.size = 8;
}
if(is_outside_int64_t || is_out_of_range)
pmsg_error("(write) %s out of int%d_t range, "
"interpreted as %d-byte %lld; consider 'U' suffix\n", argi, data.size*8, data.size, (long long int) data.ll);
}
}
}
if(!data.size) { // Try double now that input was rejected as integer
data.d = strtod(argi, &end_ptr);
if (end_ptr != argi && toupper(*end_ptr) == 'D' && end_ptr[1] == 0)
data.size = 8;
}
if(!data.size) { // Try float
data.f = strtof(argi, &end_ptr);
if (end_ptr != argi && toupper(*end_ptr) == 'F' && end_ptr[1] == 0)
data.size = 4;
if (end_ptr != argi && *end_ptr == 0) // No suffix defaults to float but ...
// ... do not accept valid mantissa-only floats that are integer rejects (eg, 078 or ULL overflows)
if (!is_mantissa_only(argi))
data.size = 4;
}
if(!data.size && arglen > 1) { // Try C-style string or single character
if ((*argi == '\'' && argi[arglen-1] == '\'') || (*argi == '\"' && argi[arglen-1] == '\"')) {
char *s = calloc(arglen-1, 1);
if (s == NULL) {
pmsg_error("(write str) out of memory\n");
free(buf);
return -1;
}
// Strip start and end quotes, and unescape C string
strncpy(s, argi+1, arglen-2);
cfg_unescape(s, s);
if (*argi == '\'') { // Single C-style character
if(*s && s[1])
pmsg_error("(write) only using first character of %s\n", argi);
data.ll = *s;
data.size = 1;
free(s);
} else { // C-style string
data.str_ptr = s;
}
}
}
if(!data.size && !data.str_ptr) {
pmsg_error("(write) cannot parse data %s\n", argi);
free(buf);
return -1;
}
// Assume endianness is the same for double and int, and ensure little endian representation
if(is_big_endian && data.size > 1)
change_endian(data.a, data.size);
}
if(data.str_ptr) {
for(size_t j = 0; j < strlen(data.str_ptr); j++)
buf[i - start_offset + data.bytes_grown++] = (uint8_t)data.str_ptr[j];
} else if(data.size > 0) {
for(int k=0; k<data.size; k++)
buf[i - start_offset + data.bytes_grown + k] = data.a[k];
data.bytes_grown += data.size-1;
}
// Make sure buf does not overflow
if (i - start_offset + data.bytes_grown > maxsize)
break;
}
// When in "fill" mode, the maximum size is already predefined
if (write_mode == WRITE_MODE_FILL)
data.bytes_grown = 0;
if ((addr + len + data.bytes_grown) > maxsize) {
pmsg_error("(write) selected address and # bytes exceed "
"range for %s memory\n", memtype);
free(buf);
return -1;
}
if(data.str_ptr)
free(data.str_ptr);
pmsg_notice2("(write) writing %d bytes starting from address 0x%02lx",
len + data.bytes_grown, (long) addr);
if (write_mode == WRITE_MODE_FILL)
msg_notice2("; remaining space filled with %s", argv[argc - 2]);
msg_notice2("\n");
pgm->err_led(pgm, OFF);
bool werror = false;
report_progress(0, 1, avr_has_paged_access(pgm, mem)? "Caching": "Writing");
for (i = 0; i < len + data.bytes_grown; i++) {
int rc = pgm->write_byte_cached(pgm, p, mem, addr+i, buf[i]);
if (rc) {
pmsg_error("(write) error writing 0x%02x at 0x%05lx, rc=%d\n", buf[i], (long) addr+i, (int) rc);
if (rc == -1)
imsg_error("%*swrite operation not supported on memory type %s\n", 8, "", mem->desc);
werror = true;
}
uint8_t b;
rc = pgm->read_byte_cached(pgm, p, mem, addr+i, &b);
if (b != buf[i]) {
pmsg_error("(write) error writing 0x%02x at 0x%05lx cell=0x%02x\n", buf[i], (long) addr+i, b);
werror = true;
}
if (werror)
pgm->err_led(pgm, ON);
report_progress(i, len + data.bytes_grown, NULL);
}
report_progress(1, 1, NULL);
free(buf);
return 0;
}
static int cmd_flush(PROGRAMMER *pgm, AVRPART *p, int ac, char *av[]) {
pgm->flush_cache(pgm, p);
return 0;
}
static int cmd_abort(PROGRAMMER *pgm, AVRPART *p, int ac, char *av[]) {
pgm->reset_cache(pgm, p);
return 0;
}
static int cmd_send(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]) {
unsigned char cmd[4], res[4];
char *e;
int i;
int len;
if (spi_mode && (pgm->spi == NULL)) {
pmsg_error("(send) the %s programmer does not support direct SPI transfers\n", pgm->type);
return -1;
}
if ((argc > 5) || ((argc < 5) && (!spi_mode))) {
msg_error(spi_mode?
"Usage: send <byte1> [<byte2> [<byte3> [<byte4>]]]\n":
"Usage: send <byte1> <byte2> <byte3> <byte4>\n");
return -1;
}
/* number of bytes to write at the specified address */
len = argc - 1;
/* load command bytes */
for (i=1; i<argc; i++) {
cmd[i-1] = strtoul(argv[i], &e, 0);
if (*e || (e == argv[i])) {
pmsg_error("(send) cannot parse byte %s\n", argv[i]);
return -1;
}
}
pgm->err_led(pgm, OFF);
if (spi_mode)
pgm->spi(pgm, cmd, res, argc-1);
else
pgm->cmd(pgm, cmd, res);
/*
* display results
*/
term_out("results:");
for (i=0; i<len; i++)
term_out(" %02x", res[i]);
term_out("\n\n");
return 0;
}
static int cmd_erase(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]) {
term_out("erasing chip ...\n");
// Erase chip and clear cache
pgm->chip_erase_cached(pgm, p);
return 0;
}
static int cmd_pgerase(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]) {
if(argc < 3) {
msg_error("Usage: pgerase <memory> <addr>\n");
return -1;
}
char *memtype = argv[1];
AVRMEM *mem = avr_locate_mem(p, memtype);
if(!mem) {
pmsg_error("(pgerase) %s memory type not defined for part %s\n", memtype, p->desc);
return -1;
}
if(!avr_has_paged_access(pgm, mem)) {
pmsg_error("(pgerase) %s memory cannot be paged addressed by %s\n", memtype, (char *) ldata(lfirst(pgm->id)));
return -1;
}
int maxsize = mem->size;
char *end_ptr;
int addr = strtoul(argv[2], &end_ptr, 0);
if(*end_ptr || (end_ptr == argv[2])) {
pmsg_error("(pgerase) cannot parse address %s\n", argv[2]);
return -1;
}
if (addr < 0 || addr >= maxsize) {
pmsg_error("(pgerase) %s address 0x%05x is out of range [0, 0x%05x]\n", mem->desc, addr, maxsize-1);
return -1;
}
if(pgm->page_erase_cached(pgm, p, mem, (unsigned int) addr) < 0) {
pmsg_error("(pgerase) unable to erase %s page at 0x%05x\n", mem->desc, addr);
return -1;
}
return 0;
}
static int cmd_part(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]) {
term_out("\n");
avr_display(stdout, p, "", 0);
term_out("\n");
return 0;
}
static int cmd_sig(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]) {
int i;
int rc;
AVRMEM *m;
rc = avr_signature(pgm, p);
if (rc != 0) {
pmsg_error("(sig) error reading signature data, rc=%d\n", rc);
}
m = avr_locate_mem(p, "signature");
if (m == NULL) {
pmsg_error("(sig) signature data not defined for device %s\n", p->desc);
}
else {
term_out("Device signature = 0x");
for (i=0; i<m->size; i++)
term_out("%02x", m->buf[i]);
term_out("\n\n");
}
return 0;
}
static int cmd_quit(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]) {
/* FUSE bit verify will fail if left in SPI mode */
if (spi_mode) {
cmd_pgm(pgm, p, 0, NULL);
}
return 1;
}
static int cmd_parms(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]) {
pgm->print_parms(pgm, stdout);
term_out("\n");
return 0;
}
static int cmd_vtarg(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]) {
int rc;
double v;
char *endp;
if (argc != 2) {
msg_error("Usage: vtarg <value>\n");
return -1;
}
v = strtod(argv[1], &endp);
if (endp == argv[1]) {
pmsg_error("(vtarg) cannot parse voltage %s\n", argv[1]);
return -1;
}
if ((rc = pgm->set_vtarget(pgm, v)) != 0) {
pmsg_error("(vtarg) unable to set V[target] (rc = %d)\n", rc);
return -3;
}
return 0;
}
static int cmd_fosc(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]) {
int rc;
double v;
char *endp;
if (argc != 2) {
msg_error("Usage: fosc <value>[M|k] | off\n");
return -1;
}
v = strtod(argv[1], &endp);
if (endp == argv[1]) {
if (strcmp(argv[1], "off") == 0)
v = 0.0;
else {
pmsg_error("(fosc) cannot parse frequency %s\n", argv[1]);
return -1;
}
}
if (*endp == 'm' || *endp == 'M')
v *= 1e6;
else if (*endp == 'k' || *endp == 'K')
v *= 1e3;
if ((rc = pgm->set_fosc(pgm, v)) != 0) {
pmsg_error("(fosc) unable to set oscillator frequency (rc = %d)\n", rc);
return -3;
}
return 0;
}
static int cmd_sck(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]) {
int rc;
double v;
char *endp;
if (argc != 2) {
msg_error("Usage: sck <value>\n");
return -1;
}
v = strtod(argv[1], &endp);
if (endp == argv[1]) {
pmsg_error("(sck) cannot parse period %s\n", argv[1]);
return -1;
}
v *= 1e-6; // Convert from microseconds to seconds
if ((rc = pgm->set_sck_period(pgm, v)) != 0) {
pmsg_error("(sck) unable to set SCK period (rc = %d)\n", rc);
return -3;
}
return 0;
}
static int cmd_varef(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]) {
int rc;
unsigned int chan;
double v;
char *endp;
if (argc != 2 && argc != 3) {
msg_error("Usage: varef [channel] <value>\n");
return -1;
}
if (argc == 2) {
chan = 0;
v = strtod(argv[1], &endp);
if (endp == argv[1]) {
pmsg_error("(varef) cannot parse voltage %s\n", argv[1]);
return -1;
}
} else {
chan = strtoul(argv[1], &endp, 10);
if (endp == argv[1]) {
pmsg_error("(varef) cannot parse channel %s\n", argv[1]);
return -1;
}
v = strtod(argv[2], &endp);
if (endp == argv[2]) {
pmsg_error("(varef) cannot parse voltage %s\n", argv[2]);
return -1;
}
}
if ((rc = pgm->set_varef(pgm, chan, v)) != 0) {
pmsg_error("(varef) unable to set V[aref] (rc = %d)\n", rc);
return -3;
}
return 0;
}
static int cmd_help(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]) {
int i;
term_out("Valid commands:\n");
for (i=0; i<NCMDS; i++) {
if(!*(void (**)(void)) ((char *) pgm + cmd[i].fnoff))
continue;
term_out(" %-7s : ", cmd[i].name);
term_out(cmd[i].desc, cmd[i].name);
term_out("\n");
}
term_out("\n"
"Note that not all programmer derivatives support all commands. Flash and\n"
"EEPROM type memories are normally read and written using a cache via paged\n"
"read and write access; the cache is synchronised on quit or flush commands.\n"
"The part command displays valid memory types for use with dump and write.\n\n");
return 0;
}
static int cmd_spi(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]) {
pgm->setpin(pgm, PIN_AVR_RESET, 1);
spi_mode = 1;
return 0;
}
static int cmd_pgm(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]) {
pgm->setpin(pgm, PIN_AVR_RESET, 0);
spi_mode = 0;
pgm->initialize(pgm, p);
return 0;
}
static int cmd_verbose(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]) {
int nverb;
char *endp;
if (argc != 1 && argc != 2) {
msg_error("Usage: verbose [<value>]\n");
return -1;
}
if (argc == 1) {
msg_error("Verbosity level: %d\n", verbose);
return 0;
}
nverb = strtol(argv[1], &endp, 0);
if (endp == argv[1] || *endp) {
pmsg_error("(verbose) cannot parse verbosity level %s\n", argv[1]);
return -1;
}
if (nverb < 0) {
pmsg_error("(verbose) level must not be negative: %d\n", nverb);
return -1;
}
verbose = nverb;
term_out("New verbosity level: %d\n", verbose);
return 0;
}
static int cmd_quell(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]) {
int nquell;
char *endp;
if (argc != 1 && argc != 2) {
msg_error("Usage: quell [<value>]\n");
return -1;
}
if (argc == 1) {
msg_error("Quell level: %d\n", quell_progress);
return 0;
}
nquell = strtol(argv[1], &endp, 0);
if (endp == argv[1] || *endp) {
pmsg_error("(quell) cannot parse quell level %s\n", argv[1]);
return -1;
}
if (nquell < 0) {
pmsg_error("(quell) level must not be negative: %d\n", nquell);
return -1;
}
quell_progress = nquell;
term_out("New quell level: %d\n", quell_progress);
if(quell_progress > 0)
update_progress = NULL;
else
terminal_setup_update_progress();
return 0;
}
static int tokenize(char *s, char ***argv) {
int i, n, l, nargs;
int len, slen;
char *buf;
int bufsize;
char **bufv;
char *bufp;
char *q, *r;
char *nbuf;
char **av;
slen = strlen(s);
/*
* initialize allow for 20 arguments, use realloc to grow this if
* necessary
*/
nargs = 20;
bufsize = slen + 20;
buf = malloc(bufsize);
bufv = (char **) malloc(nargs*sizeof(char *));
for (i=0; i<nargs; i++) {
bufv[i] = NULL;
}
buf[0] = 0;
n = 0;
l = 0;
nbuf = buf;
r = s;
while (*r) {
nexttok(r, &q, &r);
strcpy(nbuf, q);
bufv[n] = nbuf;
len = strlen(q);
l += len + 1;
nbuf += len + 1;
nbuf[0] = 0;
n++;
if ((n % 20) == 0) {
char *buf_tmp;
char **bufv_tmp;
/* realloc space for another 20 args */
bufsize += 20;
nargs += 20;
bufp = buf;
buf_tmp = realloc(buf, bufsize);
if (buf_tmp == NULL) {
free(buf);
free(bufv);
return -1;
}
buf = buf_tmp;
bufv_tmp = realloc(bufv, nargs*sizeof(char *));
if (bufv_tmp == NULL) {
free(buf);
free(bufv);
return -1;
}
bufv = bufv_tmp;
nbuf = &buf[l];
/* correct bufv pointers */
ptrdiff_t k = buf - bufp;
for (i=0; i<n; i++) {
bufv[i] = bufv[i] + k;
}
for (i=n; i<nargs; i++)
bufv[i] = NULL;
}
}
/*
* We have parsed all the args, n == argc, bufv contains an array of
* pointers to each arg, and buf points to one memory block that
* contains all the args, back to back, seperated by a nul
* terminator. Consilidate bufv and buf into one big memory block
* so that the code that calls us, will have an easy job of freeing
* this memory.
*/
av = (char **) malloc(slen + n + (n+1)*sizeof(char *));
q = (char *)&av[n+1];
memcpy(q, buf, l);
for (i=0; i<n; i++) {
ptrdiff_t offset = bufv[i] - buf;
av[i] = q + offset;
}
av[i] = NULL;
free(buf);
free(bufv);
*argv = av;
return n;
}
static int do_cmd(PROGRAMMER *pgm, AVRPART *p, int argc, char *argv[]) {
int i;
int hold;
int len;
len = strlen(argv[0]);
hold = -1;
for (i=0; i<NCMDS; i++) {
if(!*(void (**)(void)) ((char *) pgm + cmd[i].fnoff))
continue;
if (len && strcasecmp(argv[0], cmd[i].name) == 0)
return cmd[i].func(pgm, p, argc, argv);
if (len && strncasecmp(argv[0], cmd[i].name, len)==0) {
if (hold != -1) {
pmsg_error("(cmd) command %s is ambiguous\n", argv[0]);
return -1;
}
hold = i;
}
}
if (hold != -1)
return cmd[hold].func(pgm, p, argc, argv);
pmsg_error("(cmd) invalid command %s\n", argv[0]);
return -1;
}
char *terminal_get_input(const char *prompt) {
char input[256];
term_out("%s", prompt);
if(fgets(input, sizeof(input), stdin)) {
int len = strlen(input);
if(len > 0 && input[len-1] == '\n')
input[len-1] = 0;
return cfg_strdup(__func__, input);
}
return NULL;
}
static int process_line(char *cmdbuf, PROGRAMMER *pgm, struct avrpart *p) {
int argc, rc;
char **argv = NULL, *q;
// Find the start of the command, skipping any white space
q = cmdbuf;
while(*q && isspace((unsigned char) *q))
q++;
// Skip blank lines and comments
if (!*q || (*q == '#'))
return 0;
// Tokenize command line
argc = tokenize(q, &argv);
if(!argv)
return -1;
#if !defined(HAVE_LIBREADLINE) || defined(WIN32) || defined(__APPLE__)
term_out(">>> ");
for (int i=0; i<argc; i++)
term_out("%s ", argv[i]);
term_out("\n");
#endif
// Run the command
rc = do_cmd(pgm, p, argc, argv);
free(argv);
return rc;
}
#if defined(HAVE_LIBREADLINE)
static PROGRAMMER *term_pgm;
static struct avrpart *term_p;
static int term_running;
// Any character in standard input available (without sleeping)?
static int readytoread() {
#ifdef WIN32
HANDLE hStdin = GetStdHandle(STD_INPUT_HANDLE);
while(1) {
INPUT_RECORD input[1] = { 0 };
DWORD dwNumberOfEventsRead = 0;
if(!PeekConsoleInputA(hStdin, input, ARRAYSIZE(input), &dwNumberOfEventsRead)) {
DWORD dwError = GetLastError();
// Stdin redirected from a pipe or file (FIXME: reading from a pipe may sleep)
if(dwError == ERROR_INVALID_HANDLE)
return 1;
pmsg_warning("PeekConsoleInputA() failed with error code %u\n", (unsigned int) dwError);
return -1;
}
if(dwNumberOfEventsRead <= 0) // Nothing in the input buffer
return 0;
// Filter out all the events that readline does not handle ...
if((input[0].EventType & KEY_EVENT) != 0 && input[0].Event.KeyEvent.bKeyDown)
return 1;
// Drain other events not handled by readline
if(!ReadConsoleInputA(hStdin, input, ARRAYSIZE(input), &dwNumberOfEventsRead)) {
pmsg_warning("ReadConsoleInputA() failed with error code %u\n", (unsigned int) GetLastError());
return -1;
}
}
#else
struct timeval tv = { 0L, 0L };
fd_set fds;
FD_ZERO(&fds);
FD_SET(0, &fds);
return select(1, &fds, NULL, NULL, &tv) > 0;
#endif
}
// Callback processes commands whenever readline() has finished
void term_gotline(char *cmdstr) {
if(cmdstr) {
if(*cmdstr) {
add_history(cmdstr);
// only quit/abort returns a value > 0
if(process_line(cmdstr, term_pgm, term_p) > 0)
term_running = 0;
}
free(cmdstr);
} else {
// call quit at end of file or terminal ^D
term_out("\n");
cmd_quit(term_pgm, term_p, 0, NULL);
term_running = 0;
}
}
int terminal_mode(PROGRAMMER *pgm, struct avrpart *p) {
term_pgm = pgm; // For callback routine
term_p = p;
rl_callback_handler_install("avrdude> ", term_gotline);
term_running = 1;
for(int n=1; term_running; n++) {
if(n%16 == 0) { // Every 100 ms (16*6.25 us) reset bootloader watchdog timer
if(pgm->term_keep_alive)
pgm->term_keep_alive(pgm, NULL);
}
usleep(6250);
if(readytoread() > 0 && term_running)
rl_callback_read_char();
}
rl_callback_handler_remove();
return pgm->flush_cache(pgm, p);
}
#else
int terminal_mode(PROGRAMMER *pgm, struct avrpart *p) {
char *cmdbuf;
int rc = 0;
while((cmdbuf = terminal_get_input("avrdude> "))) {
int rc = process_line(cmdbuf, pgm, p);
free(cmdbuf);
if(rc > 0)
break;
}
if(rc <= 0)
cmd_quit(pgm, p, 0, NULL);
return pgm->flush_cache(pgm, p);
}
#endif
static void update_progress_tty(int percent, double etime, const char *hdr, int finish) {
static char *header;
static int last, done = 1;
int i;
setvbuf(stderr, (char *) NULL, _IONBF, 0);
if(hdr) {
msg_info("\n");
last = done = 0;
if(header)
free(header);
header = cfg_strdup("update_progress_tty()", hdr);
}
percent = percent > 100? 100: percent < 0? 0: percent;
if(!done) {
if(!header)
header = cfg_strdup("update_progress_tty()", "report");
int showperc = finish >= 0? percent: last;
char hashes[51];
memset(hashes, finish >= 0? ' ': '-', 50);
for(i=0; i<showperc; i+=2)
hashes[i/2] = '#';
hashes[50] = 0;
msg_info("\r%s | %s | %d%% %0.2f s ", header, hashes, showperc, etime);
if(percent == 100) {
if(finish)
msg_info("\n\n");
done = 1;
}
}
last = percent;
setvbuf(stderr, (char *) NULL, _IOLBF, 0);
}
static void update_progress_no_tty(int percent, double etime, const char *hdr, int finish) {
static int last, done = 1;
setvbuf(stderr, (char *) NULL, _IONBF, 0);
percent = percent > 100? 100: percent < 0? 0: percent;
if(hdr) {
msg_info("\n%s | ", hdr);
last = done = 0;
}
if(!done) {
for(int cnt = percent/2; cnt > last/2; cnt--)
msg_info(finish >= 0? "#": "-");
if(percent == 100) {
msg_info(" | %d%% %0.2fs", finish >= 0? 100: last, etime);
if(finish)
msg_info("\n\n");
done = 1;
}
}
last = percent;
setvbuf(stderr, (char *) NULL, _IOLBF, 0);
}
void terminal_setup_update_progress() {
if (isatty (STDERR_FILENO))
update_progress = update_progress_tty;
else {
update_progress = update_progress_no_tty;
/* disable all buffering of stderr for compatibility with
software that captures and redirects output to a GUI
i.e. Programmers Notepad */
setvbuf( stderr, NULL, _IONBF, 0 );
setvbuf( stdout, NULL, _IONBF, 0 );
}
}