avrdude/avrdude/par.c

595 lines
13 KiB
C

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2000, 2001, 2002, 2003 Brian S. Dean <bsd@bsdhome.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* $Id$ */
#include "ac_cfg.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#if defined(__FreeBSD__)
#include <dev/ppbus/ppi.h>
#elif defined(__linux__)
#include "linux_ppdev.h"
#endif
#include "avr.h"
#include "pindefs.h"
#include "pgm.h"
#include "par.h"
#include "ppi.h"
#define SLOW_TOGGLE 0
struct ppipins_t {
int pin;
int reg;
int bit;
int inverted;
};
static struct ppipins_t pins[] = {
{ 1, PPICTRL, 0x01, 1 },
{ 2, PPIDATA, 0x01, 0 },
{ 3, PPIDATA, 0x02, 0 },
{ 4, PPIDATA, 0x04, 0 },
{ 5, PPIDATA, 0x08, 0 },
{ 6, PPIDATA, 0x10, 0 },
{ 7, PPIDATA, 0x20, 0 },
{ 8, PPIDATA, 0x40, 0 },
{ 9, PPIDATA, 0x80, 0 },
{ 10, PPISTATUS, 0x40, 0 },
{ 11, PPISTATUS, 0x80, 1 },
{ 12, PPISTATUS, 0x20, 0 },
{ 13, PPISTATUS, 0x10, 0 },
{ 14, PPICTRL, 0x02, 1 },
{ 15, PPISTATUS, 0x08, 0 },
{ 16, PPICTRL, 0x04, 0 },
{ 17, PPICTRL, 0x08, 1 }
};
#define NPINS (sizeof(pins)/sizeof(struct ppipins_t))
extern char * progname;
extern int do_cycles;
extern int verbose;
static int par_setpin (int fd, int pin, int value);
static int par_getpin (int fd, int pin);
static int par_pulsepin (int fd, int pin);
static int par_rdy_led (PROGRAMMER * pgm, int value);
static int par_err_led (PROGRAMMER * pgm, int value);
static int par_pgm_led (PROGRAMMER * pgm, int value);
static int par_vfy_led (PROGRAMMER * pgm, int value);
static int par_cmd (PROGRAMMER * pgm, unsigned char cmd[4],
unsigned char res[4]);
static int par_chip_erase (PROGRAMMER * pgm, AVRPART * p);
static int par_program_enable (PROGRAMMER * pgm, AVRPART * p);
static void par_powerup (PROGRAMMER * pgm);
static void par_powerdown (PROGRAMMER * pgm);
static int par_initialize (PROGRAMMER * pgm, AVRPART * p);
static void par_disable (PROGRAMMER * pgm);
static void par_enable (PROGRAMMER * pgm);
static int par_open (PROGRAMMER * pgm, char * port);
static void par_close (PROGRAMMER * pgm);
static int par_setpin(int fd, int pin, int value)
{
if (pin < 1 || pin > 17)
return -1;
pin--;
if (pins[pin].inverted)
value = !value;
if (value)
ppi_set(fd, pins[pin].reg, pins[pin].bit);
else
ppi_clr(fd, pins[pin].reg, pins[pin].bit);
#if SLOW_TOGGLE
usleep(1000);
#endif
return 0;
}
static int par_getpin(int fd, int pin)
{
int value;
if (pin < 1 || pin > 17)
return -1;
pin--;
value = ppi_get(fd, pins[pin].reg, pins[pin].bit);
if (value)
value = 1;
if (pins[pin].inverted)
value = !value;
return value;
}
static int par_pulsepin(int fd, int pin)
{
if (pin < 1 || pin > 17)
return -1;
pin--;
ppi_toggle(fd, pins[pin].reg, pins[pin].bit);
#if SLOW_TOGGLE
usleep(1000);
#endif
ppi_toggle(fd, pins[pin].reg, pins[pin].bit);
#if SLOW_TOGGLE
usleep(1000);
#endif
return 0;
}
int par_getpinmask(int pin)
{
if (pin < 1 || pin > 17)
return -1;
return pins[pin-1].bit;
}
static char vccpins_buf[64];
static char * vccpins_str(unsigned int pmask)
{
unsigned int mask;
int pin;
char b2[8];
char * b;
b = vccpins_buf;
b[0] = 0;
for (pin = 2, mask = 1; mask < 0x80; mask = mask << 1, pin++) {
if (pmask & mask) {
sprintf(b2, "%d", pin);
if (b[0] != 0)
strcat(b, ",");
strcat(b, b2);
}
}
return b;
}
/*
* transmit and receive a byte of data to/from the AVR device
*/
static unsigned char par_txrx(PROGRAMMER * pgm, unsigned char byte)
{
int i;
unsigned char r, b, rbyte;
rbyte = 0;
for (i=7; i>=0; i--) {
/*
* Write and read one bit on SPI.
* Some notes on timing: Let T be the time it takes to do
* one par_setpin()-call resp. par clrpin()-call, then
* - SCK is high for 2T
* - SCK is low for 2T
* - MOSI setuptime is 1T
* - MOSI holdtime is 3T
* - SCK low to MISO read is 2T to 3T
* So we are within programming specs (expect for AT90S1200),
* if and only if T>t_CLCL (t_CLCL=clock period of target system).
*
* Due to the delay introduced by "IN" and "OUT"-commands,
* T is greater than 1us (more like 2us) on x86-architectures.
* So programming works safely down to 1MHz target clock.
*/
b = (byte >> i) & 0x01;
/* set the data input line as desired */
par_setpin(pgm->fd, pgm->pinno[PIN_AVR_MOSI], b);
par_setpin(pgm->fd, pgm->pinno[PIN_AVR_SCK], 1);
/*
* read the result bit (it is either valid from a previous falling
* edge or it is ignored in the current context)
*/
r = par_getpin(pgm->fd, pgm->pinno[PIN_AVR_MISO]);
par_setpin(pgm->fd, pgm->pinno[PIN_AVR_SCK], 0);
rbyte |= r << i;
}
return rbyte;
}
static int par_rdy_led(PROGRAMMER * pgm, int value)
{
par_setpin(pgm->fd, pgm->pinno[PIN_LED_RDY], !value);
return 0;
}
static int par_err_led(PROGRAMMER * pgm, int value)
{
par_setpin(pgm->fd, pgm->pinno[PIN_LED_ERR], !value);
return 0;
}
static int par_pgm_led(PROGRAMMER * pgm, int value)
{
par_setpin(pgm->fd, pgm->pinno[PIN_LED_PGM], !value);
return 0;
}
static int par_vfy_led(PROGRAMMER * pgm, int value)
{
par_setpin(pgm->fd, pgm->pinno[PIN_LED_VFY], !value);
return 0;
}
/*
* transmit an AVR device command and return the results; 'cmd' and
* 'res' must point to at least a 4 byte data buffer
*/
static int par_cmd(PROGRAMMER * pgm, unsigned char cmd[4],
unsigned char res[4])
{
int i;
for (i=0; i<4; i++) {
res[i] = par_txrx(pgm, cmd[i]);
}
if(verbose >= 2)
{
fprintf(stderr, "par_cmd(): [ ");
for(i = 0; i < 4; i++)
fprintf(stderr, "%02X ", cmd[i]);
fprintf(stderr, "] [ ");
for(i = 0; i < 4; i++)
{
fprintf(stderr, "%02X ", res[i]);
}
fprintf(stderr, "]\n");
}
return 0;
}
/*
* issue the 'chip erase' command to the AVR device
*/
static int par_chip_erase(PROGRAMMER * pgm, AVRPART * p)
{
unsigned char cmd[4];
unsigned char res[4];
if (p->op[AVR_OP_CHIP_ERASE] == NULL) {
fprintf(stderr, "chip erase instruction not defined for part \"%s\"\n",
p->desc);
return -1;
}
pgm->pgm_led(pgm, ON);
memset(cmd, 0, sizeof(cmd));
avr_set_bits(p->op[AVR_OP_CHIP_ERASE], cmd);
pgm->cmd(pgm, cmd, res);
usleep(p->chip_erase_delay);
pgm->initialize(pgm, p);
pgm->pgm_led(pgm, OFF);
return 0;
}
/*
* issue the 'program enable' command to the AVR device
*/
static int par_program_enable(PROGRAMMER * pgm, AVRPART * p)
{
unsigned char cmd[4];
unsigned char res[4];
if (p->op[AVR_OP_PGM_ENABLE] == NULL) {
fprintf(stderr, "program enable instruction not defined for part \"%s\"\n",
p->desc);
return -1;
}
memset(cmd, 0, sizeof(cmd));
avr_set_bits(p->op[AVR_OP_PGM_ENABLE], cmd);
pgm->cmd(pgm, cmd, res);
if (res[2] != cmd[1])
return -2;
return 0;
}
/*
* apply power to the AVR processor
*/
static void par_powerup(PROGRAMMER * pgm)
{
ppi_set(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_VCC]); /* power up */
usleep(100000);
}
/*
* remove power from the AVR processor
*/
static void par_powerdown(PROGRAMMER * pgm)
{
ppi_clr(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_VCC]); /* power down */
}
/*
* initialize the AVR device and prepare it to accept commands
*/
static int par_initialize(PROGRAMMER * pgm, AVRPART * p)
{
int rc;
int tries;
pgm->powerup(pgm);
usleep(20000);
par_setpin(pgm->fd, pgm->pinno[PIN_AVR_SCK], 0);
par_setpin(pgm->fd, pgm->pinno[PIN_AVR_RESET], 0);
usleep(20000);
par_pulsepin(pgm->fd, pgm->pinno[PIN_AVR_RESET]);
usleep(20000); /* 20 ms XXX should be a per-chip parameter */
/*
* Enable programming mode. If we are programming an AT90S1200, we
* can only issue the command and hope it worked. If we are using
* one of the other chips, the chip will echo 0x53 when issuing the
* third byte of the command. In this case, try up to 32 times in
* order to possibly get back into sync with the chip if we are out
* of sync.
*/
if (strcmp(p->desc, "AT90S1200")==0) {
pgm->program_enable(pgm, p);
}
else {
tries = 0;
do {
rc = pgm->program_enable(pgm, p);
if ((rc == 0)||(rc == -1))
break;
par_pulsepin(pgm->fd, pgm->pinno[p->retry_pulse/*PIN_AVR_SCK*/]);
tries++;
} while (tries < 65);
/*
* can't sync with the device, maybe it's not attached?
*/
if (rc) {
fprintf(stderr, "%s: AVR device not responding\n", progname);
return -1;
}
}
return 0;
}
static void par_disable(PROGRAMMER * pgm)
{
ppi_set(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_BUFF]);
}
static void par_enable(PROGRAMMER * pgm)
{
/*
* Prepare to start talking to the connected device - pull reset low
* first, delay a few milliseconds, then enable the buffer. This
* sequence allows the AVR to be reset before the buffer is enabled
* to avoid a short period of time where the AVR may be driving the
* programming lines at the same time the programmer tries to. Of
* course, if a buffer is being used, then the /RESET line from the
* programmer needs to be directly connected to the AVR /RESET line
* and not via the buffer chip.
*/
par_setpin(pgm->fd, pgm->pinno[PIN_AVR_RESET], 0);
usleep(1);
/*
* enable the 74367 buffer, if connected; this signal is active low
*/
ppi_clr(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_BUFF]);
}
static int par_open(PROGRAMMER * pgm, char * port)
{
int rc;
pgm->fd = ppi_open(port);
if (pgm->fd < 0) {
fprintf(stderr, "%s: failed to open parallel port \"%s\"\n\n",
progname, port);
exit(1);
}
ppi_claim(pgm);
/*
* save pin values, so they can be restored when device is closed
*/
rc = ppi_getall(pgm->fd, PPIDATA);
if (rc < 0) {
fprintf(stderr, "%s: error reading status of ppi data port\n", progname);
return -1;
}
pgm->ppidata = rc;
rc = ppi_getall(pgm->fd, PPICTRL);
if (rc < 0) {
fprintf(stderr, "%s: error reading status of ppi ctrl port\n", progname);
return -1;
}
pgm->ppictrl = rc;
return 0;
}
static void par_close(PROGRAMMER * pgm)
{
/*
* Restore pin values before closing,
* but ensure that buffers are turned off.
*/
pgm->ppidata |= pgm->pinno[PPI_AVR_BUFF];
ppi_setall(pgm->fd, PPIDATA, pgm->ppidata);
ppi_setall(pgm->fd, PPICTRL, pgm->ppictrl);
ppi_release(pgm);
ppi_close(pgm->fd);
pgm->fd = -1;
}
static void par_display(PROGRAMMER * pgm, char * p)
{
char vccpins[64];
char buffpins[64];
if (pgm->pinno[PPI_AVR_VCC]) {
snprintf(vccpins, sizeof(vccpins), " = pins %s",
vccpins_str(pgm->pinno[PPI_AVR_VCC]));
}
else {
strcpy(vccpins, " (not used)");
}
if (pgm->pinno[PPI_AVR_BUFF]) {
snprintf(buffpins, sizeof(buffpins), " = pins %s",
vccpins_str(pgm->pinno[PPI_AVR_BUFF]));
}
else {
strcpy(buffpins, " (not used)");
}
fprintf(stderr,
"%s VCC = 0x%02x%s\n"
"%s BUFF = 0x%02x%s\n"
"%s RESET = %d\n"
"%s SCK = %d\n"
"%s MOSI = %d\n"
"%s MISO = %d\n"
"%s ERR LED = %d\n"
"%s RDY LED = %d\n"
"%s PGM LED = %d\n"
"%s VFY LED = %d\n",
p, pgm->pinno[PPI_AVR_VCC], vccpins,
p, pgm->pinno[PPI_AVR_BUFF], buffpins,
p, pgm->pinno[PIN_AVR_RESET],
p, pgm->pinno[PIN_AVR_SCK],
p, pgm->pinno[PIN_AVR_MOSI],
p, pgm->pinno[PIN_AVR_MISO],
p, pgm->pinno[PIN_LED_ERR],
p, pgm->pinno[PIN_LED_RDY],
p, pgm->pinno[PIN_LED_PGM],
p, pgm->pinno[PIN_LED_VFY]);
}
void par_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "PPI");
pgm->rdy_led = par_rdy_led;
pgm->err_led = par_err_led;
pgm->pgm_led = par_pgm_led;
pgm->vfy_led = par_vfy_led;
pgm->initialize = par_initialize;
pgm->display = par_display;
pgm->enable = par_enable;
pgm->disable = par_disable;
pgm->powerup = par_powerup;
pgm->powerdown = par_powerdown;
pgm->program_enable = par_program_enable;
pgm->chip_erase = par_chip_erase;
pgm->cmd = par_cmd;
pgm->open = par_open;
pgm->close = par_close;
}