avrdude/avrprog.c

1547 lines
35 KiB
C

/*
* Copyright 2000 Brian S. Dean <bsd@bsdhome.com>
* All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY BRIAN S. DEAN ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BRIAN S. DEAN BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
*/
/* $Id$ */
/*
* Code to program an Atmel AVR AT90S device using the parallel port.
*
* Make the following connections:
*
* Parallel Port Atmel AVR
* ------------- ----------------------------
* Pin 2 -> Vcc (see NOTE below)
* Pin 3 -> SCK CLOCK IN
* Pin 4 -> MOSI Instruction input
* Pin 5 -> /RESET
* Pin 6,7,8,9 -> Vcc (Can be tied together with Schottky diodes)
* Pin 10 <- MISO Data out
* Pin 18 <- GND
*
* NOTE on Vcc connection: make sure your parallel port can supply an
* adequate amount of current to power your device. 6-10 mA is
* common for parallel port signal lines, but is not guaranteed,
* especially for notebook computers. Optionally, you can tie pins
* 6, 7, 8, and 9 also to Vcc with Schottky diodes to supply
* additional current. If in doubt, don't risk damaging your
* parallel port, use an external power supply.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <stdarg.h>
#include <sys/stat.h>
#include </sys/dev/ppbus/ppi.h>
#include <limits.h>
#define DEFAULT_PARALLEL "/dev/ppi0"
char * version = "$Id$";
char * progname;
/*
* bit definitions for AVR device connections
*/
#define AVR_POWER 0xf1 /* bit 0 and 4...7 of data register */
#define AVR_CLOCK 0x02 /* bit 1 of data register */
#define AVR_INSTR 0x04 /* bit 2 of data register */
#define AVR_RESET 0x08 /* bit 3 of data register */
#define AVR_DATA 0x40 /* bit 6 of status register */
/*
* PPI registers
*/
enum {
PPIDATA,
PPICTRL,
PPISTATUS
};
/*
* AVR memory designations
*/
typedef enum {
AVR_EEPROM,
AVR_FLASH,
AVR_FLASH_LO,
AVR_FLASH_HI
} AVRMEM;
enum {
FMT_AUTO,
FMT_SREC,
FMT_IHEX,
FMT_RBIN
};
struct avrpart {
char * partdesc; /* long part name */
char * optiontag; /* short part name */
int flash_size; /* size in bytes of flash */
int eeprom_size; /* size in bytes of eeprom */
unsigned char f_readback; /* flash write polled readback value */
unsigned char e_readback[2]; /* eeprom write polled readback values */
int min_write_delay; /* microseconds */
int max_write_delay; /* microseconds */
int chip_erase_delay; /* microseconds */
unsigned char * flash;
unsigned char * eeprom;
};
struct avrpart parts[] = {
{ "AT90S8515", "8515", 8192, 512, 0x7f, { 0x80, 0x7f },
9000, 20000, 20000, NULL, NULL },
{ "AT90S2313", "2313", 2048, 128, 0x7f, { 0x80, 0x7f },
9000, 20000, 20000, NULL, NULL },
{ "AT90S1200", "1200", 1024, 64, 0x7f, { 0x80, 0x7f },
9000, 20000, 20000, NULL, NULL }
};
#define N_AVRPARTS (sizeof(parts)/sizeof(struct avrpart))
struct fioparms {
int op;
char * mode;
char * iodesc;
char * dir;
char * rw;
};
enum {
FIO_READ,
FIO_WRITE
};
#define MAX_LINE_LEN 256 /* max line length for ASCII format input files */
char * usage_text =
"\n"
"Usage: avrprog [options]\n"
"\n"
" Available Options:\n"
"\n"
" -m MemType : select memory type for reading or writing\n"
" \"e\", \"eeprom\" = EEPROM\n"
" \"f\", \"flash\" = FLASH (default)\n"
"\n"
" -i Filename : select input file, \"-\" = stdin\n"
"\n"
" -o Filename : select output file, \"-\" = stdout\n"
"\n"
" -f Format : select input / output file format\n"
" \"i\" = Intel Hex\n"
" \"s\" = Motorola S-Record\n"
" \"r\" = Raw binary (default for output)\n"
" \"a\" = Auto detect (default for input)\n"
" (valid for input only)\n"
" \n"
"\n"
" -p Part : select Atmel part number (see below for valid parts)\n"
"\n"
" -P Parallel : select parallel port device name (default = /dev/ppi0)\n"
"\n"
" -F : override invalid device signature check\n"
"\n"
" -c : enter interactive command mode (or read commands\n"
" from stdin)\n"
"\n"
" -e : perform a chip erase (required before programming)\n"
"\n";
int list_valid_parts ( FILE * f, char * prefix )
{
int i;
for (i=0; i<N_AVRPARTS; i++) {
fprintf(f, "%s%s = %s\n",
prefix, parts[i].optiontag, parts[i].partdesc);
}
return i;
}
/*
* set 'get' and 'set' appropriately for subsequent passage to ioctl()
* to get/set the specified PPI registers.
*/
int ppi_getops ( int reg, unsigned long * get, unsigned long * set )
{
switch (reg) {
case PPIDATA:
*set = PPISDATA;
*get = PPIGDATA;
break;
case PPICTRL:
*set = PPISCTRL;
*get = PPIGCTRL;
break;
case PPISTATUS:
*set = PPISSTATUS;
*get = PPIGSTATUS;
break;
default:
fprintf ( stderr, "%s: avr_set(): invalid register=%d\n",
progname, reg );
return -1;
break;
}
return 0;
}
/*
* set the indicated bit of the specified register.
*/
int ppi_set ( int fd, int reg, int bit )
{
unsigned char v;
unsigned long get, set;
int rc;
rc = ppi_getops ( reg, &get, &set );
if (rc)
return -1;
ioctl(fd, get, &v);
v |= bit;
ioctl(fd, set, &v);
return 0;
}
/*
* clear the indicated bit of the specified register.
*/
int ppi_clr ( int fd, int reg, int bit )
{
unsigned char v;
unsigned long get, set;
int rc;
rc = ppi_getops ( reg, &get, &set );
if (rc)
return -1;
ioctl(fd, get, &v);
v &= ~bit;
ioctl(fd, set, &v);
return 0;
}
/*
* get the indicated bit of the specified register.
*/
int ppi_get ( int fd, int reg, int bit )
{
unsigned char v;
unsigned long get, set;
int rc;
rc = ppi_getops ( reg, &get, &set );
if (rc)
return -1;
ioctl(fd, get, &v);
v &= bit;
return (v == bit);
}
/*
* toggle the indicated bit of the specified register.
*/
int ppi_toggle ( int fd, int reg, int bit )
{
unsigned char v;
unsigned long get, set;
int rc;
rc = ppi_getops ( reg, &get, &set );
if (rc)
return -1;
ioctl(fd, get, &v);
v ^= bit;
ioctl(fd, set, &v);
return 0;
}
/*
* pulse the indicated bit of the specified register.
*/
int ppi_pulse ( int fd, int reg, int bit )
{
ppi_toggle(fd, reg, bit);
ppi_toggle(fd, reg, bit);
return 0;
}
/*
* transmit and receive a bit of data to/from the AVR device
*/
int avr_txrx_bit ( int fd, int bit )
{
int r;
/*
* read the result bit (it is either valid from a previous clock
* pulse or it is ignored in the current context)
*/
r = ppi_get(fd, PPISTATUS, AVR_DATA);
/* set the data input line as desired */
if (bit)
ppi_set(fd, PPIDATA, AVR_INSTR);
else
ppi_clr(fd, PPIDATA, AVR_INSTR);
/*
* pulse the clock line, clocking in the MOSI data, and clocking out
* the next result bit
*/
ppi_pulse(fd, PPIDATA, AVR_CLOCK);
return r;
}
/*
* transmit and receive a byte of data to/from the AVR device
*/
unsigned char avr_txrx ( int fd, unsigned char byte )
{
int i;
unsigned char r, b, rbyte;
rbyte = 0;
for (i=0; i<8; i++) {
b = (byte >> (7-i)) & 0x01;
r = avr_txrx_bit ( fd, b );
rbyte = rbyte | (r << (7-i));
}
return rbyte;
}
/*
* transmit an AVR device command and return the results; 'cmd' and
* 'res' must point to at least a 4 byte data buffer
*/
int avr_cmd ( int fd, unsigned char cmd[4], unsigned char res[4] )
{
int i;
for (i=0; i<4; i++) {
res[i] = avr_txrx(fd, cmd[i]);
}
return 0;
}
/*
* read a byte of data from the indicated memory region
*/
unsigned char avr_read_byte ( int fd, struct avrpart * p,
AVRMEM memtype, unsigned short addr )
{
unsigned char cmd[4];
unsigned char res[4];
switch (memtype) {
case AVR_FLASH_LO:
cmd[0] = 0x20;
break;
case AVR_FLASH_HI:
cmd[0] = 0x28;
break;
case AVR_EEPROM:
cmd[0] = 0xa0;
break;
default:
fprintf(stderr,
"%s: avr_read_byte(); internal error: invalid memtype=%d\n",
progname, memtype);
exit(1);
break;
}
cmd[1] = addr >> 8; /* high order bits of address */
cmd[2] = addr & 0x0ff; /* low order bits of address */
cmd[3] = 0; /* don't care */
avr_cmd(fd, cmd, res);
return res[3];
}
/*
* read the entirety of the specified memory type into the
* corresponding buffer of the avrpart pointed to by 'p'.
*/
int avr_read ( int fd, struct avrpart * p, AVRMEM memtype )
{
unsigned char rbyte, memt;
unsigned short n, start, end, i, bi;
unsigned char * buf;
int bufsize;
switch (memtype) {
case AVR_FLASH :
memt = AVR_FLASH_LO;
buf = p->flash;
n = p->flash_size/2;
bufsize = p->flash_size;
break;
case AVR_EEPROM :
memt = memtype;
buf = p->eeprom;
n = p->eeprom_size;
bufsize = p->eeprom_size;
break;
default:
fprintf(stderr, "%s: avr_read(); internal error: invalid memtype=%d\n",
progname, memtype);
exit(1);
break;
}
end = start+n;
bi = 0;
for (i=start; i<end; i++) {
/* eeprom or low byte of flash */
rbyte = avr_read_byte(fd, p, memt, i);
fprintf ( stderr, " \r%4u 0x%02x", i, rbyte );
if (bi < bufsize) {
buf[bi++] = rbyte;
}
if (memtype == AVR_FLASH) {
/* flash high byte */
rbyte = avr_read_byte(fd, p, AVR_FLASH_HI, i);
fprintf ( stderr, " 0x%02x", rbyte );
if (bi < bufsize) {
buf[bi++] = rbyte;
}
}
}
fprintf ( stderr, "\n" );
return 0;
}
/*
* write a byte of data to the indicated memory region
*/
int avr_write_byte ( int fd, struct avrpart * p, AVRMEM memtype,
unsigned short addr, unsigned char data )
{
unsigned char cmd[4], res[4];
unsigned char r;
int ready;
int tries;
switch (memtype) {
case AVR_FLASH_LO:
cmd[0] = 0x40;
break;
case AVR_FLASH_HI:
cmd[0] = 0x48;
break;
case AVR_EEPROM:
cmd[0] = 0xc0;
break;
default:
fprintf(stderr,
"%s: avr_write_byte(); internal error: invalid memtype=%d\n",
progname, memtype);
exit(1);
break;
}
cmd[1] = addr >> 8; /* high order bits of address */
cmd[2] = addr & 0x0ff; /* low order bits of address */
cmd[3] = data; /* data */
avr_cmd(fd, cmd, res);
tries = 0;
ready = 0;
while (!ready) {
usleep(p->min_write_delay); /* typical flash/eeprom write delay */
r = avr_read_byte(fd, p, memtype, addr);
if ((data == p->f_readback) ||
(data == p->e_readback[0]) || (data == p->e_readback[1])) {
/*
* use an extra long delay when we happen to be writing values
* used for polled data read-back. In this case, polling
* doesn't work, and we need to delay the worst case write time
* specified for the chip.
*/
usleep(p->max_write_delay);
ready = 1;
}
else if (r == data) {
ready = 1;
}
tries++;
if (!ready && tries > 10) {
/*
* we couldn't write the data, indicate our displeasure by
* returning an error code
*/
return -1;
}
}
return 0;
}
/*
* Write the whole memory region (flash or eeprom, specified by
* 'memtype') from the corresponding buffer of the avrpart pointed to
* by 'p'. All of the memory is updated, however, input data of 0xff
* is not actually written out, because empty flash and eeprom
* contains 0xff, and you can't actually write 1's, only 0's.
*/
int avr_write ( int fd, struct avrpart * p, AVRMEM memtype )
{
unsigned char data, memt;
unsigned short start, end, i, bi;
int nl;
int rc;
unsigned char * buf;
int bufsize;
start = 0;
switch (memtype) {
case AVR_FLASH :
buf = p->flash;
bufsize = p->flash_size;
end = start+bufsize/2;
memt = AVR_FLASH_LO;
break;
case AVR_EEPROM :
buf = p->eeprom;
bufsize = p->eeprom_size;
end = start+bufsize;
memt = memtype;
break;
default:
fprintf(stderr, "%s: avr_write(); internal error: invalid memtype=%d\n",
progname, memtype);
exit(1);
break;
}
bi = 0;
for (i=start; i<end; i++) {
/* eeprom or low byte of flash */
data = buf[bi++];
nl = 0;
if (data != 0xff)
rc = avr_write_byte(fd, p, memt, i, data );
else
rc = 0;
fprintf(stderr, " \r%4u 0x%02x", i, data);
if (rc) {
fprintf(stderr, " ***failed; ");
nl = 1;
}
if (memtype == AVR_FLASH) {
/* high byte of flash */
data = buf[bi++];
if (data != 0xff)
rc = avr_write_byte(fd, p, AVR_FLASH_HI, i, data );
else
rc = 0;
fprintf(stderr, " 0x%02x", data);
if (rc) {
fprintf(stderr, " ***failed; " );
nl = 1;
}
}
if (nl)
fprintf(stderr, "\n");
}
fprintf ( stderr, "\n" );
return 0;
}
/*
* issue the 'program enable' command to the AVR device
*/
int avr_program_enable ( int fd )
{
unsigned char cmd[4] = {0xac, 0x53, 0x00, 0x00};
unsigned char res[4];
avr_cmd(fd, cmd, res);
if (res[2] != cmd[1])
return -1;
return 0;
}
/*
* issue the 'chip erase' command to the AVR device
*/
int avr_chip_erase ( int fd, struct avrpart * p )
{
unsigned char data[4] = {0xac, 0x80, 0x00, 0x00};
unsigned char res[4];
avr_cmd(fd, data, res);
usleep(p->chip_erase_delay);
return 0;
}
/*
* read the AVR device's signature bytes
*/
int avr_signature ( int fd, unsigned char sig[4] )
{
unsigned char cmd[4] = {0x30, 0x00, 0x00, 0x00};
unsigned char res[4];
int i;
for (i=0; i<4; i++) {
cmd[2] = i;
avr_cmd(fd, cmd, res);
sig[i] = res[3];
}
return 0;
}
/*
* apply power to the AVR processor
*/
void avr_powerup ( int fd )
{
ppi_set(fd, PPIDATA, AVR_POWER); /* power up */
usleep(100000);
}
/*
* remove power from the AVR processor
*/
void avr_powerdown ( int fd )
{
ppi_clr(fd, PPIDATA, AVR_POWER); /* power down */
}
/*
* initialize the AVR device and prepare it to accept commands
*/
int avr_initialize ( int fd, struct avrpart * p )
{
int rc;
int tries;
avr_powerup(fd);
ppi_clr(fd, PPIDATA, AVR_CLOCK);
ppi_clr(fd, PPIDATA, AVR_RESET);
ppi_pulse(fd, PPIDATA, AVR_RESET);
usleep(20000); /* 20 ms */
/*
* Enable programming mode. If we are programming an AT90S1200, we
* can only issue the command and hope it worked. If we are using
* one of the other chips, the chip will echo 0x53 when issuing the
* third byte of the command. In this case, try up to 32 times in
* order to possibly get back into sync with the chip if we are out
* of sync.
*/
if (strcmp(p->partdesc, "AT90S1200")==0) {
avr_program_enable ( fd );
}
else {
tries = 0;
do {
rc = avr_program_enable ( fd );
if (rc == 0)
break;
ppi_pulse(fd, PPIDATA, AVR_CLOCK);
tries++;
} while (tries < 32);
/*
* can't sync with the device, maybe it's not attached?
*/
if (tries == 32) {
fprintf ( stderr, "%s: AVR device not responding\n", progname );
return -1;
}
}
return 0;
}
/*
* infinite loop, sensing on the pin that we use to read data out of
* the device; this is a debugging aid, you can insert a call to this
* function in 'main()' and can use it to determine whether your sense
* pin is actually sensing.
*/
int ppi_sense_test ( int fd )
{
unsigned char v, pv;
pv = 1;
do {
usleep(100000); /* check every 100 ms */
v = ppi_get(fd, PPISTATUS, AVR_DATA);
if (v != pv) {
fprintf ( stderr, "sense bit = %d\n", v );
}
pv = v;
} while(1);
return 0;
}
/*
* usage message
*/
void usage ( void )
{
fprintf ( stderr, "%s", usage_text );
fprintf(stderr, " Valid Parts for the -p option are:\n");
list_valid_parts(stderr, " ");
fprintf(stderr, "\n");
}
int b2ihex ( unsigned char * inbuf, int bufsize,
int recsize, int startaddr,
char * outfile, FILE * outf )
{
unsigned char * buf;
unsigned int nextaddr;
int n;
int i;
unsigned char cksum;
if (recsize > 255) {
fprintf ( stderr, "%s: recsize=%d, must be < 256\n",
progname, recsize );
return -1;
}
nextaddr = startaddr;
buf = inbuf;
while (bufsize) {
n = recsize;
if (n > bufsize)
n = bufsize;
if (n) {
cksum = 0;
fprintf ( outf, ":%02X%04X00", n, nextaddr );
cksum += n + ((nextaddr >> 8) & 0x0ff) + (nextaddr & 0x0ff);
for (i=0; i<n; i++) {
fprintf ( outf, "%02X", buf[i] );
cksum += buf[i];
}
cksum = -cksum;
fprintf ( outf, "%02X\n", cksum );
nextaddr += n;
}
/* advance to next 'recsize' bytes */
buf += n;
bufsize -= n;
}
/*-----------------------------------------------------------------
add the trailing zero data line
-----------------------------------------------------------------*/
cksum = 0;
n = 0;
fprintf ( outf, ":%02X%04X00", n, nextaddr );
cksum += n + ((nextaddr >> 8) & 0x0ff) + (nextaddr & 0x0ff);
cksum = -cksum;
fprintf ( outf, "%02X\n", cksum );
return 0;
}
int ihex2b ( char * infile, FILE * inf,
unsigned char * outbuf, int bufsize )
{
unsigned char buffer [ MAX_LINE_LEN ];
unsigned char * buf;
unsigned int prevaddr, nextaddr;
unsigned int b;
int n;
int i, j;
unsigned int cksum, rectype;
int lineno;
lineno = 0;
prevaddr = 0;
buf = outbuf;
while (fgets((char *)buffer,MAX_LINE_LEN,inf)!=NULL) {
lineno++;
if (buffer[0] != ':')
continue;
if (sscanf((char *)&buffer[1],
"%02x%04x%02x", &n, &nextaddr, &rectype) != 3) {
fprintf(stderr, "%s: invalid record at line %d of \"%s\"\n",
progname, lineno, infile);
exit(1);
}
if (rectype != 0) {
fprintf(stderr,
"%s: don't know how to deal with rectype=%d "
"at line %d of %s\n",
progname, rectype, lineno, infile);
exit(1);
}
if (n && ((nextaddr + n) > bufsize)) {
fprintf(stderr, "%s: address 0x%04x out of range at line %d of %s\n",
progname, nextaddr+n, lineno, infile);
return -1;
}
/* start computing a checksum */
cksum = n + ((nextaddr >> 8 ) & 0x0ff) + (nextaddr & 0x0ff);
for (i=0; i<n; i++) {
if (sscanf((char *)&buffer[i*2+9], "%02x", &b) != 1) {
fprintf(stderr, "%s: can't scan byte number %d at line %d of %s\n",
progname, i, lineno, infile);
/* display the buffer and the position of the scan error */
fprintf(stderr, "%s", buffer);
for (j=0; j<9+2*i; j++) {
fprintf(stderr, " ");
}
fprintf(stderr, "^\n");
return -1;
}
buf[nextaddr + i] = b;
cksum += b;
}
/*-----------------------------------------------------------------
read the cksum value from the record and compare it with our
computed value
-----------------------------------------------------------------*/
if (sscanf((char *)&buffer[n*2+9], "%02x", &b) != 1) {
fprintf(stderr, "%s: can't scan byte number %d at line %d of %s\n",
progname, i, lineno, infile);
/* display the buffer and the position of the scan error */
fprintf(stderr, "%s", buffer);
for (j=0; j<9+2*i; j++) {
fprintf(stderr, " ");
}
fprintf(stderr, "^\n");
return -1;
}
cksum = -cksum & 0xff;
if (cksum != b) {
fprintf(stderr,
"%s: cksum error for line %d of \"%s\": computed=%02x "
"found=%02x\n",
progname, lineno, infile, cksum, b);
return -1;
}
prevaddr = nextaddr + n;
}
return 0;
}
int fileio_rbin ( struct fioparms * fio,
char * filename, FILE * f, unsigned char * buf, int size )
{
int rc;
switch (fio->op) {
case FIO_READ:
rc = fread(buf, 1, size, f);
break;
case FIO_WRITE:
rc = fwrite(buf, 1, size, f);
break;
}
if (rc < size) {
fprintf(stderr,
"%s: %s error %s %s: %s; %s %d of the expected %d bytes\n",
progname, fio->iodesc, fio->dir, filename, strerror(errno),
fio->rw, rc, size);
return -5;
}
return rc;
}
int fileio_ihex ( struct fioparms * fio,
char * filename, FILE * f, unsigned char * buf, int size )
{
int rc;
switch (fio->op) {
case FIO_WRITE:
rc = b2ihex(buf, size, 32, 0, filename, f);
if (rc) {
return -5;
}
break;
case FIO_READ:
rc = ihex2b(filename, f, buf, size);
if (rc)
return -5;
break;
default:
fprintf(stderr, "%s: invalid Intex Hex file I/O operation=%d\n",
progname, fio->op);
return -5;
break;
}
return 0;
}
int fileio_srec ( struct fioparms * fio,
char * filename, FILE * f, unsigned char * buf, int size )
{
fprintf(stderr, "%s: Motorola S-Record %s format not yet supported\n",
progname, fio->iodesc);
return -5;
}
int fileio_setparms ( int op, struct fioparms * fp )
{
fp->op = op;
switch (op) {
case FIO_READ:
fp->mode = "r";
fp->iodesc = "input";
fp->dir = "from";
fp->rw = "read";
break;
case FIO_WRITE:
fp->mode = "w";
fp->iodesc = "output";
fp->dir = "to";
fp->rw = "wrote";
break;
default:
fprintf(stderr, "%s: invalid I/O operation %d\n",
progname, op);
return -1;
break;
}
return 0;
}
int fileio ( int op, char * filename, int format,
struct avrpart * p, AVRMEM memtype )
{
int rc;
FILE * f;
char * fname;
unsigned char * buf;
int size;
struct fioparms fio;
int i;
rc = fileio_setparms(op, &fio);
if (rc < 0)
return -1;
if (strcmp(filename, "-")==0) {
if (fio.op == FIO_READ) {
fname = "<stdin>";
f = stdin;
}
else {
fname = "<stdout>";
f = stdout;
}
}
else {
fname = filename;
f = fopen(fname, fio.mode);
if (f == NULL) {
fprintf(stderr, "%s: can't open %s file %s: %s\n",
progname, fio.iodesc, fname, strerror(errno));
return -2;
}
}
switch (memtype) {
case AVR_EEPROM:
buf = p->eeprom;
size = p->eeprom_size;
break;
case AVR_FLASH:
buf = p->flash;
size = p->flash_size;
break;
default:
fprintf(stderr, "%s: invalid memory type for %s: %d\n",
progname, fio.iodesc, memtype);
return -3;
}
if (fio.op == FIO_READ) {
/* 0xff fill unspecified memory */
for (i=0; i<size; i++) {
buf[i] = 0xff;
}
}
switch (format) {
case FMT_IHEX:
rc = fileio_ihex(&fio, fname, f, buf, size);
break;
case FMT_SREC:
rc = fileio_srec(&fio, fname, f, buf, size);
break;
case FMT_RBIN:
rc = fileio_rbin(&fio, fname, f, buf, size);
break;
default:
fprintf(stderr, "%s: invalid %s file format: %d\n",
progname, fio.iodesc, format);
return -4;
}
return rc;
}
char * memtypestr ( AVRMEM memtype )
{
switch (memtype) {
case AVR_EEPROM : return "eeprom"; break;
case AVR_FLASH : return "flash"; break;
default : return "unknown-memtype"; break;
}
}
/*
* main routine
*/
int main ( int argc, char * argv [] )
{
int fd; /* file descriptor for parallel port */
int rc; /* general return code checking */
int exitrc; /* exit code for main() */
int i; /* general loop counter */
int ch; /* options flag */
int size; /* size of memory region */
int len; /* length for various strings */
char pbuf[PATH_MAX]; /* temporary buffer */
char * p1; /* used to parse CVS Id */
char * p2; /* used to parse CVS Ed */
unsigned char sig[4]; /* AVR signature bytes */
unsigned char nulldev[4]; /* 0xff signature bytes for comparison */
struct avrpart * p; /* which avr part we are programming */
int readorwrite; /* true if a chip read/write op was selected */
/* options / operating mode variables */
int memtype; /* AVR_FLASH or AVR_EEPROM */
int doread; /* 0=reading, 1=writing */
int erase; /* 1=erase chip, 0=don't */
char * outputf; /* output file name */
char * inputf; /* input file name */
int ovsigck; /* 1=override sig check, 0=don't */
char * parallel; /* parallel port device */
int interactive; /* 1=enter interactive command mode, 0=don't */
int filefmt; /* FMT_AUTO, FMT_IHEX, FMT_SREC, FMT_RBIN */
readorwrite = 0;
parallel = DEFAULT_PARALLEL;
outputf = NULL;
inputf = NULL;
doread = 1;
memtype = AVR_FLASH;
erase = 0;
p = NULL;
ovsigck = 0;
interactive = 0;
filefmt = FMT_AUTO;
progname = rindex(argv[0],'/');
if (progname)
progname++;
else
progname = argv[0];
len = strlen(progname) + 2;
for (i=0; i<len; i++)
pbuf[i] = ' ';
pbuf[i] = 0;
/*
* Print out an identifying string so folks can tell what version
* they are running
*/
p1 = strchr(version,',');
if (p1 == NULL)
p1 = version;
else
p1 += 3;
p2 = strrchr(p1,':');
if (p2 == NULL)
p2 = &p1[strlen(p1)];
else
p2 += 3;
fprintf(stderr, "\n");
fprintf(stderr, "%s: Copyright 2000 Brian Dean, bsd@bsdhome.com\n"
"%sRevision ", progname, pbuf);
for (i=0; i<p2-p1; i++)
fprintf(stderr, "%c", p1[i]);
fprintf(stderr, "\n\n");
/*
* check for no arguments
*/
if (argc == 1) {
usage();
return 0;
}
/*
* process command line arguments
*/
while ((ch = getopt(argc,argv,"?cef:Fi:m:o:p:P:")) != -1) {
switch (ch) {
case 'm': /* select memory type to operate on */
if ((strcasecmp(optarg,"e")==0)||(strcasecmp(optarg,"eeprom")==0)) {
memtype = AVR_EEPROM;
}
else if ((strcasecmp(optarg,"f")==0)||
(strcasecmp(optarg,"flash")==0)) {
memtype = AVR_FLASH;
}
else {
fprintf(stderr, "%s: invalid memory type \"%s\"\n",
progname, optarg);
usage();
exit(1);
}
readorwrite = 1;
break;
case 'F': /* override invalid signature check */
ovsigck = 1;
break;
case 'o': /* specify output file */
if (inputf) {
fprintf(stderr,"%s: -i and -o are incompatible\n", progname);
return 1;
}
doread = 1;
outputf = optarg;
if (filefmt == FMT_AUTO)
filefmt = FMT_IHEX;
break;
case 'p' : /* specify AVR part */
p = NULL;
for (i=0; i<N_AVRPARTS; i++) {
if (strcmp(parts[i].optiontag, optarg)==0) {
p = &parts[i];
break;
}
}
if (p == NULL) {
fprintf(stderr,
"%s: AVR Part \"%s\" not found. Valid parts are:\n\n",
progname, optarg );
list_valid_parts(stderr," ");
fprintf(stderr, "\n");
return 1;
}
break;
case 'e': /* perform a chip erase */
erase = 1;
break;
case 'i': /* specify input file */
if (outputf) {
fprintf(stderr,"%s: -o and -i are incompatible\n", progname);
return 1;
}
doread = 0;
inputf = optarg;
break;
case 'f': /* specify file format */
if (strlen(optarg) != 1) {
fprintf(stderr, "%s: invalid file format \"%s\"\n",
progname, optarg);
usage();
exit(1);
}
switch (optarg[0]) {
case 'a' : filefmt = FMT_AUTO; break;
case 'i' : filefmt = FMT_IHEX; break;
case 'r' : filefmt = FMT_RBIN; break;
case 's' :
fprintf(stderr, "%s: Motorola S-Record format not yet supported\n",
progname);
exit(1);
break;
default :
fprintf(stderr, "%s: invalid file format \"%s\"\n",
progname, optarg);
usage();
exit(1);
}
break;
case 'c': /* enter interactive command mode */
if (!((inputf == NULL)||(outputf == NULL))) {
fprintf(stderr,
"%s: interactive mode is not compatible with -i or -o\n",
progname);
usage();
exit(1);
}
interactive = 1;
break;
case 'P':
parallel = optarg;
break;
case '?': /* help */
usage();
exit(0);
break;
default:
fprintf(stderr, "%s: invalid option -%c\n", progname, ch);
usage();
exit(1);
break;
}
}
if (p == NULL) {
fprintf(stderr,
"%s: No AVR part has been specified, use \"-p Part\"\n\n"
" Valid Parts are:\n\n",
progname );
list_valid_parts(stderr, " ");
fprintf(stderr,"\n");
return 1;
}
fprintf(stderr,
"%sAVR Part = %s\n"
"%sFlash memory size = %d bytes\n"
"%sEEPROM memory size = %d bytes\n"
"%sMin/Max program delay = %d/%d us\n"
"%sChip Erase delay = %d us\n"
"%sFlash Polled Readback = 0x%02x\n"
"%sEEPROM Polled Readback = 0x%02x, 0x%02x\n",
pbuf, p->partdesc,
pbuf, p->flash_size,
pbuf, p->eeprom_size,
pbuf, p->min_write_delay, p->max_write_delay,
pbuf, p->chip_erase_delay,
pbuf, p->f_readback,
pbuf, p->e_readback[0], p->e_readback[1]);
fprintf(stderr, "\n");
p->flash = (unsigned char *) malloc(p->flash_size);
if (p->flash == NULL) {
fprintf(stderr, "%s: can't alloc buffer for flash size of %d bytes\n",
progname, p->flash_size);
exit(1);
}
p->eeprom = (unsigned char *) malloc(p->eeprom_size);
if (p->eeprom == NULL) {
fprintf(stderr, "%s: can't alloc buffer for eeprom size of %d bytes\n",
progname, p->eeprom_size);
exit(1);
}
/*
* open the parallel port
*/
fd = open ( parallel, O_RDWR );
if (fd < 0) {
fprintf ( stderr, "%s: can't open device \"%s\": %s\n\n",
progname, parallel, strerror(errno) );
return 1;
}
exitrc = 0;
/*
* initialize the chip in preperation for accepting commands
*/
rc = avr_initialize(fd,p);
if (rc < 0) {
fprintf ( stderr, "%s: initialization failed, rc=%d\n", progname, rc );
exitrc = 1;
goto main_exit;
}
fprintf ( stderr,
"%s: AVR device initialized and ready to accept instructions\n",
progname );
/*
* Let's read the signature bytes to make sure there is at least a
* chip on the other end that is responding correctly. A check
* against 0xffffffff should ensure that the signature bytes are
* valid.
*/
avr_signature(fd, sig);
fprintf(stderr, "%s: Device signature = 0x", progname);
for (i=0; i<4; i++)
fprintf(stderr, "%02x", sig[i]);
fprintf(stderr, "\n");
memset(nulldev,0xff,4);
if (memcmp(sig,nulldev,4)==0) {
fprintf(stderr,
"%s: Yikes! Invalid device signature.\n", progname);
if (!ovsigck) {
fprintf(stderr,
"%sDouble check connections and try again, or use -F to override\n"
"%sthis check.\n\n",
pbuf, pbuf );
exit(1);
}
}
fprintf(stderr, "\n");
if (erase) {
/*
* erase the chip's flash and eeprom memories, this is required
* before the chip can accept new programming
*/
fprintf(stderr, "%s: erasing chip\n", progname );
avr_chip_erase(fd,p);
avr_initialize(fd,p);
fprintf(stderr, "%s: done.\n", progname );
}
if ((inputf==NULL) && (outputf==NULL)) {
/*
* Check here to see if any other operations were selected and
* generate an error message because if they were, we need either
* an input or and output file, but one was not selected.
* Otherwise, we just shut down.
*/
if (readorwrite) {
fprintf(stderr, "%s: you must specify an input or an output file\n",
progname);
exitrc = 1;
}
goto main_exit;
}
if (doread) {
/*
* read out the specified device memory and write it to a file
*/
fprintf ( stderr, "%s: reading %s memory:\n",
progname, memtypestr(memtype) );
rc = avr_read ( fd, p, memtype );
if (rc) {
fprintf ( stderr, "%s: failed to read all of %s memory, rc=%d\n",
progname, memtypestr(memtype), rc );
exitrc = 1;
goto main_exit;
}
rc = fileio(FIO_WRITE, outputf, filefmt, p, memtype);
if (rc < 0) {
fprintf(stderr, "%s: terminating\n", progname);
exitrc = 1;
goto main_exit;
}
}
else {
/*
* write the selected device memory using data from a file; first
* read the data from the specified file
*/
rc = fileio(FIO_READ, inputf, filefmt, p, memtype );
if (rc < 0) {
fprintf(stderr, "%s: terminating\n", progname);
exitrc = 1;
goto main_exit;
}
size = rc;
/*
* write the buffer contents to the selected memory type
*/
fprintf(stderr, "%s: writing %s:\n",
progname, memtypestr(memtype));
#if 0
rc = avr_write ( fd, p, memtype );
#else
/*
* test mode, don't actually write to the chip, output the buffer
* to stdout in intel hex instead
*/
fileio(FIO_WRITE, "-", FMT_IHEX, p, memtype);
#endif
if (rc) {
fprintf ( stderr, "%s: failed to write flash memory, rc=%d\n",
progname, rc );
exitrc = 1;
goto main_exit;
}
}
main_exit:
/*
* program complete
*/
avr_powerdown(fd);
ppi_clr(fd, PPIDATA, 0xff);
ppi_clr(fd, PPIDATA, AVR_RESET);
close(fd);
fprintf(stderr, "\n" );
return exitrc;
}