avrdude/src/stk500v2.c

4559 lines
129 KiB
C

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2005 Erik Walthinsen
* Copyright (C) 2002-2004 Brian S. Dean <bsd@bsdhome.com>
* Copyright (C) 2006 David Moore
* Copyright (C) 2006,2007,2010 Joerg Wunsch <j@uriah.heep.sax.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* $Id$ */
/* Based on Id: stk500.c,v 1.46 2004/12/22 01:52:45 bdean Exp */
/*
* avrdude interface for Atmel STK500V2 programmer
*
* As the AVRISP mkII device is basically an STK500v2 one that can
* only talk across USB, and that misses any kind of framing protocol,
* this is handled here as well.
*
* Note: most commands use the "universal command" feature of the
* programmer in a "pass through" mode, exceptions are "program
* enable", "paged read", and "paged write".
*
*/
#include "ac_cfg.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <limits.h>
#include <unistd.h>
#include <sys/time.h>
#include <time.h>
#include "avrdude.h"
#include "libavrdude.h"
#include "stk500_private.h" // temp until all code converted
#include "stk500v2.h"
#include "stk500v2_private.h"
#include "usbdevs.h"
/*
* We need to import enough from the JTAG ICE mkII definitions to be
* able to talk to the ICE, query some parameters etc. The macro
* JTAGMKII_PRIVATE_EXPORTED limits the amount of definitions that
* jtagmkII_private.h will export, so to avoid conflicts with those
* names that are identical to the STK500v2 ones.
*/
#include "jtagmkII.h" // public interfaces from jtagmkII.c
#define JTAGMKII_PRIVATE_EXPORTED
#include "jtagmkII_private.h"
#include "jtag3.h" // public interfaces from jtagmkII.c
#define JTAG3_PRIVATE_EXPORTED
#include "jtag3_private.h"
#define STK500V2_XTAL 7372800U
// Timeout (in seconds) for waiting for serial response
#define SERIAL_TIMEOUT 2
// Retry count
#define RETRIES 5
#define DEBUG(...) msg_trace2(__VA_ARGS__)
#define DEBUGRECV(...) msg_trace2(__VA_ARGS__)
enum hvmode
{
PPMODE, HVSPMODE
};
#define PDATA(pgm) ((struct pdata *)(pgm->cookie))
/*
* Data structure for displaying STK600 routing and socket cards.
*/
struct carddata
{
int id;
const char *name;
};
static const char *pgmname[] =
{
"unknown",
"STK500",
"AVRISP",
"AVRISP mkII",
"JTAG ICE mkII",
"STK600",
"JTAGICE3",
};
struct jtagispentry
{
unsigned char cmd;
unsigned short size;
#define SZ_READ_FLASH_EE USHRT_MAX
#define SZ_SPI_MULTI (USHRT_MAX - 1)
};
static const struct jtagispentry jtagispcmds[] = {
/* generic */
{ CMD_SET_PARAMETER, 2 },
{ CMD_GET_PARAMETER, 3 },
{ CMD_OSCCAL, 2 },
{ CMD_LOAD_ADDRESS, 2 },
/* ISP mode */
{ CMD_ENTER_PROGMODE_ISP, 2 },
{ CMD_LEAVE_PROGMODE_ISP, 2 },
{ CMD_CHIP_ERASE_ISP, 2 },
{ CMD_PROGRAM_FLASH_ISP, 2 },
{ CMD_READ_FLASH_ISP, SZ_READ_FLASH_EE },
{ CMD_PROGRAM_EEPROM_ISP, 2 },
{ CMD_READ_EEPROM_ISP, SZ_READ_FLASH_EE },
{ CMD_PROGRAM_FUSE_ISP, 3 },
{ CMD_READ_FUSE_ISP, 4 },
{ CMD_PROGRAM_LOCK_ISP, 3 },
{ CMD_READ_LOCK_ISP, 4 },
{ CMD_READ_SIGNATURE_ISP, 4 },
{ CMD_READ_OSCCAL_ISP, 4 },
{ CMD_SPI_MULTI, SZ_SPI_MULTI },
/* all HV modes */
{ CMD_SET_CONTROL_STACK, 2 },
/* HVSP mode */
{ CMD_ENTER_PROGMODE_HVSP, 2 },
{ CMD_LEAVE_PROGMODE_HVSP, 2 },
{ CMD_CHIP_ERASE_HVSP, 2 },
{ CMD_PROGRAM_FLASH_HVSP, 2 },
{ CMD_READ_FLASH_HVSP, SZ_READ_FLASH_EE },
{ CMD_PROGRAM_EEPROM_HVSP, 2 },
{ CMD_READ_EEPROM_HVSP, SZ_READ_FLASH_EE },
{ CMD_PROGRAM_FUSE_HVSP, 2 },
{ CMD_READ_FUSE_HVSP, 3 },
{ CMD_PROGRAM_LOCK_HVSP, 2 },
{ CMD_READ_LOCK_HVSP, 3 },
{ CMD_READ_SIGNATURE_HVSP, 3 },
{ CMD_READ_OSCCAL_HVSP, 3 },
/* PP mode */
{ CMD_ENTER_PROGMODE_PP, 2 },
{ CMD_LEAVE_PROGMODE_PP, 2 },
{ CMD_CHIP_ERASE_PP, 2 },
{ CMD_PROGRAM_FLASH_PP, 2 },
{ CMD_READ_FLASH_PP, SZ_READ_FLASH_EE },
{ CMD_PROGRAM_EEPROM_PP, 2 },
{ CMD_READ_EEPROM_PP, SZ_READ_FLASH_EE },
{ CMD_PROGRAM_FUSE_PP, 2 },
{ CMD_READ_FUSE_PP, 3 },
{ CMD_PROGRAM_LOCK_PP, 2 },
{ CMD_READ_LOCK_PP, 3 },
{ CMD_READ_SIGNATURE_PP, 3 },
{ CMD_READ_OSCCAL_PP, 3 },
};
/*
* From XML file:
<REVISION>
<RC_ID_MAJOR>0</RC_ID_MAJOR>
<RC_ID_MINOR>56</RC_ID_MINOR>
<EC_ID_MAJOR>0</EC_ID_MAJOR>
<EC_ID_MINOR>1</EC_ID_MINOR>
</REVISION>
*/
/*
* These two tables can be semi-automatically updated from
* targetboards.xml using tools/get-stk600-cards.xsl.
*/
static const struct carddata routing_cards[] =
{
{ 0x01, "STK600-RC020T-1" },
{ 0x03, "STK600-RC028T-3" },
{ 0x05, "STK600-RC040M-5" },
{ 0x08, "STK600-RC020T-8" },
{ 0x0A, "STK600-RC040M-4" },
{ 0x0C, "STK600-RC008T-2" },
{ 0x0D, "STK600-RC028M-6" },
{ 0x10, "STK600-RC064M-10" },
{ 0x11, "STK600-RC100M-11" },
{ 0x13, "STK600-RC100X-13" },
{ 0x15, "STK600-RC044X-15" },
{ 0x18, "STK600-RC100M-18" },
{ 0x19, "STK600-RCPWM-19" },
{ 0x1A, "STK600-RC064X-14" },
{ 0x1B, "STK600-RC032U-20" },
{ 0x1C, "STK600-RC014T-12" },
{ 0x1E, "STK600-RC064U-17" },
{ 0x1F, "STK600-RCuC3B0-21" },
{ 0x20, "STK600-RCPWM-22" },
{ 0x21, "STK600-RC020T-23" },
{ 0x22, "STK600-RC044M-24" },
{ 0x23, "STK600-RC044U-25" },
{ 0x24, "STK600-RCPWM-26" },
{ 0x25, "STK600-RCuC3B48-27" },
{ 0x27, "STK600-RC032M-29" },
{ 0x28, "STK600-RC044M-30" },
{ 0x29, "STK600-RC044M-31" },
{ 0x2A, "STK600-RC014T-42" },
{ 0x2B, "STK600-RC020T-43" },
{ 0x30, "STK600-RCUC3A144-32" },
{ 0x34, "STK600-RCUC3L0-34" },
{ 0x38, "STK600-RCUC3C0-36" },
{ 0x3B, "STK600-RCUC3C0-37" },
{ 0x3E, "STK600-RCUC3A144-33" },
{ 0x46, "STK600-RCuC3A100-28" },
{ 0x55, "STK600-RC064M-9" },
{ 0x88, "STK600-RCUC3C1-38" },
{ 0x8B, "STK600-RCUC3C1-39" },
{ 0xA0, "STK600-RC008T-7" },
{ 0xB8, "STK600-RCUC3C2-40" },
{ 0xBB, "STK600-RCUC3C2-41" },
};
static const struct carddata socket_cards[] =
{
{ 0x01, "STK600-TQFP48" },
{ 0x02, "STK600-TQFP32" },
{ 0x03, "STK600-TQFP100" },
{ 0x04, "STK600-SOIC" },
{ 0x06, "STK600-TQFP144" },
{ 0x09, "STK600-TinyX3U" },
{ 0x0C, "STK600-TSSOP44" },
{ 0x0D, "STK600-TQFP44" },
{ 0x0E, "STK600-TQFP64-2" },
{ 0x0F, "STK600-ATMEGA2560" },
{ 0x15, "STK600-MLF64" },
{ 0x16, "STK600-ATXMEGAT0" },
{ 0x18, "QT600-ATMEGA324-QM64" },
{ 0x19, "STK600-ATMEGA128RFA1" },
{ 0x1A, "QT600-ATTINY88-QT8" },
{ 0x1B, "QT600-ATXMEGA128A1-QT16" },
{ 0x1C, "QT600-AT32UC3L-QM64" },
{ 0x1D, "STK600-HVE2" },
{ 0x1E, "STK600-ATTINY10" },
{ 0x55, "STK600-TQFP64" },
{ 0x69, "STK600-uC3-144" },
{ 0xF0, "STK600-ATXMEGA1281A1" },
{ 0xF1, "STK600-DIP" },
};
static int stk500v2_getparm(const PROGRAMMER *pgm, unsigned char parm, unsigned char *value);
static int stk500v2_setparm(const PROGRAMMER *pgm, unsigned char parm, unsigned char value);
static int stk500v2_getparm2(const PROGRAMMER *pgm, unsigned char parm, unsigned int *value);
static int stk500v2_setparm2(const PROGRAMMER *pgm, unsigned char parm, unsigned int value);
static int stk500v2_setparm_real(const PROGRAMMER *pgm, unsigned char parm, unsigned char value);
static void stk500v2_print_parms1(const PROGRAMMER *pgm, const char *p, FILE *fp);
static int stk500v2_paged_load(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes);
static int stk500v2_paged_write(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes);
static unsigned int stk500v2_mode_for_pagesize(unsigned int pagesize);
static double stk500v2_sck_to_us(const PROGRAMMER *pgm, unsigned char dur);
static int stk500v2_set_sck_period_mk2(const PROGRAMMER *pgm, double v);
static int stk600_set_sck_period(const PROGRAMMER *pgm, double v);
static void stk600_setup_xprog(PROGRAMMER *pgm);
static void stk600_setup_isp(PROGRAMMER *pgm);
static int stk600_xprog_program_enable(const PROGRAMMER *pgm, const AVRPART *p);
void stk500v2_setup(PROGRAMMER * pgm)
{
if ((pgm->cookie = malloc(sizeof(struct pdata))) == 0) {
pmsg_error("out of memory allocating private data\n");
exit(1);
}
memset(pgm->cookie, 0, sizeof(struct pdata));
PDATA(pgm)->command_sequence = 1;
PDATA(pgm)->boot_start = ULONG_MAX;
}
static void stk500v2_jtagmkII_setup(PROGRAMMER * pgm)
{
void *mycookie, *theircookie;
if ((pgm->cookie = malloc(sizeof(struct pdata))) == 0) {
pmsg_error("out of memory allocating private data\n");
exit(1);
}
memset(pgm->cookie, 0, sizeof(struct pdata));
PDATA(pgm)->command_sequence = 1;
/*
* Now, have the JTAG ICE mkII backend allocate its own private
* data. Store our own cookie in a safe place for the time being.
*/
mycookie = pgm->cookie;
jtagmkII_setup(pgm);
theircookie = pgm->cookie;
pgm->cookie = mycookie;
PDATA(pgm)->chained_pdata = theircookie;
}
static void stk500v2_jtag3_setup(PROGRAMMER * pgm)
{
void *mycookie, *theircookie;
if ((pgm->cookie = malloc(sizeof(struct pdata))) == 0) {
pmsg_error("out of memory allocating private data\n");
exit(1);
}
memset(pgm->cookie, 0, sizeof(struct pdata));
PDATA(pgm)->command_sequence = 1;
/*
* Now, have the JTAGICE3 backend allocate its own private
* data. Store our own cookie in a safe place for the time being.
*/
mycookie = pgm->cookie;
jtag3_setup(pgm);
theircookie = pgm->cookie;
pgm->cookie = mycookie;
PDATA(pgm)->chained_pdata = theircookie;
}
void stk500v2_teardown(PROGRAMMER * pgm)
{
free(pgm->cookie);
}
static void stk500v2_jtagmkII_teardown(PROGRAMMER * pgm)
{
void *mycookie;
free(PDATA(pgm)->flash_pagecache);
free(PDATA(pgm)->eeprom_pagecache);
mycookie = pgm->cookie;
pgm->cookie = PDATA(pgm)->chained_pdata;
jtagmkII_teardown(pgm);
free(mycookie);
}
static void stk500v2_jtag3_teardown(PROGRAMMER * pgm)
{
void *mycookie;
mycookie = pgm->cookie;
pgm->cookie = PDATA(pgm)->chained_pdata;
jtag3_teardown(pgm);
free(mycookie);
}
static unsigned short
b2_to_u16(unsigned char *b)
{
unsigned short l;
l = b[0];
l += (unsigned)b[1] << 8;
return l;
}
static int stk500v2_send_mk2(const PROGRAMMER *pgm, unsigned char *data, size_t len) {
if (serial_send(&pgm->fd, data, len) != 0) {
pmsg_error("unable to send command to serial port\n");
return -1;
}
return 0;
}
static unsigned short get_jtagisp_return_size(unsigned char cmd)
{
for (size_t i = 0; i < sizeof jtagispcmds / sizeof jtagispcmds[0]; i++)
if (jtagispcmds[i].cmd == cmd)
return jtagispcmds[i].size;
return 0;
}
/*
* Send the data as a JTAG ICE mkII encapsulated ISP packet.
* Unlike what AVR067 says, the packet gets a length of our
* response buffer prepended, and replies with RSP_SPI_DATA
* if successful.
*/
static int stk500v2_jtagmkII_send(const PROGRAMMER *pgm, unsigned char *data, size_t len) {
unsigned char *cmdbuf;
int rv;
unsigned short sz;
sz = get_jtagisp_return_size(data[0]);
if (sz == 0) {
pmsg_error("unsupported encapsulated ISP command: %#x\n", data[0]);
return -1;
}
if (sz == SZ_READ_FLASH_EE) {
/*
* For CMND_READ_FLASH_ISP and CMND_READ_EEPROM_ISP, extract the
* size of the return data from the request. Note that the
* request itself has the size in big endian format, while we are
* supposed to deliver it in little endian.
*/
sz = 3 + (data[1] << 8) + data[2];
} else if (sz == SZ_SPI_MULTI) {
/*
* CMND_SPI_MULTI has the Rx size encoded in its 3rd byte.
*/
sz = 3 + data[2];
}
if ((cmdbuf = malloc(len + 3)) == NULL) {
pmsg_error("out of memory for command packet\n");
exit(1);
}
PROGRAMMER *pgmcp = pgm_dup(pgm);
pgmcp->cookie = PDATA(pgm)->chained_pdata;
cmdbuf[0] = CMND_ISP_PACKET;
cmdbuf[1] = sz & 0xff;
cmdbuf[2] = (sz >> 8) & 0xff;
memcpy(cmdbuf + 3, data, len);
rv = jtagmkII_send(pgmcp, cmdbuf, len + 3);
free(cmdbuf);
pgm_free(pgmcp);
return rv;
}
/*
* Send the data as a JTAGICE3 encapsulated ISP packet.
*/
static int stk500v2_jtag3_send(const PROGRAMMER *pgm, unsigned char *data, size_t len) {
unsigned char *cmdbuf;
int rv;
if ((cmdbuf = malloc(len + 1)) == NULL) {
pmsg_error("out of memory for command packet\n");
exit(1);
}
PROGRAMMER *pgmcp = pgm_dup(pgm);
pgmcp->cookie = PDATA(pgm)->chained_pdata;
cmdbuf[0] = SCOPE_AVR_ISP;
memcpy(cmdbuf + 1, data, len);
rv = jtag3_send(pgmcp, cmdbuf, len + 1);
free(cmdbuf);
pgm_free(pgmcp);
return rv;
}
static int stk500v2_send(const PROGRAMMER *pgm, unsigned char *data, size_t len) {
unsigned char buf[275 + 6]; // max MESSAGE_BODY of 275 bytes, 6 bytes overhead
if (PDATA(pgm)->pgmtype == PGMTYPE_AVRISP_MKII ||
PDATA(pgm)->pgmtype == PGMTYPE_STK600)
return stk500v2_send_mk2(pgm, data, len);
else if (PDATA(pgm)->pgmtype == PGMTYPE_JTAGICE_MKII)
return stk500v2_jtagmkII_send(pgm, data, len);
else if (PDATA(pgm)->pgmtype == PGMTYPE_JTAGICE3)
return stk500v2_jtag3_send(pgm, data, len);
buf[0] = MESSAGE_START;
buf[1] = PDATA(pgm)->command_sequence;
buf[2] = len / 256;
buf[3] = len % 256;
buf[4] = TOKEN;
memcpy(buf+5, data, len);
// calculate the XOR checksum
buf[5+len] = 0;
for (size_t i=0; i<5+len; i++)
buf[5+len] ^= buf[i];
DEBUG("STK500V2: stk500v2_send(");
for (size_t i=0; i<len+6; i++)
DEBUG("0x%02x ", buf[i]);
DEBUG(", %d)\n", (int) len+6);
if (serial_send(&pgm->fd, buf, len+6) != 0) {
pmsg_error("unable to send command to serial port\n");
return -1;
}
return 0;
}
int stk500v2_drain(const PROGRAMMER *pgm, int display) {
return serial_drain(&pgm->fd, display);
}
static int stk500v2_recv_mk2(const PROGRAMMER *pgm, unsigned char *msg,
size_t maxsize)
{
int rv;
rv = serial_recv(&pgm->fd, msg, maxsize);
if (rv < 0) {
pmsg_error("unable to receive from USB\n");
return -1;
}
return rv;
}
static int stk500v2_jtagmkII_recv(const PROGRAMMER *pgm, unsigned char *msg,
size_t maxsize)
{
int rv;
unsigned char *jtagmsg;
PROGRAMMER *pgmcp = pgm_dup(pgm);
pgmcp->cookie = PDATA(pgm)->chained_pdata;
rv = jtagmkII_recv(pgmcp, &jtagmsg);
pgm_free(pgmcp);
if (rv <= 0) {
pmsg_error("unable to receive\n");
return -1;
}
if ((size_t) rv - 1 > maxsize) {
pmsg_warning("got %u bytes, have only room for %u bytes\n", (unsigned) rv - 1, (unsigned) maxsize);
rv = maxsize;
}
switch (jtagmsg[0]) {
case RSP_SPI_DATA:
break;
case RSP_FAILED:
pmsg_error("receive failed\n");
return -1;
case RSP_ILLEGAL_MCU_STATE:
pmsg_error("illegal MCU state\n");
return -1;
default:
pmsg_error("unknown status %d\n", jtagmsg[0]);
return -1;
}
memcpy(msg, jtagmsg + 1, rv - 1);
free(jtagmsg);
return rv;
}
static int stk500v2_jtag3_recv(const PROGRAMMER *pgm, unsigned char *msg,
size_t maxsize)
{
int rv;
unsigned char *jtagmsg;
PROGRAMMER *pgmcp = pgm_dup(pgm);
pgmcp->cookie = PDATA(pgm)->chained_pdata;
rv = jtag3_recv(pgmcp, &jtagmsg);
pgm_free(pgmcp);
if (rv <= 0) {
pmsg_error("unable to receive\n");
return -1;
}
/* Getting more data than expected is a normal case for the EDBG
implementation of JTAGICE3, as they always request a full 512
octets from the ICE. Thus, only complain at high verbose
levels. */
if ((size_t) rv - 1 > maxsize) {
pmsg_debug("stk500v2_jtag3_recv(): got %u bytes, have only room for %u bytes\n", (unsigned) rv - 1, (unsigned) maxsize);
rv = maxsize;
}
if (jtagmsg[0] != SCOPE_AVR_ISP) {
pmsg_error("message is not AVR ISP: 0x%02x\n", jtagmsg[0]);
free(jtagmsg);
return -1;
}
memcpy(msg, jtagmsg + 1, rv - 1);
free(jtagmsg);
return rv;
}
static int stk500v2_recv(const PROGRAMMER *pgm, unsigned char *msg, size_t maxsize) {
enum states { sINIT, sSTART, sSEQNUM, sSIZE1, sSIZE2, sTOKEN, sDATA, sCSUM, sDONE } state = sSTART;
unsigned int msglen = 0;
unsigned int curlen = 0;
int timeout = 0;
unsigned char c, checksum = 0;
/*
* The entire timeout handling here is not very consistent, see
*
* https://savannah.nongnu.org/bugs/index.php?43626
*/
long timeoutval = SERIAL_TIMEOUT; // seconds
double tstart, tnow;
if (PDATA(pgm)->pgmtype == PGMTYPE_AVRISP_MKII ||
PDATA(pgm)->pgmtype == PGMTYPE_STK600)
return stk500v2_recv_mk2(pgm, msg, maxsize);
else if (PDATA(pgm)->pgmtype == PGMTYPE_JTAGICE_MKII)
return stk500v2_jtagmkII_recv(pgm, msg, maxsize);
else if (PDATA(pgm)->pgmtype == PGMTYPE_JTAGICE3)
return stk500v2_jtag3_recv(pgm, msg, maxsize);
DEBUG("STK500V2: stk500v2_recv(): ");
tstart = avr_timestamp();
while ( (state != sDONE ) && (!timeout) ) {
if (serial_recv(&pgm->fd, &c, 1) < 0)
goto timedout;
DEBUG("0x%02x ",c);
checksum ^= c;
switch (state) {
case sSTART:
DEBUGRECV("hoping for start token ...");
if (c == MESSAGE_START) {
DEBUGRECV("got it\n");
checksum = MESSAGE_START;
state = sSEQNUM;
} else
DEBUGRECV("sorry\n");
break;
case sSEQNUM:
DEBUGRECV("hoping for sequence ...\n");
if (c == PDATA(pgm)->command_sequence) {
DEBUGRECV("got it, incrementing\n");
state = sSIZE1;
PDATA(pgm)->command_sequence++;
} else {
DEBUGRECV("sorry\n");
state = sSTART;
}
break;
case sSIZE1:
DEBUGRECV("hoping for size LSB\n");
msglen = (unsigned)c * 256;
state = sSIZE2;
break;
case sSIZE2:
DEBUGRECV("hoping for size MSB ...");
msglen += (unsigned)c;
DEBUG(" msg is %u bytes\n",msglen);
state = sTOKEN;
break;
case sTOKEN:
if (c == TOKEN) state = sDATA;
else state = sSTART;
break;
case sDATA:
if (curlen < maxsize) {
msg[curlen] = c;
} else {
pmsg_error("buffer too small, received %d byte into %u byte buffer\n",
curlen, (unsigned int) maxsize);
return -2;
}
if ((curlen == 0) && (msg[0] == ANSWER_CKSUM_ERROR)) {
pmsg_error("previous packet sent with wrong checksum\n");
return -3;
}
curlen++;
if (curlen == msglen) state = sCSUM;
break;
case sCSUM:
if (checksum == 0) {
state = sDONE;
} else {
state = sSTART;
pmsg_error("wrong checksum\n");
return -4;
}
break;
default:
pmsg_error("unknown state\n");
return -5;
} /* switch */
tnow = avr_timestamp();
if (tnow-tstart > timeoutval) {
timedout:
pmsg_error("timeout\n");
return -1;
}
} /* while */
DEBUG("\n");
return (int)(msglen+6);
}
int stk500v2_getsync(const PROGRAMMER *pgm) {
int tries = 0;
unsigned char buf[1], resp[32];
int status;
DEBUG("STK500V2: stk500v2_getsync()\n");
if (PDATA(pgm)->pgmtype == PGMTYPE_JTAGICE_MKII ||
PDATA(pgm)->pgmtype == PGMTYPE_JTAGICE3)
return 0;
retry:
tries++;
// send the sync command and see if we can get there
buf[0] = CMD_SIGN_ON;
stk500v2_send(pgm, buf, 1);
// try to get the response back and see where we got
status = stk500v2_recv(pgm, resp, sizeof(resp));
// if we got bytes returned, check to see what came back
if (status > 0) {
if ((resp[0] == CMD_SIGN_ON) && (resp[1] == STATUS_CMD_OK) &&
(status > 3)) {
// success!
unsigned int siglen = resp[2];
if (siglen >= strlen("STK500_2") &&
memcmp(resp + 3, "STK500_2", strlen("STK500_2")) == 0) {
PDATA(pgm)->pgmtype = PGMTYPE_STK500;
} else if (siglen >= strlen("AVRISP_2") &&
memcmp(resp + 3, "AVRISP_2", strlen("AVRISP_2")) == 0) {
PDATA(pgm)->pgmtype = PGMTYPE_AVRISP;
} else if (siglen >= strlen("AVRISP_MK2") &&
memcmp(resp + 3, "AVRISP_MK2", strlen("AVRISP_MK2")) == 0) {
PDATA(pgm)->pgmtype = PGMTYPE_AVRISP_MKII;
} else if (siglen >= strlen("STK600") &&
memcmp(resp + 3, "STK600", strlen("STK600")) == 0) {
PDATA(pgm)->pgmtype = PGMTYPE_STK600;
} else {
resp[siglen + 3] = 0;
pmsg_notice("stk500v2_getsync(): got response from unknown "
"programmer %s, assuming STK500\n", resp + 3);
PDATA(pgm)->pgmtype = PGMTYPE_STK500;
}
pmsg_debug("stk500v2_getsync(): found %s programmer\n", pgmname[PDATA(pgm)->pgmtype]);
return 0;
} else {
if (tries > RETRIES) {
pmsg_error("cannot communicate with device: resp=0x%02x\n", resp[0]);
return -6;
} else
goto retry;
}
// or if we got a timeout
} else if (status == -1) {
if (tries > RETRIES) {
pmsg_error("timeout communicating with programmer\n");
return -1;
} else
goto retry;
// or any other error
} else {
if (tries > RETRIES) {
pmsg_error("unable to communicate with programmer (%d)\n", status);
} else
goto retry;
}
return 0;
}
static int stk500v2_command(const PROGRAMMER *pgm, unsigned char *buf,
size_t len, size_t maxlen) {
int tries = 0;
int status;
DEBUG("STK500V2: stk500v2_command(");
for (size_t i=0; i<len; i++)
DEBUG("0x%02x ",buf[i]);
DEBUG(", %d)\n", (int) len);
retry:
tries++;
// send the command to the programmer
stk500v2_send(pgm,buf,len);
// attempt to read the status back
status = stk500v2_recv(pgm,buf,maxlen);
DEBUG("STK500V2: stk500v2_command() received content: [ ");
for (size_t i=0; i<len; i++)
DEBUG("0x%02x ",buf[i]);
DEBUG("], length %d\n", (int) len);
// if we got a successful readback, return
if (status > 0) {
DEBUG(" = %d\n",status);
if (status < 2) {
pmsg_error("short reply\n");
return -1;
}
if (buf[0] == CMD_XPROG_SETMODE || buf[0] == CMD_XPROG) {
/*
* Decode XPROG wrapper errors.
*/
const char *msg;
int i;
/*
* For CMD_XPROG_SETMODE, the status is returned in buf[1].
* For CMD_XPROG, buf[1] contains the XPRG_CMD_* command, and
* buf[2] contains the status.
*/
i = buf[0] == CMD_XPROG_SETMODE? 1: 2;
if (buf[i] != XPRG_ERR_OK) {
switch (buf[i]) {
case XPRG_ERR_FAILED: msg = "Failed"; break;
case XPRG_ERR_COLLISION: msg = "Collision"; break;
case XPRG_ERR_TIMEOUT: msg = "Timeout"; break;
default: msg = "Unknown"; break;
}
pmsg_error("%s: %s\n",
buf[0]==CMD_XPROG_SETMODE? "CMD_XPROG_SETMODE": "CMD_XPROG", msg);
return -1;
}
return 0;
} else {
/*
* Decode STK500v2 errors.
*/
if (buf[1] >= STATUS_CMD_TOUT && buf[1] < 0xa0) {
const char *msg;
char msgbuf[30];
switch (buf[1]) {
case STATUS_CMD_TOUT:
msg = "Command timed out";
break;
case STATUS_RDY_BSY_TOUT:
msg = "Sampling of the RDY/nBSY pin timed out";
break;
case STATUS_SET_PARAM_MISSING:
msg = "The `Set Device Parameters' have not been "
"executed in advance of this command";
break;
default:
sprintf(msgbuf, "unknown, code 0x%02x", buf[1]);
msg = msgbuf;
break;
}
pmsg_warning("%s\n", msg);
} else if (buf[1] == STATUS_CMD_OK) {
return status;
} else if (buf[1] == STATUS_CMD_FAILED) {
pmsg_error("command failed\n");
} else if (buf[1] == STATUS_CLOCK_ERROR) {
pmsg_error("target clock speed error\n");
return -2;
} else if (buf[1] == STATUS_CMD_UNKNOWN) {
pmsg_error("unknown command\n");
} else {
pmsg_error("unknown status 0x%02x\n", buf[1]);
}
return -1;
}
}
// otherwise try to sync up again
status = stk500v2_getsync(pgm);
if (status != 0) {
if (tries > RETRIES) {
pmsg_error("failed to execute command 0x%02x\n", buf[0]);
return -1;
} else
goto retry;
}
DEBUG(" = 0\n");
return 0;
}
static int stk500v2_cmd(const PROGRAMMER *pgm, const unsigned char *cmd,
unsigned char *res)
{
unsigned char buf[8];
int result;
DEBUG("STK500V2: stk500v2_cmd(%02x,%02x,%02x,%02x)\n",cmd[0],cmd[1],cmd[2],cmd[3]);
buf[0] = CMD_SPI_MULTI;
buf[1] = 4;
buf[2] = 4;
buf[3] = 0;
buf[4] = cmd[0];
buf[5] = cmd[1];
buf[6] = cmd[2];
buf[7] = cmd[3];
result = stk500v2_command(pgm, buf, 8, sizeof(buf));
if (result < 0) {
pmsg_error("send command failed\n");
return -1;
} else if (result < 6) {
pmsg_error("short reply, len = %d\n", result);
return -1;
}
res[0] = buf[2];
res[1] = buf[3];
res[2] = buf[4];
res[3] = buf[5];
return 0;
}
static int stk500v2_jtag3_cmd(const PROGRAMMER *pgm, const unsigned char *cmd,
unsigned char *res)
{
pmsg_error("not available in JTAGICE3\n");
return -1;
}
/*
* issue the 'chip erase' command to the AVR device
*/
static int stk500v2_chip_erase(const PROGRAMMER *pgm, const AVRPART *p) {
int result;
unsigned char buf[16];
if (p->op[AVR_OP_CHIP_ERASE] == NULL) {
pmsg_error("chip erase instruction not defined for part %s\n", p->desc);
return -1;
}
pgm->pgm_led(pgm, ON);
buf[0] = CMD_CHIP_ERASE_ISP;
buf[1] = p->chip_erase_delay / 1000;
buf[2] = 0; // use delay (?)
memset(buf+3, 0, 4);
avr_set_bits(p->op[AVR_OP_CHIP_ERASE], buf+3);
result = stk500v2_command(pgm, buf, 7, sizeof(buf));
usleep(p->chip_erase_delay); // should not be needed
if (PDATA(pgm)->pgmtype != PGMTYPE_JTAGICE_MKII) { // skip for JTAGICE mkII (FW v7.39)
pgm->initialize(pgm, p); // should not be needed
}
pgm->pgm_led(pgm, OFF);
return result >= 0? 0: -1;
}
/*
* issue the 'chip erase' command to the AVR device, generic HV mode
*/
static int stk500hv_chip_erase(const PROGRAMMER *pgm, const AVRPART *p, enum hvmode mode) {
int result;
unsigned char buf[3];
pgm->pgm_led(pgm, ON);
if (mode == PPMODE) {
buf[0] = CMD_CHIP_ERASE_PP;
buf[1] = p->chiperasepulsewidth;
buf[2] = p->chiperasepolltimeout;
} else {
buf[0] = CMD_CHIP_ERASE_HVSP;
buf[1] = p->chiperasepolltimeout;
buf[2] = p->chiperasetime;
}
result = stk500v2_command(pgm, buf, 3, sizeof(buf));
usleep(p->chip_erase_delay);
pgm->initialize(pgm, p);
pgm->pgm_led(pgm, OFF);
return result >= 0? 0: -1;
}
/*
* issue the 'chip erase' command to the AVR device, parallel mode
*/
static int stk500pp_chip_erase(const PROGRAMMER *pgm, const AVRPART *p) {
return stk500hv_chip_erase(pgm, p, PPMODE);
}
/*
* issue the 'chip erase' command to the AVR device, HVSP mode
*/
static int stk500hvsp_chip_erase(const PROGRAMMER *pgm, const AVRPART *p) {
return stk500hv_chip_erase(pgm, p, HVSPMODE);
}
static struct
{
unsigned int state;
const char *description;
} connection_status[] =
{
{ STATUS_CONN_FAIL_SDO, "SDO fail" },
{ STATUS_CONN_FAIL_RST, "RST fail" },
{ STATUS_CONN_FAIL_SCK, "SCK fail" },
{ STATUS_TGT_NOT_DETECTED, "Target not detected" },
{ STATUS_TGT_REVERSE_INSERTED, "Target reverse inserted" },
};
/*
* Max length of returned message is the sum of all the description
* strings in the table above, plus 2 characters for separation.
* Currently, this is 76 chars.
*/
static void
stk500v2_translate_conn_status(unsigned char status, char *msg)
{
size_t i;
int need_comma;
*msg = 0;
need_comma = 0;
for (i = 0;
i < sizeof connection_status / sizeof connection_status[0];
i++)
{
if ((status & connection_status[i].state) != 0)
{
if (need_comma)
strcat(msg, ", ");
strcat(msg, connection_status[i].description);
need_comma = 1;
}
}
if (*msg == 0)
sprintf(msg, "Unknown status 0x%02x", status);
}
/*
* issue the 'program enable' command to the AVR device
*/
static int stk500v2_program_enable(const PROGRAMMER *pgm, const AVRPART *p) {
unsigned char buf[16];
char msg[100]; /* see remarks above about size needed */
int rv, tries;
PDATA(pgm)->lastpart = p;
if (p->op[AVR_OP_PGM_ENABLE] == NULL) {
pmsg_error("program enable instruction not defined for part %s\n", p->desc);
return -1;
}
if (PDATA(pgm)->pgmtype == PGMTYPE_STK500 ||
PDATA(pgm)->pgmtype == PGMTYPE_STK600)
/* Activate AVR-style (low active) RESET */
stk500v2_setparm_real(pgm, PARAM_RESET_POLARITY, 0x01);
tries = 0;
retry:
buf[0] = CMD_ENTER_PROGMODE_ISP;
buf[1] = p->timeout;
buf[2] = p->stabdelay;
buf[3] = p->cmdexedelay;
buf[4] = p->synchloops;
buf[5] = p->bytedelay;
buf[6] = p->pollvalue;
buf[7] = p->pollindex;
memset(buf+8, 0, 4);
avr_set_bits(p->op[AVR_OP_PGM_ENABLE], buf+8);
rv = stk500v2_command(pgm, buf, 12, sizeof(buf));
if (rv < 0) {
switch (PDATA(pgm)->pgmtype)
{
case PGMTYPE_STK600:
case PGMTYPE_AVRISP_MKII:
if (stk500v2_getparm(pgm, PARAM_STATUS_TGT_CONN, &buf[0]) != 0) {
pmsg_error("cannot get connection status\n");
} else {
stk500v2_translate_conn_status(buf[0], msg);
pmsg_error("bad AVRISPmkII connection status: %s\n", msg);
}
break;
case PGMTYPE_JTAGICE3:
if (buf[1] == STATUS_CMD_FAILED && (p->prog_modes & PM_debugWIRE)) {
unsigned char cmd[4], *resp;
/* Try debugWIRE, and MONCON_DISABLE */
pmsg_notice2("no response in ISP mode, trying debugWIRE\n");
PROGRAMMER *pgmcp = pgm_dup(pgm);
pgmcp->cookie = PDATA(pgm)->chained_pdata;
cmd[0] = PARM3_CONN_DW;
if (jtag3_setparm(pgmcp, SCOPE_AVR, 1, PARM3_CONNECTION, cmd, 1) < 0) {
pgm_free(pgmcp);
break;
}
cmd[0] = SCOPE_AVR;
cmd[1] = CMD3_SIGN_ON;
cmd[2] = cmd[3] = 0;
if (jtag3_command(pgmcp, cmd, 4, &resp, "AVR sign-on") >= 0) {
free(resp);
cmd[1] = CMD3_START_DW_DEBUG;
if (jtag3_command(pgmcp, cmd, 4, &resp, "start DW debug") >= 0) {
free(resp);
cmd[1] = CMD3_MONCON_DISABLE;
if (jtag3_command(pgmcp, cmd, 3, &resp, "MonCon disable") >= 0)
free(resp);
}
}
pgm_free(pgmcp);
if (tries++ > 3) {
pmsg_error("unable to return from debugWIRE to ISP\n");
break;
}
pmsg_warning("target prepared for ISP, signed off\n");
imsg_warning("now retrying without power-cycling the target\n");
goto retry;
}
break;
default:
/* cannot report anything for other pgmtypes */
break;
}
}
return rv;
}
/*
* issue the 'program enable' command to the AVR device, parallel mode
*/
static int stk500pp_program_enable(const PROGRAMMER *pgm, const AVRPART *p) {
unsigned char buf[16];
PDATA(pgm)->lastpart = p;
buf[0] = CMD_ENTER_PROGMODE_PP;
buf[1] = p->hventerstabdelay;
buf[2] = p->progmodedelay;
buf[3] = p->latchcycles;
buf[4] = p->togglevtg;
buf[5] = p->poweroffdelay;
buf[6] = p->resetdelayms;
buf[7] = p->resetdelayus;
return stk500v2_command(pgm, buf, 8, sizeof(buf));
}
/*
* issue the 'program enable' command to the AVR device, HVSP mode
*/
static int stk500hvsp_program_enable(const PROGRAMMER *pgm, const AVRPART *p) {
unsigned char buf[16];
PDATA(pgm)->lastpart = p;
buf[0] = PDATA(pgm)->pgmtype == PGMTYPE_STK600?
CMD_ENTER_PROGMODE_HVSP_STK600:
CMD_ENTER_PROGMODE_HVSP;
buf[1] = p->hventerstabdelay;
buf[2] = p->hvspcmdexedelay;
buf[3] = p->synchcycles;
buf[4] = p->latchcycles;
buf[5] = p->togglevtg;
buf[6] = p->poweroffdelay;
buf[7] = p->resetdelayms;
buf[8] = p->resetdelayus;
return stk500v2_command(pgm, buf, 9, sizeof(buf));
}
/*
* initialize the AVR device and prepare it to accept commands
*/
static int stk500v2_initialize(const PROGRAMMER *pgm, const AVRPART *p) {
LNODEID ln;
AVRMEM * m;
if ((PDATA(pgm)->pgmtype == PGMTYPE_STK600 ||
PDATA(pgm)->pgmtype == PGMTYPE_AVRISP_MKII ||
PDATA(pgm)->pgmtype == PGMTYPE_JTAGICE_MKII) != 0
&& (p->prog_modes & (PM_PDI | PM_TPI)) != 0) {
/*
* This is an ATxmega device, must use XPROG protocol for the
* remaining actions.
*/
if (p->prog_modes & PM_PDI) {
// Find the border between application and boot area
AVRMEM *bootmem = avr_locate_mem(p, "boot");
AVRMEM *flashmem = avr_locate_mem(p, "flash");
if (bootmem == NULL || flashmem == NULL) {
pmsg_error("cannot locate flash or boot memories\n");
} else {
PDATA(pgm)->boot_start = bootmem->offset - flashmem->offset;
}
}
// stk600_setup_xprog(pgm); [moved to pgm->enable()]
} else {
// stk600_setup_isp(pgm); [moved to pgm->enable()]
}
/*
* Examine the avrpart's memory definitions, and initialize the page
* caches. For devices/memory that are not page oriented, treat
* them as page size 1 for EEPROM, and 2 for flash.
*/
PDATA(pgm)->flash_pagesize = 2;
PDATA(pgm)->eeprom_pagesize = 1;
for (ln = lfirst(p->mem); ln; ln = lnext(ln)) {
m = ldata(ln);
if (strcmp(m->desc, "flash") == 0) {
if (m->page_size > 1) {
if (m->page_size > 256)
PDATA(pgm)->flash_pagesize = 256;
else
PDATA(pgm)->flash_pagesize = m->page_size;
}
} else if (strcmp(m->desc, "eeprom") == 0) {
if (m->page_size > 1)
PDATA(pgm)->eeprom_pagesize = m->page_size;
}
}
free(PDATA(pgm)->flash_pagecache);
free(PDATA(pgm)->eeprom_pagecache);
if ((PDATA(pgm)->flash_pagecache = malloc(PDATA(pgm)->flash_pagesize)) == NULL) {
pmsg_error("out of memory\n");
return -1;
}
if ((PDATA(pgm)->eeprom_pagecache = malloc(PDATA(pgm)->eeprom_pagesize)) == NULL) {
pmsg_error("out of memory\n");
free(PDATA(pgm)->flash_pagecache);
return -1;
}
PDATA(pgm)->flash_pageaddr = PDATA(pgm)->eeprom_pageaddr = (unsigned long)-1L;
if (p->flags & AVRPART_IS_AT90S1200) {
/*
* AT90S1200 needs a positive reset pulse after a chip erase.
*/
pgm->disable(pgm);
usleep(10000);
}
return pgm->program_enable(pgm, p);
}
/*
* initialize the AVR device and prepare it to accept commands
*/
static int stk500v2_jtag3_initialize(const PROGRAMMER *pgm, const AVRPART *p) {
unsigned char parm[4], *resp;
LNODEID ln;
AVRMEM * m;
// FIXME: condition below looks fishy, suspect the code wants !(p->prog_modes & (PM_debugWIRE | PM_JTAG | PM_JTAGmkI /* | PM_XMEGAJTAG | PM_AVR32JTAG */))
if (p->prog_modes & (PM_PDI | PM_TPI)) {
pmsg_error("part %s has no ISP interface\n", p->desc);
return -1;
}
PROGRAMMER *pgmcp = pgm_dup(pgm);
pgmcp->cookie = PDATA(pgm)->chained_pdata;
if (p->prog_modes & PM_debugWIRE)
parm[0] = PARM3_ARCH_TINY;
else
parm[0] = PARM3_ARCH_MEGA;
if (jtag3_setparm(pgmcp, SCOPE_AVR, 0, PARM3_ARCH, parm, 1) < 0) {
pgm_free(pgmcp);
return -1;
}
parm[0] = PARM3_SESS_PROGRAMMING;
if (jtag3_setparm(pgmcp, SCOPE_AVR, 0, PARM3_SESS_PURPOSE, parm, 1) < 0) {
pgm_free(pgmcp);
return -1;
}
parm[0] = PARM3_CONN_ISP;
if (jtag3_setparm(pgmcp, SCOPE_AVR, 1, PARM3_CONNECTION, parm, 1) < 0) {
pgm_free(pgmcp);
return -1;
}
parm[0] = SCOPE_AVR_ISP;
parm[1] = 0x1e;
jtag3_send(pgmcp, parm, 2);
if (jtag3_recv(pgmcp, &resp) > 0)
free(resp);
free(pgmcp);
/*
* Examine the avrpart's memory definitions, and initialize the page
* caches. For devices/memory that are not page oriented, treat
* them as page size 1 for EEPROM, and 2 for flash.
*/
PDATA(pgm)->flash_pagesize = 2;
PDATA(pgm)->eeprom_pagesize = 1;
for (ln = lfirst(p->mem); ln; ln = lnext(ln)) {
m = ldata(ln);
if (strcmp(m->desc, "flash") == 0) {
if (m->page_size > 1) {
if (m->page_size > 256)
PDATA(pgm)->flash_pagesize = 256;
else
PDATA(pgm)->flash_pagesize = m->page_size;
}
} else if (strcmp(m->desc, "eeprom") == 0) {
if (m->page_size > 1)
PDATA(pgm)->eeprom_pagesize = m->page_size;
}
}
free(PDATA(pgm)->flash_pagecache);
free(PDATA(pgm)->eeprom_pagecache);
if ((PDATA(pgm)->flash_pagecache = malloc(PDATA(pgm)->flash_pagesize)) == NULL) {
pmsg_error("out of memory\n");
return -1;
}
if ((PDATA(pgm)->eeprom_pagecache = malloc(PDATA(pgm)->eeprom_pagesize)) == NULL) {
pmsg_error("out of memory\n");
free(PDATA(pgm)->flash_pagecache);
return -1;
}
PDATA(pgm)->flash_pageaddr = PDATA(pgm)->eeprom_pageaddr = (unsigned long)-1L;
return pgm->program_enable(pgm, p);
}
/*
* initialize the AVR device and prepare it to accept commands, generic HV mode
*/
static int stk500hv_initialize(const PROGRAMMER *pgm, const AVRPART *p, enum hvmode mode) {
unsigned char buf[CTL_STACK_SIZE + 1];
int result;
LNODEID ln;
AVRMEM * m;
if (p->ctl_stack_type != (mode == PPMODE? CTL_STACK_PP: CTL_STACK_HVSP)) {
pmsg_error("%s programming control stack not defined for part %s\n",
mode == PPMODE? "parallel": "high-voltage serial", p->desc);
return -1;
}
buf[0] = CMD_SET_CONTROL_STACK;
memcpy(buf + 1, p->controlstack, CTL_STACK_SIZE);
result = stk500v2_command(pgm, buf, CTL_STACK_SIZE + 1, sizeof(buf));
if (result < 0) {
pmsg_error("unable to set control stack\n");
return -1;
}
/*
* Examine the avrpart's memory definitions, and initialize the page
* caches. For devices/memory that are not page oriented, treat
* them as page size 1 for EEPROM, and 2 for flash.
*/
PDATA(pgm)->flash_pagesize = 2;
PDATA(pgm)->eeprom_pagesize = 1;
for (ln = lfirst(p->mem); ln; ln = lnext(ln)) {
m = ldata(ln);
if (strcmp(m->desc, "flash") == 0) {
if (m->page_size > 1) {
if (m->page_size > 256)
PDATA(pgm)->flash_pagesize = 256;
else
PDATA(pgm)->flash_pagesize = m->page_size;
}
} else if (strcmp(m->desc, "eeprom") == 0) {
if (m->page_size > 1)
PDATA(pgm)->eeprom_pagesize = m->page_size;
}
}
free(PDATA(pgm)->flash_pagecache);
free(PDATA(pgm)->eeprom_pagecache);
if ((PDATA(pgm)->flash_pagecache = malloc(PDATA(pgm)->flash_pagesize)) == NULL) {
pmsg_error("out of memory\n");
return -1;
}
if ((PDATA(pgm)->eeprom_pagecache = malloc(PDATA(pgm)->eeprom_pagesize)) == NULL) {
pmsg_error("out of memory\n");
free(PDATA(pgm)->flash_pagecache);
return -1;
}
PDATA(pgm)->flash_pageaddr = PDATA(pgm)->eeprom_pageaddr = (unsigned long)-1L;
return pgm->program_enable(pgm, p);
}
/*
* initialize the AVR device and prepare it to accept commands, PP mode
*/
static int stk500pp_initialize(const PROGRAMMER *pgm, const AVRPART *p) {
return stk500hv_initialize(pgm, p, PPMODE);
}
/*
* initialize the AVR device and prepare it to accept commands, HVSP mode
*/
static int stk500hvsp_initialize(const PROGRAMMER *pgm, const AVRPART *p) {
return stk500hv_initialize(pgm, p, HVSPMODE);
}
static void stk500v2_jtag3_disable(const PROGRAMMER *pgm) {
unsigned char buf[16];
int result;
free(PDATA(pgm)->flash_pagecache);
PDATA(pgm)->flash_pagecache = NULL;
free(PDATA(pgm)->eeprom_pagecache);
PDATA(pgm)->eeprom_pagecache = NULL;
buf[0] = CMD_LEAVE_PROGMODE_ISP;
buf[1] = 1; // preDelay;
buf[2] = 1; // postDelay;
result = stk500v2_command(pgm, buf, 3, sizeof(buf));
if (result < 0) {
pmsg_error("unable to leave programming mode\n");
}
return;
}
static void stk500v2_disable(const PROGRAMMER *pgm) {
unsigned char buf[16];
int result;
buf[0] = CMD_LEAVE_PROGMODE_ISP;
buf[1] = 1; // preDelay;
buf[2] = 1; // postDelay;
result = stk500v2_command(pgm, buf, 3, sizeof(buf));
if (result < 0) {
pmsg_error("unable to leave programming mode\n");
}
return;
}
/*
* Leave programming mode, generic HV mode
*/
static void stk500hv_disable(const PROGRAMMER *pgm, enum hvmode mode) {
unsigned char buf[16];
int result;
free(PDATA(pgm)->flash_pagecache);
PDATA(pgm)->flash_pagecache = NULL;
free(PDATA(pgm)->eeprom_pagecache);
PDATA(pgm)->eeprom_pagecache = NULL;
buf[0] = mode == PPMODE? CMD_LEAVE_PROGMODE_PP:
(PDATA(pgm)->pgmtype == PGMTYPE_STK600?
CMD_LEAVE_PROGMODE_HVSP_STK600:
CMD_LEAVE_PROGMODE_HVSP);
buf[1] = 15; // p->hvleavestabdelay;
buf[2] = 15; // p->resetdelay;
result = stk500v2_command(pgm, buf, 3, sizeof(buf));
if (result < 0) {
pmsg_error("unable to leave programming mode\n");
}
return;
}
/*
* Leave programming mode, PP mode
*/
static void stk500pp_disable(const PROGRAMMER *pgm) {
stk500hv_disable(pgm, PPMODE);
}
/*
* Leave programming mode, HVSP mode
*/
static void stk500hvsp_disable(const PROGRAMMER *pgm) {
stk500hv_disable(pgm, HVSPMODE);
}
static void stk500v2_enable(PROGRAMMER *pgm, const AVRPART *p) {
// Previously stk500v2_initialize() set up pgm
if(pgm->initialize == stk500v2_initialize) {
if((PDATA(pgm)->pgmtype == PGMTYPE_STK600 ||
PDATA(pgm)->pgmtype == PGMTYPE_AVRISP_MKII ||
PDATA(pgm)->pgmtype == PGMTYPE_JTAGICE_MKII) != 0
&& (p->prog_modes & (PM_PDI | PM_TPI)) != 0) {
stk600_setup_xprog(pgm);
} else {
stk600_setup_isp(pgm);
}
}
return;
}
static int stk500v2_open(PROGRAMMER *pgm, const char *port) {
union pinfo pinfo = { .serialinfo.baud = 115200, .serialinfo.cflags = SERIAL_8N1 };
DEBUG("STK500V2: stk500v2_open()\n");
if (pgm->baudrate)
pinfo.serialinfo.baud = pgm->baudrate;
PDATA(pgm)->pgmtype = PGMTYPE_UNKNOWN;
if(strcasecmp(port, "avrdoper") == 0){
#if defined(HAVE_LIBHIDAPI)
serdev = &avrdoper_serdev;
PDATA(pgm)->pgmtype = PGMTYPE_STK500;
#else
pmsg_error("avrdoper requires avrdude with libhidapi support\n");
return -1;
#endif
}
/*
* If the port name starts with "usb", divert the serial routines
* to the USB ones. The serial_open() function for USB overrides
* the meaning of the "baud" parameter to be the USB device ID to
* search for.
*/
if (strncmp(port, "usb", 3) == 0) {
#if defined(HAVE_LIBUSB)
serdev = &usb_serdev_frame;
pinfo.usbinfo.vid = USB_VENDOR_ATMEL;
pinfo.usbinfo.flags = 0;
pinfo.usbinfo.pid = USB_DEVICE_AVRISPMKII;
PDATA(pgm)->pgmtype = PGMTYPE_AVRISP_MKII;
pgm->set_sck_period = stk500v2_set_sck_period_mk2;
pgm->fd.usb.max_xfer = USBDEV_MAX_XFER_MKII;
pgm->fd.usb.rep = USBDEV_BULK_EP_READ_MKII;
pgm->fd.usb.wep = USBDEV_BULK_EP_WRITE_MKII;
pgm->fd.usb.eep = 0; /* no seperate EP for events */
#else
pmsg_error("avrdude was compiled without usb support\n");
return -1;
#endif
}
strcpy(pgm->port, port);
if (serial_open(port, pinfo, &pgm->fd)==-1) {
return -1;
}
// Get USB serial number
pgm->usbsn = serial_serno();
/*
* drain any extraneous input
*/
stk500v2_drain(pgm, 0);
stk500v2_getsync(pgm);
stk500v2_drain(pgm, 0);
if (pgm->bitclock != 0.0) {
if (pgm->set_sck_period(pgm, pgm->bitclock) != 0)
return -1;
}
return 0;
}
static int stk600_open(PROGRAMMER *pgm, const char *port) {
union pinfo pinfo = { .serialinfo.baud = 115200, .serialinfo.cflags = SERIAL_8N1 };
DEBUG("STK500V2: stk600_open()\n");
if (pgm->baudrate)
pinfo.serialinfo.baud = pgm->baudrate;
PDATA(pgm)->pgmtype = PGMTYPE_UNKNOWN;
/*
* If the port name starts with "usb", divert the serial routines
* to the USB ones. The serial_open() function for USB overrides
* the meaning of the "baud" parameter to be the USB device ID to
* search for.
*/
if (strncmp(port, "usb", 3) == 0) {
#if defined(HAVE_LIBUSB)
serdev = &usb_serdev_frame;
pinfo.usbinfo.vid = USB_VENDOR_ATMEL;
pinfo.usbinfo.flags = 0;
pinfo.usbinfo.pid = USB_DEVICE_STK600;
PDATA(pgm)->pgmtype = PGMTYPE_STK600;
pgm->set_sck_period = stk600_set_sck_period;
pgm->fd.usb.max_xfer = USBDEV_MAX_XFER_MKII;
pgm->fd.usb.rep = USBDEV_BULK_EP_READ_STK600;
pgm->fd.usb.wep = USBDEV_BULK_EP_WRITE_STK600;
pgm->fd.usb.eep = 0; /* no seperate EP for events */
#else
pmsg_error("avrdude was compiled without usb support\n");
return -1;
#endif
}
strcpy(pgm->port, port);
if (serial_open(port, pinfo, &pgm->fd)==-1) {
return -1;
}
/*
* drain any extraneous input
*/
stk500v2_drain(pgm, 0);
stk500v2_getsync(pgm);
stk500v2_drain(pgm, 0);
if (pgm->bitclock != 0.0) {
if (pgm->set_sck_period(pgm, pgm->bitclock) != 0)
return -1;
}
return 0;
}
static void stk500v2_close(PROGRAMMER *pgm) {
DEBUG("STK500V2: stk500v2_close()\n");
serial_close(&pgm->fd);
pgm->fd.ifd = -1;
}
static int stk500v2_loadaddr(const PROGRAMMER *pgm, unsigned int addr) {
unsigned char buf[16];
int result;
DEBUG("STK500V2: stk500v2_loadaddr(%d)\n",addr);
buf[0] = CMD_LOAD_ADDRESS;
buf[1] = (addr >> 24) & 0xff;
buf[2] = (addr >> 16) & 0xff;
buf[3] = (addr >> 8) & 0xff;
buf[4] = addr & 0xff;
result = stk500v2_command(pgm, buf, 5, sizeof(buf));
if (result < 0) {
pmsg_error("unable to set load address\n");
return -1;
}
return 0;
}
/*
* Read a single byte, generic HV mode
*/
static int stk500hv_read_byte(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned long addr, unsigned char * value,
enum hvmode mode)
{
int result, cmdlen = 2;
unsigned char buf[266];
unsigned long paddr = 0UL, *paddr_ptr = NULL;
unsigned int pagesize = 0, use_ext_addr = 0, addrshift = 0;
unsigned char *cache_ptr = NULL;
pmsg_notice2("stk500hv_read_byte(.., %s, 0x%lx, ...)\n", mem->desc, addr);
if (strcmp(mem->desc, "flash") == 0) {
buf[0] = mode == PPMODE? CMD_READ_FLASH_PP: CMD_READ_FLASH_HVSP;
cmdlen = 3;
pagesize = PDATA(pgm)->flash_pagesize;
paddr = addr & ~(pagesize - 1);
paddr_ptr = &PDATA(pgm)->flash_pageaddr;
cache_ptr = PDATA(pgm)->flash_pagecache;
addrshift = 1;
/*
* If bit 31 is set, this indicates that the following read/write
* operation will be performed on a memory that is larger than
* 64KBytes. This is an indication to STK500 that a load extended
* address must be executed.
*/
if (mem->op[AVR_OP_LOAD_EXT_ADDR] != NULL) {
use_ext_addr = (1U << 31);
}
} else if (strcmp(mem->desc, "eeprom") == 0) {
buf[0] = mode == PPMODE? CMD_READ_EEPROM_PP: CMD_READ_EEPROM_HVSP;
cmdlen = 3;
pagesize = mem->page_size;
if (pagesize == 0)
pagesize = 1;
paddr = addr & ~(pagesize - 1);
paddr_ptr = &PDATA(pgm)->eeprom_pageaddr;
cache_ptr = PDATA(pgm)->eeprom_pagecache;
} else if (strcmp(mem->desc, "lfuse") == 0 ||
strcmp(mem->desc, "fuse") == 0) {
buf[0] = mode == PPMODE? CMD_READ_FUSE_PP: CMD_READ_FUSE_HVSP;
addr = 0;
} else if (strcmp(mem->desc, "hfuse") == 0) {
buf[0] = mode == PPMODE? CMD_READ_FUSE_PP: CMD_READ_FUSE_HVSP;
addr = 1;
} else if (strcmp(mem->desc, "efuse") == 0) {
buf[0] = mode == PPMODE? CMD_READ_FUSE_PP: CMD_READ_FUSE_HVSP;
addr = 2;
} else if (strcmp(mem->desc, "lock") == 0) {
buf[0] = mode == PPMODE? CMD_READ_LOCK_PP: CMD_READ_LOCK_HVSP;
} else if (strcmp(mem->desc, "calibration") == 0) {
buf[0] = mode == PPMODE? CMD_READ_OSCCAL_PP: CMD_READ_OSCCAL_HVSP;
} else if (strcmp(mem->desc, "signature") == 0) {
buf[0] = mode == PPMODE? CMD_READ_SIGNATURE_PP: CMD_READ_SIGNATURE_HVSP;
}
/*
* In HV mode, we have to use paged reads for flash and
* EEPROM, and cache the results in a page cache.
*
* Page cache validation is based on "{flash,eeprom}_pageaddr"
* (holding the base address of the most recent cache fill
* operation). This variable is set to (unsigned long)-1L when the
* cache needs to be invalidated.
*/
if (pagesize && paddr == *paddr_ptr) {
*value = cache_ptr[addr & (pagesize - 1)];
return 0;
}
if (cmdlen == 3) {
/* long command, fill in # of bytes */
buf[1] = (pagesize >> 8) & 0xff;
buf[2] = pagesize & 0xff;
/* flash and EEPROM reads require the load address command */
if (stk500v2_loadaddr(pgm, use_ext_addr | (paddr >> addrshift)) < 0)
return -1;
} else {
buf[1] = addr;
}
pmsg_notice2("stk500hv_read_byte(): sending read memory command: ");
result = stk500v2_command(pgm, buf, cmdlen, sizeof(buf));
if (result < 0) {
pmsg_error("timeout/error communicating with programmer\n");
return -1;
}
if (pagesize) {
*paddr_ptr = paddr;
memcpy(cache_ptr, buf + 2, pagesize);
*value = cache_ptr[addr & (pagesize - 1)];
} else {
*value = buf[2];
}
return 0;
}
/*
* Read a single byte, PP mode
*/
static int stk500pp_read_byte(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned long addr, unsigned char * value)
{
return stk500hv_read_byte(pgm, p, mem, addr, value, PPMODE);
}
/*
* Read a single byte, HVSP mode
*/
static int stk500hvsp_read_byte(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned long addr, unsigned char * value)
{
return stk500hv_read_byte(pgm, p, mem, addr, value, HVSPMODE);
}
/*
* Read a single byte, ISP mode
*
* By now, only used on the JTAGICE3 which does not implement the
* CMD_SPI_MULTI SPI passthrough command.
*/
static int stk500isp_read_byte(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned long addr, unsigned char * value)
{
int result, pollidx;
unsigned char buf[6];
unsigned long paddr = 0UL, *paddr_ptr = NULL;
unsigned int pagesize = 0;
unsigned char *cache_ptr = NULL;
OPCODE *op;
pmsg_notice2("stk500isp_read_byte(.., %s, 0x%lx, ...)\n", mem->desc, addr);
if (strcmp(mem->desc, "flash") == 0 ||
strcmp(mem->desc, "eeprom") == 0) {
// use paged access, and cache result
if (strcmp(mem->desc, "flash") == 0) {
pagesize = PDATA(pgm)->flash_pagesize;
paddr = addr & ~(pagesize - 1);
paddr_ptr = &PDATA(pgm)->flash_pageaddr;
cache_ptr = PDATA(pgm)->flash_pagecache;
} else {
pagesize = mem->page_size;
if (pagesize == 0)
pagesize = 1;
paddr = addr & ~(pagesize - 1);
paddr_ptr = &PDATA(pgm)->eeprom_pageaddr;
cache_ptr = PDATA(pgm)->eeprom_pagecache;
}
if (paddr == *paddr_ptr) {
*value = cache_ptr[addr & (pagesize - 1)];
return 0;
}
if (stk500v2_paged_load(pgm, p, mem, pagesize, paddr, pagesize) < 0)
return -1;
*paddr_ptr = paddr;
memcpy(cache_ptr, &mem->buf[paddr], pagesize);
*value = cache_ptr[addr & (pagesize - 1)];
return 0;
}
if (strcmp(mem->desc, "lfuse") == 0 ||
strcmp(mem->desc, "fuse") == 0) {
buf[0] = CMD_READ_FUSE_ISP;
addr = 0;
} else if (strcmp(mem->desc, "hfuse") == 0) {
buf[0] = CMD_READ_FUSE_ISP;
addr = 1;
} else if (strcmp(mem->desc, "efuse") == 0) {
buf[0] = CMD_READ_FUSE_ISP;
addr = 2;
} else if (strcmp(mem->desc, "lock") == 0) {
buf[0] = CMD_READ_LOCK_ISP;
} else if (strcmp(mem->desc, "calibration") == 0) {
buf[0] = CMD_READ_OSCCAL_ISP;
} else if (strcmp(mem->desc, "signature") == 0) {
buf[0] = CMD_READ_SIGNATURE_ISP;
}
if ((op = mem->op[AVR_OP_READ]) == NULL) {
pmsg_error("invalid operation AVR_OP_READ on %s memory\n", mem->desc);
return -1;
}
memset(buf+2, 0, 4);
avr_set_bits(op, buf + 2);
if ((pollidx = avr_get_output_index(op)) == -1) {
pmsg_warning("cannot determine pollidx to read %s memory\n", mem->desc);
pollidx = 3;
}
buf[1] = pollidx + 1;
avr_set_addr(op, buf + 2, addr);
pmsg_notice2("stk500isp_read_byte(): sending read memory command: ");
result = stk500v2_command(pgm, buf, 6, sizeof(buf));
if (result < 0) {
pmsg_error("timeout/error communicating with programmer\n");
return -1;
}
*value = buf[2];
return 0;
}
/*
* Write one byte, generic HV mode
*/
static int stk500hv_write_byte(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned long addr, unsigned char data,
enum hvmode mode)
{
int result, cmdlen, timeout = 0, pulsewidth = 0;
unsigned char buf[266];
unsigned long paddr = 0UL, *paddr_ptr = NULL;
unsigned int pagesize = 0, use_ext_addr = 0, addrshift = 0;
unsigned char *cache_ptr = NULL;
pmsg_notice2("stk500hv_write_byte(.., %s, 0x%lx, ...)\n", mem->desc, addr);
if (strcmp(mem->desc, "flash") == 0) {
buf[0] = mode == PPMODE? CMD_PROGRAM_FLASH_PP: CMD_PROGRAM_FLASH_HVSP;
pagesize = PDATA(pgm)->flash_pagesize;
paddr = addr & ~(pagesize - 1);
paddr_ptr = &PDATA(pgm)->flash_pageaddr;
cache_ptr = PDATA(pgm)->flash_pagecache;
addrshift = 1;
/*
* If bit 31 is set, this indicates that the following read/write
* operation will be performed on a memory that is larger than
* 64KBytes. This is an indication to STK500 that a load extended
* address must be executed.
*/
if (mem->op[AVR_OP_LOAD_EXT_ADDR] != NULL) {
use_ext_addr = (1U << 31);
}
} else if (strcmp(mem->desc, "eeprom") == 0) {
buf[0] = mode == PPMODE? CMD_PROGRAM_EEPROM_PP: CMD_PROGRAM_EEPROM_HVSP;
pagesize = mem->page_size;
if (pagesize == 0)
pagesize = 1;
paddr = addr & ~(pagesize - 1);
paddr_ptr = &PDATA(pgm)->eeprom_pageaddr;
cache_ptr = PDATA(pgm)->eeprom_pagecache;
} else if (strcmp(mem->desc, "lfuse") == 0 ||
strcmp(mem->desc, "fuse") == 0) {
buf[0] = mode == PPMODE? CMD_PROGRAM_FUSE_PP: CMD_PROGRAM_FUSE_HVSP;
addr = 0;
pulsewidth = p->programfusepulsewidth;
timeout = p->programfusepolltimeout;
} else if (strcmp(mem->desc, "hfuse") == 0) {
buf[0] = mode == PPMODE? CMD_PROGRAM_FUSE_PP: CMD_PROGRAM_FUSE_HVSP;
addr = 1;
pulsewidth = p->programfusepulsewidth;
timeout = p->programfusepolltimeout;
} else if (strcmp(mem->desc, "efuse") == 0) {
buf[0] = mode == PPMODE? CMD_PROGRAM_FUSE_PP: CMD_PROGRAM_FUSE_HVSP;
addr = 2;
pulsewidth = p->programfusepulsewidth;
timeout = p->programfusepolltimeout;
} else if (strcmp(mem->desc, "lock") == 0) {
buf[0] = mode == PPMODE? CMD_PROGRAM_LOCK_PP: CMD_PROGRAM_LOCK_HVSP;
pulsewidth = p->programlockpulsewidth;
timeout = p->programlockpolltimeout;
} else {
pmsg_error("unsupported memory type %s\n", mem->desc);
return -1;
}
cmdlen = 5 + pagesize;
/*
* In HV mode, we have to use paged writes for flash and
* EEPROM. As both, flash and EEPROM cells can only be programmed
* from `1' to `0' bits (even EEPROM does not support auto-erase in
* parallel mode), we just pre-fill the page cache with 0xff, so all
* those cells that are outside our current address will remain
* unaffected.
*/
if (pagesize) {
memset(cache_ptr, 0xff, pagesize);
cache_ptr[addr & (pagesize - 1)] = data;
/* long command, fill in # of bytes */
buf[1] = (pagesize >> 8) & 0xff;
buf[2] = pagesize & 0xff;
/*
* Synthesize the mode byte. This is simpler than adding yet
* another parameter to the avrdude.conf file. We calculate the
* bits corresponding to the page size, as explained in AVR068.
* We set bit 7, to indicate this is to actually write the page to
* the target device. We set bit 6 to indicate this is the very
* last page to be programmed, whatever this means -- we just
* pretend we don't know any better. ;-) Bit 0 is set if this is
* a paged memory, which means it has a page size of more than 2.
*/
buf[3] = 0x80 | 0x40;
if (pagesize > 2) {
unsigned int rv = stk500v2_mode_for_pagesize(pagesize);
if (rv == 0)
return -1;
buf[3] |= rv;
buf[3] |= 0x01;
}
buf[4] = mem->delay;
memcpy(buf + 5, cache_ptr, pagesize);
/* flash and EEPROM reads require the load address command */
if (stk500v2_loadaddr(pgm, use_ext_addr | (paddr >> addrshift)) < 0)
return -1;
} else {
buf[1] = addr;
buf[2] = data;
if (mode == PPMODE) {
buf[3] = pulsewidth;
buf[4] = timeout;
} else {
buf[3] = timeout;
cmdlen--;
}
}
pmsg_notice2("stk500hv_write_byte(): sending write memory command: ");
result = stk500v2_command(pgm, buf, cmdlen, sizeof(buf));
if (result < 0) {
pmsg_error("timeout/error communicating with programmer\n");
return -1;
}
if (pagesize) {
/* Invalidate the page cache. */
*paddr_ptr = (unsigned long)-1L;
}
return 0;
}
/*
* Write one byte, PP mode
*/
static int stk500pp_write_byte(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned long addr, unsigned char data)
{
return stk500hv_write_byte(pgm, p, mem, addr, data, PPMODE);
}
/*
* Write one byte, HVSP mode
*/
static int stk500hvsp_write_byte(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned long addr, unsigned char data)
{
return stk500hv_write_byte(pgm, p, mem, addr, data, HVSPMODE);
}
/*
* Write one byte, ISP mode
*/
static int stk500isp_write_byte(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned long addr, unsigned char data)
{
int result;
unsigned char buf[5];
unsigned long paddr = 0UL, *paddr_ptr = NULL;
unsigned int pagesize = 0;
unsigned char *cache_ptr = NULL;
OPCODE *op;
pmsg_notice2("stk500isp_write_byte(.., %s, 0x%lx, ...)\n", mem->desc, addr);
if (strcmp(mem->desc, "flash") == 0 ||
strcmp(mem->desc, "eeprom") == 0) {
if (strcmp(mem->desc, "flash") == 0) {
pagesize = PDATA(pgm)->flash_pagesize;
paddr = addr & ~(pagesize - 1);
paddr_ptr = &PDATA(pgm)->flash_pageaddr;
cache_ptr = PDATA(pgm)->flash_pagecache;
if ((mem->mode & 1) == 0)
/* old, unpaged device, really write single bytes */
pagesize = 1;
} else {
pagesize = mem->page_size;
if (pagesize == 0)
pagesize = 1;
paddr = addr & ~(pagesize - 1);
paddr_ptr = &PDATA(pgm)->eeprom_pageaddr;
cache_ptr = PDATA(pgm)->eeprom_pagecache;
}
/*
* We use paged writes for flash and EEPROM, reading back the
* current page first, modify the byte to write, and write out the
* entire page.
*/
if (stk500v2_paged_load(pgm, p, mem, pagesize, paddr, pagesize) < 0)
return -1;
memcpy(cache_ptr, mem->buf + paddr, pagesize);
*paddr_ptr = paddr;
cache_ptr[addr & (pagesize - 1)] = data;
memcpy(mem->buf + paddr, cache_ptr, pagesize);
stk500v2_paged_write(pgm, p, mem, pagesize, paddr, pagesize);
return 0;
}
memset(buf, 0, sizeof buf);
if (strcmp(mem->desc, "lfuse") == 0 ||
strcmp(mem->desc, "fuse") == 0) {
buf[0] = CMD_PROGRAM_FUSE_ISP;
addr = 0;
} else if (strcmp(mem->desc, "hfuse") == 0) {
buf[0] = CMD_PROGRAM_FUSE_ISP;
addr = 1;
} else if (strcmp(mem->desc, "efuse") == 0) {
buf[0] = CMD_PROGRAM_FUSE_ISP;
addr = 2;
} else if (strcmp(mem->desc, "lock") == 0) {
buf[0] = CMD_PROGRAM_LOCK_ISP;
} else {
pmsg_error("unsupported memory type: %s\n", mem->desc);
return -1;
}
if ((op = mem->op[AVR_OP_WRITE]) == NULL) {
pmsg_error("no AVR_OP_WRITE for %s memory\n", mem->desc);
return -1;
}
avr_set_bits(op, buf + 1);
avr_set_addr(op, buf + 1, addr);
avr_set_input(op, buf + 1, data);
pmsg_notice2("stk500isp_write_byte(): sending write memory command: ");
result = stk500v2_command(pgm, buf, 5, sizeof(buf));
if (result < 0) {
pmsg_error("timeout/error communicating with programmer\n");
return -1;
}
/*
* Prevent verification readback to be too fast, see
* https://savannah.nongnu.org/bugs/index.php?42267
*
* After all, this is just an ugly hack working around some
* brokeness in the Atmel firmware starting with the AVRISPmkII (the
* old JTAGICEmkII isn't affected). Let's hope 10 ms of additional
* delay are good enough for everyone.
*/
usleep(10000);
return 0;
}
static int stk500v2_paged_write(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
unsigned int block_size, last_addr, addrshift, use_ext_addr;
unsigned int maxaddr = addr + n_bytes;
unsigned char commandbuf[10];
unsigned char buf[266];
unsigned char cmds[4];
int result;
OPCODE * rop, * wop;
DEBUG("STK500V2: stk500v2_paged_write(..,%s,%u,%u,%u)\n",
m->desc, page_size, addr, n_bytes);
if (page_size == 0) page_size = 256;
addrshift = 0;
use_ext_addr = 0;
// determine which command is to be used
if (strcmp(m->desc, "flash") == 0) {
addrshift = 1;
commandbuf[0] = CMD_PROGRAM_FLASH_ISP;
/*
* If bit 31 is set, this indicates that the following read/write
* operation will be performed on a memory that is larger than
* 64KBytes. This is an indication to STK500 that a load extended
* address must be executed.
*/
if (m->op[AVR_OP_LOAD_EXT_ADDR] != NULL) {
use_ext_addr = (1U << 31);
}
} else if (strcmp(m->desc, "eeprom") == 0) {
commandbuf[0] = CMD_PROGRAM_EEPROM_ISP;
}
commandbuf[4] = m->delay;
if (addrshift == 0) {
wop = m->op[AVR_OP_WRITE];
rop = m->op[AVR_OP_READ];
}
else {
wop = m->op[AVR_OP_WRITE_LO];
rop = m->op[AVR_OP_READ_LO];
}
// if the memory is paged, load the appropriate commands into the buffer
if (m->mode & 0x01) {
commandbuf[3] = m->mode | 0x80; // yes, write the page to flash
if (m->op[AVR_OP_LOADPAGE_LO] == NULL) {
pmsg_error("loadpage instruction not defined for part %s\n", p->desc);
return -1;
}
memset(cmds, 0, sizeof cmds);
avr_set_bits(m->op[AVR_OP_LOADPAGE_LO], cmds);
commandbuf[5] = cmds[0];
if (m->op[AVR_OP_WRITEPAGE] == NULL) {
pmsg_error("write page instruction not defined for part %s\n", p->desc);
return -1;
}
memset(cmds, 0, sizeof cmds);
avr_set_bits(m->op[AVR_OP_WRITEPAGE], cmds);
commandbuf[6] = cmds[0];
// otherwise, we need to load different commands in
}
else {
commandbuf[3] = m->mode | 0x80; // yes, write the words to flash
if (wop == NULL) {
pmsg_error("write instruction not defined for part %s\n", p->desc);
return -1;
}
memset(cmds, 0, sizeof cmds);
avr_set_bits(wop, cmds);
commandbuf[5] = cmds[0];
commandbuf[6] = 0;
}
// the read command is common to both methods
if (rop == NULL) {
pmsg_error("read instruction not defined for part %s\n", p->desc);
return -1;
}
memset(cmds, 0, sizeof cmds);
avr_set_bits(rop, cmds);
commandbuf[7] = cmds[0];
commandbuf[8] = m->readback[0];
commandbuf[9] = m->readback[1];
last_addr=UINT_MAX; /* impossible address */
for (; addr < maxaddr; addr += page_size) {
if ((maxaddr - addr) < page_size)
block_size = maxaddr - addr;
else
block_size = page_size;
DEBUG("block_size at addr %d is %d\n",addr,block_size);
memcpy(buf,commandbuf,sizeof(commandbuf));
buf[1] = block_size >> 8;
buf[2] = block_size & 0xff;
if((last_addr==UINT_MAX)||(last_addr+block_size != addr)){
if (stk500v2_loadaddr(pgm, use_ext_addr | (addr >> addrshift)) < 0)
return -1;
}
last_addr=addr;
memcpy(buf+10,m->buf+addr, block_size);
result = stk500v2_command(pgm,buf,block_size+10, sizeof(buf));
if (result < 0) {
pmsg_error("write command failed\n");
return -1;
}
}
return n_bytes;
}
/*
* Write pages of flash/EEPROM, generic HV mode
*/
static int stk500hv_paged_write(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes,
enum hvmode mode)
{
unsigned int block_size, last_addr, addrshift, use_ext_addr;
unsigned int maxaddr = addr + n_bytes;
unsigned char commandbuf[5], buf[266];
int result;
DEBUG("STK500V2: stk500hv_paged_write(..,%s,%u,%u,%u)\n",
m->desc, page_size, addr, n_bytes);
addrshift = 0;
use_ext_addr = 0;
// determine which command is to be used
if (strcmp(m->desc, "flash") == 0) {
addrshift = 1;
PDATA(pgm)->flash_pageaddr = (unsigned long)-1L;
commandbuf[0] = mode == PPMODE? CMD_PROGRAM_FLASH_PP: CMD_PROGRAM_FLASH_HVSP;
/*
* If bit 31 is set, this indicates that the following read/write
* operation will be performed on a memory that is larger than
* 64KBytes. This is an indication to STK500 that a load extended
* address must be executed.
*/
if (m->op[AVR_OP_LOAD_EXT_ADDR] != NULL) {
use_ext_addr = (1U << 31);
}
} else if (strcmp(m->desc, "eeprom") == 0) {
PDATA(pgm)->eeprom_pageaddr = (unsigned long)-1L;
commandbuf[0] = mode == PPMODE? CMD_PROGRAM_EEPROM_PP: CMD_PROGRAM_EEPROM_HVSP;
}
/*
* Synthesize the mode byte. This is simpler than adding yet
* another parameter to the avrdude.conf file. We calculate the
* bits corresponding to the page size, as explained in AVR068. We
* set bit 7, to indicate this is to actually write the page to the
* target device. We set bit 6 to indicate this is the very last
* page to be programmed, whatever this means -- we just pretend we
* don't know any better. ;-) Finally, we set bit 0 to say this is
* a paged memory, after all, that's why we got here at all.
*/
commandbuf[3] = 0x80 | 0x40;
if (page_size > 2) {
unsigned int rv = stk500v2_mode_for_pagesize(page_size);
if (rv == 0)
return -1;
commandbuf[3] |= rv;
commandbuf[3] |= 0x01;
}
commandbuf[4] = m->delay;
if (page_size == 0) page_size = 256;
last_addr = UINT_MAX; /* impossible address */
for (; addr < maxaddr; addr += page_size) {
if ((maxaddr - addr) < page_size)
block_size = maxaddr - addr;
else
block_size = page_size;
DEBUG("block_size at addr %d is %d\n",addr,block_size);
memcpy(buf, commandbuf, sizeof(commandbuf));
buf[1] = page_size >> 8;
buf[2] = page_size & 0xff;
if ((last_addr == UINT_MAX) || (last_addr + block_size != addr)) {
if (stk500v2_loadaddr(pgm, use_ext_addr | (addr >> addrshift)) < 0)
return -1;
}
last_addr=addr;
memcpy(buf + 5, m->buf + addr, block_size);
if (block_size != page_size)
memset(buf + 5 + block_size, 0xff, page_size - block_size);
result = stk500v2_command(pgm, buf, page_size + 5, sizeof(buf));
if (result < 0) {
pmsg_error("write command failed\n");
return -1;
}
}
return n_bytes;
}
/*
* Write pages of flash/EEPROM, PP mode
*/
static int stk500pp_paged_write(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
return stk500hv_paged_write(pgm, p, m, page_size, addr, n_bytes, PPMODE);
}
/*
* Write pages of flash/EEPROM, HVSP mode
*/
static int stk500hvsp_paged_write(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
return stk500hv_paged_write(pgm, p, m, page_size, addr, n_bytes, HVSPMODE);
}
static int stk500v2_paged_load(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
unsigned int block_size, hiaddr, addrshift, use_ext_addr;
unsigned int maxaddr = addr + n_bytes;
unsigned char commandbuf[4];
unsigned char buf[275]; // max buffer size for stk500v2 at this point
unsigned char cmds[4];
int result;
OPCODE * rop;
DEBUG("STK500V2: stk500v2_paged_load(..,%s,%u,%u,%u)\n",
m->desc, page_size, addr, n_bytes);
page_size = m->readsize;
rop = m->op[AVR_OP_READ];
hiaddr = UINT_MAX;
addrshift = 0;
use_ext_addr = 0;
// determine which command is to be used
if (strcmp(m->desc, "flash") == 0) {
commandbuf[0] = CMD_READ_FLASH_ISP;
rop = m->op[AVR_OP_READ_LO];
addrshift = 1;
/*
* If bit 31 is set, this indicates that the following read/write
* operation will be performed on a memory that is larger than
* 64KBytes. This is an indication to STK500 that a load extended
* address must be executed.
*/
if (m->op[AVR_OP_LOAD_EXT_ADDR] != NULL) {
use_ext_addr = (1U << 31);
}
}
else if (strcmp(m->desc, "eeprom") == 0) {
commandbuf[0] = CMD_READ_EEPROM_ISP;
}
// the read command is common to both methods
if (rop == NULL) {
pmsg_error("read instruction not defined for part %s\n", p->desc);
return -1;
}
memset(cmds, 0, sizeof cmds);
avr_set_bits(rop, cmds);
commandbuf[3] = cmds[0];
for (; addr < maxaddr; addr += page_size) {
if ((maxaddr - addr) < page_size)
block_size = maxaddr - addr;
else
block_size = page_size;
DEBUG("block_size at addr %d is %d\n",addr,block_size);
memcpy(buf,commandbuf,sizeof(commandbuf));
buf[1] = block_size >> 8;
buf[2] = block_size & 0xff;
// Ensure a new "load extended address" will be issued
// when crossing a 64 KB boundary in flash.
if (hiaddr != (addr & ~0xFFFF)) {
hiaddr = addr & ~0xFFFF;
if (stk500v2_loadaddr(pgm, use_ext_addr | (addr >> addrshift)) < 0)
return -1;
}
result = stk500v2_command(pgm,buf,4,sizeof(buf));
if (result < 0) {
pmsg_error("read command failed\n");
return -1;
}
#if 0
for (i=0; i<page_size; i++) {
msg_info("%02X", buf[2+i]);
if (i%16 == 15)
msg_info("\n");
}
#endif
memcpy(&m->buf[addr], &buf[2], block_size);
}
return n_bytes;
}
/*
* Read pages of flash/EEPROM, generic HV mode
*/
static int stk500hv_paged_load(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes,
enum hvmode mode)
{
unsigned int block_size, hiaddr, addrshift, use_ext_addr;
unsigned int maxaddr = addr + n_bytes;
unsigned char commandbuf[3], buf[266];
int result;
DEBUG("STK500V2: stk500hv_paged_load(..,%s,%u,%u,%u)\n",
m->desc, page_size, addr, n_bytes);
page_size = m->readsize;
hiaddr = UINT_MAX;
addrshift = 0;
use_ext_addr = 0;
// determine which command is to be used
if (strcmp(m->desc, "flash") == 0) {
commandbuf[0] = mode == PPMODE? CMD_READ_FLASH_PP: CMD_READ_FLASH_HVSP;
addrshift = 1;
/*
* If bit 31 is set, this indicates that the following read/write
* operation will be performed on a memory that is larger than
* 64KBytes. This is an indication to STK500 that a load extended
* address must be executed.
*/
if (m->op[AVR_OP_LOAD_EXT_ADDR] != NULL) {
use_ext_addr = (1U << 31);
}
}
else if (strcmp(m->desc, "eeprom") == 0) {
commandbuf[0] = mode == PPMODE? CMD_READ_EEPROM_PP: CMD_READ_EEPROM_HVSP;
}
for (; addr < maxaddr; addr += page_size) {
if ((maxaddr - addr) < page_size)
block_size = maxaddr - addr;
else
block_size = page_size;
DEBUG("block_size at addr %d is %d\n",addr,block_size);
memcpy(buf, commandbuf, sizeof(commandbuf));
buf[1] = block_size >> 8;
buf[2] = block_size & 0xff;
// Ensure a new "load extended address" will be issued
// when crossing a 64 KB boundary in flash.
if (hiaddr != (addr & ~0xFFFF)) {
hiaddr = addr & ~0xFFFF;
if (stk500v2_loadaddr(pgm, use_ext_addr | (addr >> addrshift)) < 0)
return -1;
}
result = stk500v2_command(pgm, buf, 3, sizeof(buf));
if (result < 0) {
pmsg_error("read command failed\n");
return -1;
}
#if 0
for (i = 0; i < page_size; i++) {
msg_info("%02X", buf[2 + i]);
if (i % 16 == 15)
msg_info("\n");
}
#endif
memcpy(&m->buf[addr], &buf[2], block_size);
}
return n_bytes;
}
/*
* Read pages of flash/EEPROM, PP mode
*/
static int stk500pp_paged_load(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
return stk500hv_paged_load(pgm, p, m, page_size, addr, n_bytes, PPMODE);
}
/*
* Read pages of flash/EEPROM, HVSP mode
*/
static int stk500hvsp_paged_load(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
return stk500hv_paged_load(pgm, p, m, page_size, addr, n_bytes, HVSPMODE);
}
static int stk500v2_page_erase(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int addr)
{
pmsg_error("this function must never be called\n");
return -1;
}
static int stk500v2_set_vtarget(const PROGRAMMER *pgm, double v) {
unsigned char uaref, utarg;
utarg = (unsigned)((v + 0.049) * 10);
if (stk500v2_getparm(pgm, PARAM_VADJUST, &uaref) != 0) {
pmsg_error("cannot obtain V[aref]\n");
return -1;
}
if (uaref > utarg) {
pmsg_warning("reducing V[aref] from %.1f to %.1f\n", uaref/10.0, v);
if (stk500v2_setparm(pgm, PARAM_VADJUST, utarg) != 0)
return -1;
}
return stk500v2_setparm(pgm, PARAM_VTARGET, utarg);
}
static int stk500v2_set_varef(const PROGRAMMER *pgm, unsigned int chan /* unused */,
double v)
{
unsigned char uaref, utarg;
uaref = (unsigned)((v + 0.049) * 10);
if (stk500v2_getparm(pgm, PARAM_VTARGET, &utarg) != 0) {
pmsg_error("cannot obtain V[target]\n");
return -1;
}
if (uaref > utarg) {
pmsg_error("V[aref] must not be greater than "
"V[target] = %.1f\n", utarg/10.0);
return -1;
}
return stk500v2_setparm(pgm, PARAM_VADJUST, uaref);
}
static int stk500v2_set_fosc(const PROGRAMMER *pgm, double v) {
int fosc;
unsigned char prescale, cmatch;
static unsigned ps[] = {
1, 8, 32, 64, 128, 256, 1024
};
size_t idx;
int rc;
prescale = cmatch = 0;
if (v > 0.0) {
if (v > STK500V2_XTAL / 2) {
const char *unit;
if (v > 1e6) {
v /= 1e6;
unit = "MHz";
} else if (v > 1e3) {
v /= 1e3;
unit = "kHz";
} else
unit = "Hz";
pmsg_warning("f = %.3f %s too high, using %.3f MHz\n",
v, unit, STK500V2_XTAL / 2e6);
fosc = STK500V2_XTAL / 2;
} else
fosc = (unsigned)v;
for (idx = 0; idx < sizeof(ps) / sizeof(ps[0]); idx++) {
if ((unsigned) fosc >= STK500V2_XTAL / (256 * ps[idx] * 2)) {
/* this prescaler value can handle our frequency */
prescale = idx + 1;
cmatch = (unsigned)(STK500V2_XTAL / (2 * fosc * ps[idx])) - 1;
break;
}
}
if (idx == sizeof(ps) / sizeof(ps[0])) {
pmsg_warning("f = %u Hz too low, %u Hz min\n",
fosc, STK500V2_XTAL / (256 * 1024 * 2));
return -1;
}
}
if ((rc = stk500v2_setparm(pgm, PARAM_OSC_PSCALE, prescale)) != 0
|| (rc = stk500v2_setparm(pgm, PARAM_OSC_CMATCH, cmatch)) != 0)
return rc;
return 0;
}
/* The list of SCK frequencies supported by the AVRISP mkII, as listed
* in AVR069 */
static double avrispmkIIfreqs[] = {
8000000, 4000000, 2000000, 1000000, 500000, 250000, 125000,
96386, 89888, 84211, 79208, 74767, 70797, 67227, 64000,
61069, 58395, 55945, 51613, 49690, 47905, 46243, 43244,
41885, 39409, 38278, 36200, 34335, 32654, 31129, 29740,
28470, 27304, 25724, 24768, 23461, 22285, 21221, 20254,
19371, 18562, 17583, 16914, 16097, 15356, 14520, 13914,
13224, 12599, 12031, 11511, 10944, 10431, 9963, 9468,
9081, 8612, 8239, 7851, 7498, 7137, 6809, 6478, 6178,
5879, 5607, 5359, 5093, 4870, 4633, 4418, 4209, 4019,
3823, 3645, 3474, 3310, 3161, 3011, 2869, 2734, 2611,
2484, 2369, 2257, 2152, 2052, 1956, 1866, 1779, 1695,
1615, 1539, 1468, 1398, 1333, 1271, 1212, 1155, 1101,
1049, 1000, 953, 909, 866, 826, 787, 750, 715, 682,
650, 619, 590, 563, 536, 511, 487, 465, 443, 422,
402, 384, 366, 349, 332, 317, 302, 288, 274, 261,
249, 238, 226, 216, 206, 196, 187, 178, 170, 162,
154, 147, 140, 134, 128, 122, 116, 111, 105, 100,
95.4, 90.9, 86.6, 82.6, 78.7, 75.0, 71.5, 68.2,
65.0, 61.9, 59.0, 56.3, 53.6, 51.1
};
static int stk500v2_set_sck_period_mk2(const PROGRAMMER *pgm, double v) {
size_t i;
for (i = 0; i < sizeof(avrispmkIIfreqs) / sizeof(avrispmkIIfreqs[0]); i++) {
if (1 / avrispmkIIfreqs[i] >= v)
break;
}
if (i >= sizeof(avrispmkIIfreqs) / sizeof(avrispmkIIfreqs[0])) {
pmsg_error("invalid SCK period: %g\n", v);
return -1;
}
msg_notice2("Using p = %.2f us for SCK (param = %d)\n",
1000000 / avrispmkIIfreqs[i], (int) i);
return stk500v2_setparm(pgm, PARAM_SCK_DURATION, i);
}
/*
* Return the "mode" value for the parallel and HVSP modes that
* corresponds to the pagesize.
*/
static unsigned int stk500v2_mode_for_pagesize(unsigned int pagesize)
{
switch (pagesize)
{
case 256: return 0u << 1;
case 2: return 1u << 1;
case 4: return 2u << 1;
case 8: return 3u << 1;
case 16: return 4u << 1;
case 32: return 5u << 1;
case 64: return 6u << 1;
case 128: return 7u << 1;
}
pmsg_error("invalid pagesize: %u\n", pagesize);
return 0;
}
/*
* See pseudo-code in AVR068
*
* This algorithm only fits for the STK500 itself. For the (old)
* AVRISP, the resulting ISP clock is only half. While this would be
* easy to fix in the algorithm, we'd need to add another
* configuration flag for this to the config file. Given the old
* AVRISP devices are virtually no longer around (and the AVRISPmkII
* uses a different algorithm below), it's probably not worth the
* hassle.
*/
static int stk500v2_set_sck_period(const PROGRAMMER *pgm, double v) {
unsigned int d;
unsigned char dur;
double f = 1 / v;
if (f >= 1.8432E6)
d = 0;
else if (f > 460.8E3)
d = 1;
else if (f > 115.2E3)
d = 2;
else if (f > 57.6E3)
d = 3;
else
d = (unsigned int)ceil(1 / (24 * f / (double)STK500V2_XTAL) - 10.0 / 12.0);
if (d >= 255)
d = 254;
dur = d;
return stk500v2_setparm(pgm, PARAM_SCK_DURATION, dur);
}
static double stk500v2_sck_to_us(const PROGRAMMER *pgm, unsigned char dur) {
double x;
if (dur == 0)
return 0.5425;
if (dur == 1)
return 2.17;
if (dur == 2)
return 8.68;
if (dur == 3)
return 17.36;
x = (double)dur + 10.0 / 12.0;
x = 1.0 / x;
x /= 24.0;
x *= (double)STK500V2_XTAL;
return 1E6 / x;
}
static int stk600_set_vtarget(const PROGRAMMER *pgm, double v) {
unsigned char utarg;
unsigned int uaref;
int rv;
utarg = (unsigned)((v + 0.049) * 10);
if (stk500v2_getparm2(pgm, PARAM2_AREF0, &uaref) != 0) {
pmsg_error("cannot obtain V[aref][0]\n");
return -1;
}
if (uaref > (unsigned)utarg * 10) {
pmsg_warning("reducing V[aref][0] from %.2f to %.1f\n", uaref/100.0, v);
uaref = 10 * (unsigned)utarg;
if (stk500v2_setparm2(pgm, PARAM2_AREF0, uaref) != 0)
return -1;
}
if (stk500v2_getparm2(pgm, PARAM2_AREF1, &uaref) != 0) {
pmsg_error("cannot obtain V[aref][1]\n");
return -1;
}
if (uaref > (unsigned)utarg * 10) {
pmsg_warning("reducing V[aref][1] from %.2f to %.1f\n", uaref/100.0, v);
uaref = 10 * (unsigned)utarg;
if (stk500v2_setparm2(pgm, PARAM2_AREF1, uaref)
!= 0)
return -1;
}
/*
* Vtarget on the STK600 can only be adjusted while not being in
* programming mode.
*/
if (PDATA(pgm)->lastpart)
pgm->disable(pgm);
rv = stk500v2_setparm(pgm, PARAM_VTARGET, utarg);
if (PDATA(pgm)->lastpart)
pgm->program_enable(pgm, PDATA(pgm)->lastpart);
return rv;
}
static int stk600_set_varef(const PROGRAMMER *pgm, unsigned int chan, double v) {
unsigned char utarg;
unsigned int uaref;
uaref = (unsigned)((v + 0.0049) * 100);
if (stk500v2_getparm(pgm, PARAM_VTARGET, &utarg) != 0) {
pmsg_error("cannot obtain V[target]\n");
return -1;
}
if (uaref > (unsigned)utarg * 10) {
pmsg_error("V[aref] must not be greater than V[target] = %.1f\n", utarg/10.0);
return -1;
}
switch (chan)
{
case 0:
return stk500v2_setparm2(pgm, PARAM2_AREF0, uaref);
case 1:
return stk500v2_setparm2(pgm, PARAM2_AREF1, uaref);
default:
pmsg_error("invalid channel %d\n", chan);
return -1;
}
}
static int stk600_set_fosc(const PROGRAMMER *pgm, double v) {
unsigned int oct, dac;
oct = 1.443 * log(v / 1039.0);
dac = 2048 - (2078.0 * pow(2, (double)(10 + oct))) / v;
return stk500v2_setparm2(pgm, PARAM2_CLOCK_CONF, (oct << 12) | (dac << 2));
}
static int stk600_set_sck_period(const PROGRAMMER *pgm, double v) {
unsigned int sck;
sck = ceil((16e6 / (2 * 1.0 / v)) - 1);
if (sck >= 4096)
sck = 4095;
return stk500v2_setparm2(pgm, PARAM2_SCK_DURATION, sck);
}
static int stk500v2_jtag3_set_sck_period(const PROGRAMMER *pgm, double v) {
unsigned char value[3];
unsigned int sck;
if (v < 1E-6)
sck = 0x400;
else if (v > 1E-3)
sck = 1;
else
sck = 1.0 / (1000.0 * v);
value[0] = CMD_SET_SCK;
value[1] = sck & 0xff;
value[2] = (sck >> 8) & 0xff;
if (stk500v2_jtag3_send(pgm, value, 3) < 0)
return -1;
if (stk500v2_jtag3_recv(pgm, value, 3) < 0)
return -1;
return 0;
}
static int stk500v2_getparm(const PROGRAMMER *pgm, unsigned char parm, unsigned char *value) {
unsigned char buf[32];
buf[0] = CMD_GET_PARAMETER;
buf[1] = parm;
if (stk500v2_command(pgm, buf, 2, sizeof(buf)) < 0) {
pmsg_error("unable to get parameter 0x%02x\n", parm);
return -1;
}
*value = buf[2];
return 0;
}
static int stk500v2_setparm_real(const PROGRAMMER *pgm, unsigned char parm, unsigned char value) {
unsigned char buf[32];
buf[0] = CMD_SET_PARAMETER;
buf[1] = parm;
buf[2] = value;
if (stk500v2_command(pgm, buf, 3, sizeof(buf)) < 0) {
pmsg_error("\n%s: stk500v2_setparm(): unable to set parameter 0x%02x\n",
progname, parm);
return -1;
}
return 0;
}
static int stk500v2_setparm(const PROGRAMMER *pgm, unsigned char parm, unsigned char value) {
unsigned char current_value = value;
int res;
res = stk500v2_getparm(pgm, parm, &current_value);
if (res < 0) {
pmsg_error("unable to get parameter 0x%02x\n", parm);
return -1;
}
// don't issue a write if the correct value is already set.
if (value == current_value) {
pmsg_notice2("skipping parameter write; parameter value already set\n");
return 0;
}
return stk500v2_setparm_real(pgm, parm, value);
}
static int stk500v2_getparm2(const PROGRAMMER *pgm, unsigned char parm, unsigned int *value) {
unsigned char buf[32];
buf[0] = CMD_GET_PARAMETER;
buf[1] = parm;
if (stk500v2_command(pgm, buf, 2, sizeof(buf)) < 0) {
pmsg_error("unable to get parameter 0x%02x\n", parm);
return -1;
}
*value = ((unsigned)buf[2] << 8) | buf[3];
return 0;
}
static int stk500v2_setparm2(const PROGRAMMER *pgm, unsigned char parm, unsigned int value) {
unsigned char buf[32];
buf[0] = CMD_SET_PARAMETER;
buf[1] = parm;
buf[2] = value >> 8;
buf[3] = value;
if (stk500v2_command(pgm, buf, 4, sizeof(buf)) < 0) {
pmsg_error("\n%s: stk500v2_setparm2(): unable to set parameter 0x%02x\n",
progname, parm);
return -1;
}
return 0;
}
static const char *stk600_get_cardname(const struct carddata *table,
size_t nele, int id)
{
const struct carddata *cdp;
if (id == 0xFF)
/* 0xFF means this card is not present at all. */
return "Not present";
for (cdp = table; nele > 0; cdp++, nele--)
if (cdp->id == id)
return cdp->name;
return "Unknown";
}
static void stk500v2_display(const PROGRAMMER *pgm, const char *p) {
unsigned char maj = 0, min = 0, hdw = 0, topcard = 0,
maj_s1 = 0, min_s1 = 0, maj_s2 = 0, min_s2 = 0;
unsigned int rev = 0;
const char *topcard_name, *pgmname;
switch (PDATA(pgm)->pgmtype) {
case PGMTYPE_UNKNOWN: pgmname = "Unknown"; break;
case PGMTYPE_STK500: pgmname = "STK500"; break;
case PGMTYPE_AVRISP: pgmname = "AVRISP"; break;
case PGMTYPE_AVRISP_MKII: pgmname = "AVRISP mkII"; break;
case PGMTYPE_STK600: pgmname = "STK600"; break;
default: pgmname = "None";
}
if (PDATA(pgm)->pgmtype != PGMTYPE_JTAGICE_MKII &&
PDATA(pgm)->pgmtype != PGMTYPE_JTAGICE3) {
msg_info("%sProgrammer Model: %s\n", p, pgmname);
stk500v2_getparm(pgm, PARAM_HW_VER, &hdw);
stk500v2_getparm(pgm, PARAM_SW_MAJOR, &maj);
stk500v2_getparm(pgm, PARAM_SW_MINOR, &min);
msg_info("%sHardware Version: %d\n", p, hdw);
if (pgm->usbsn && *pgm->usbsn)
msg_info("%sSerial number : %s\n", p, pgm->usbsn);
msg_info("%sFirmware Version Controller : %d.%02d\n", p, maj, min);
if (PDATA(pgm)->pgmtype == PGMTYPE_STK600) {
stk500v2_getparm(pgm, PARAM_SW_MAJOR_PERIPHERY1, &maj_s1);
stk500v2_getparm(pgm, PARAM_SW_MINOR_PERIPHERY1, &min_s1);
stk500v2_getparm(pgm, PARAM_SW_MAJOR_PERIPHERY2, &maj_s2);
stk500v2_getparm(pgm, PARAM_SW_MINOR_PERIPHERY2, &min_s2);
msg_info("%sFirmware Version Periphery 1: %d.%02d\n", p, maj_s1, min_s1);
msg_info("%sFirmware Version Periphery 2: %d.%02d\n", p, maj_s2, min_s2);
}
}
if (PDATA(pgm)->pgmtype == PGMTYPE_STK500) {
stk500v2_getparm(pgm, PARAM_TOPCARD_DETECT, &topcard);
switch (topcard) {
case 0xAA: topcard_name = "STK501"; break;
case 0x55: topcard_name = "STK502"; break;
case 0xFA: topcard_name = "STK503"; break;
case 0xEE: topcard_name = "STK504"; break;
case 0xE4: topcard_name = "STK505"; break;
case 0xDD: topcard_name = "STK520"; break;
default: topcard_name = "Unknown"; break;
}
msg_info("%sTopcard : %s\n", p, topcard_name);
} else if (PDATA(pgm)->pgmtype == PGMTYPE_STK600) {
stk500v2_getparm(pgm, PARAM_ROUTINGCARD_ID, &topcard);
msg_info("%sRouting card : %s\n", p,
stk600_get_cardname(routing_cards,
sizeof routing_cards / sizeof routing_cards[0],
topcard));
stk500v2_getparm(pgm, PARAM_SOCKETCARD_ID, &topcard);
msg_info("%sSocket card : %s\n", p,
stk600_get_cardname(socket_cards,
sizeof socket_cards / sizeof socket_cards[0],
topcard));
stk500v2_getparm2(pgm, PARAM2_RC_ID_TABLE_REV, &rev);
msg_info("%sRC_ID table rev : %d\n", p, rev);
stk500v2_getparm2(pgm, PARAM2_EC_ID_TABLE_REV, &rev);
msg_info("%sEC_ID table rev : %d\n", p, rev);
} else if (PDATA(pgm)->pgmtype == PGMTYPE_JTAGICE3) {
PROGRAMMER *pgmcp = pgm_dup(pgm);
pgmcp->cookie = PDATA(pgm)->chained_pdata;
jtag3_display(pgmcp, p);
msg_info("\n");
pgm_free(pgmcp);
}
stk500v2_print_parms1(pgm, p, stderr);
return;
}
static double
f_to_kHz_MHz(double f, const char **unit)
{
if (f > 1e6) {
f /= 1e6;
*unit = "MHz";
} else if (f > 1e3) {
f /= 1000;
*unit = "kHz";
} else
*unit = "Hz";
return f;
}
static void stk500v2_print_parms1(const PROGRAMMER *pgm, const char *p, FILE *fp) {
unsigned char vtarget = 0, vadjust = 0, osc_pscale = 0, osc_cmatch = 0, sck_duration =0; //XXX 0 is not correct, check caller
unsigned int sck_stk600, clock_conf, dac, oct, varef;
unsigned char vtarget_jtag[4];
int prescale;
double f;
const char *unit;
memset(vtarget_jtag, 0, sizeof vtarget_jtag);
if (PDATA(pgm)->pgmtype == PGMTYPE_JTAGICE_MKII) {
PROGRAMMER *pgmcp = pgm_dup(pgm);
pgmcp->cookie = PDATA(pgm)->chained_pdata;
jtagmkII_getparm(pgmcp, PAR_OCD_VTARGET, vtarget_jtag);
pgm_free(pgmcp);
fmsg_out(fp, "%sVtarget : %.1f V\n", p, b2_to_u16(vtarget_jtag) / 1000.0);
} else if (PDATA(pgm)->pgmtype != PGMTYPE_JTAGICE3) {
stk500v2_getparm(pgm, PARAM_VTARGET, &vtarget);
fmsg_out(fp, "%sVtarget : %.1f V\n", p, vtarget / 10.0);
}
switch (PDATA(pgm)->pgmtype) {
case PGMTYPE_STK500:
stk500v2_getparm(pgm, PARAM_SCK_DURATION, &sck_duration);
stk500v2_getparm(pgm, PARAM_VADJUST, &vadjust);
stk500v2_getparm(pgm, PARAM_OSC_PSCALE, &osc_pscale);
stk500v2_getparm(pgm, PARAM_OSC_CMATCH, &osc_cmatch);
fmsg_out(fp, "%sSCK period : %.1f us\n", p,
stk500v2_sck_to_us(pgm, sck_duration));
fmsg_out(fp, "%sVaref : %.1f V\n", p, vadjust / 10.0);
fmsg_out(fp, "%sOscillator : ", p);
if (osc_pscale == 0)
fmsg_out(fp, "Off\n");
else {
prescale = 1;
f = STK500V2_XTAL / 2;
switch (osc_pscale) {
case 2: prescale = 8; break;
case 3: prescale = 32; break;
case 4: prescale = 64; break;
case 5: prescale = 128; break;
case 6: prescale = 256; break;
case 7: prescale = 1024; break;
}
f /= prescale;
f /= (osc_cmatch + 1);
f = f_to_kHz_MHz(f, &unit);
fmsg_out(fp, "%.3f %s\n", f, unit);
}
break;
case PGMTYPE_AVRISP_MKII:
case PGMTYPE_JTAGICE_MKII:
stk500v2_getparm(pgm, PARAM_SCK_DURATION, &sck_duration);
fmsg_out(fp, "%sSCK period : %.2f us\n", p,
(float) 1000000 / avrispmkIIfreqs[sck_duration]);
break;
case PGMTYPE_JTAGICE3:
{
unsigned char cmd[4];
cmd[0] = CMD_GET_SCK;
if (stk500v2_jtag3_send(pgm, cmd, 1) >= 0 && stk500v2_jtag3_recv(pgm, cmd, 4) >= 2) {
unsigned int sck = cmd[1] | (cmd[2] << 8);
fmsg_out(fp, "%sSCK period : %.2f us\n", p, (1E6 / (1000.0 * sck)));
}
PROGRAMMER *pgmcp = pgm_dup(pgm);
pgmcp->cookie = PDATA(pgm)->chained_pdata;
pgmcp->id = lcreat(NULL, 0);
// Copy pgm->id contents over to pgmcp->id
for(LNODEID ln=lfirst(pgm->id); ln; ln=lnext(ln))
ladd(pgmcp->id, cfg_strdup("stk500v2_print_parms1()", ldata(ln)));
jtag3_print_parms1(pgmcp, p, fp);
pgm_free(pgmcp);
}
break;
case PGMTYPE_STK600:
stk500v2_getparm2(pgm, PARAM2_AREF0, &varef);
fmsg_out(fp, "%sVaref 0 : %.2f V\n", p, varef / 100.0);
stk500v2_getparm2(pgm, PARAM2_AREF1, &varef);
fmsg_out(fp, "%sVaref 1 : %.2f V\n", p, varef / 100.0);
stk500v2_getparm2(pgm, PARAM2_SCK_DURATION, &sck_stk600);
fmsg_out(fp, "%sSCK period : %.2f us\n", p,
(float) (sck_stk600 + 1) / 8.0);
stk500v2_getparm2(pgm, PARAM2_CLOCK_CONF, &clock_conf);
oct = (clock_conf & 0xf000) >> 12u;
dac = (clock_conf & 0x0ffc) >> 2u;
f = pow(2, (double)oct) * 2078.0 / (2 - (double)dac / 1024.0);
f = f_to_kHz_MHz(f, &unit);
fmsg_out(fp, "%sOscillator : %.3f %s\n",
p, f, unit);
break;
default:
fmsg_out(fp, "%sSCK period : %.1f us\n", p,
sck_duration * 8.0e6 / STK500V2_XTAL + 0.05);
break;
}
return;
}
static void stk500v2_print_parms(const PROGRAMMER *pgm, FILE *fp) {
stk500v2_print_parms1(pgm, "", fp);
}
static int stk500v2_perform_osccal(const PROGRAMMER *pgm) {
unsigned char buf[32];
int rv;
buf[0] = CMD_OSCCAL;
rv = stk500v2_command(pgm, buf, 1, sizeof(buf));
if (rv < 0) {
pmsg_error("unable to perform oscillator calibaration\n");
return -1;
}
return 0;
}
/*
* Wrapper functions for the JTAG ICE mkII in ISP mode. This mode
* uses the normal JTAG ICE mkII packet stream to communicate with the
* ICE, but then encapsulates AVRISP mkII commands using
* CMND_ISP_PACKET.
*/
/*
* Open a JTAG ICE mkII in ISP mode.
*/
static int stk500v2_jtagmkII_open(PROGRAMMER *pgm, const char *port) {
union pinfo pinfo;
void *mycookie;
int rv;
pmsg_notice2("stk500v2_jtagmkII_open()\n");
/*
* The JTAG ICE mkII always starts with a baud rate of 19200 Bd upon
* attaching. If the config file or command-line parameters specify
* a higher baud rate, we switch to it later on, after establishing
* the connection with the ICE.
*/
pinfo.serialinfo.baud = 19200;
pinfo.serialinfo.cflags = SERIAL_8N1;
/*
* If the port name starts with "usb", divert the serial routines
* to the USB ones. The serial_open() function for USB overrides
* the meaning of the "baud" parameter to be the USB device ID to
* search for.
*/
if (strncmp(port, "usb", 3) == 0) {
#if defined(HAVE_LIBUSB)
serdev = &usb_serdev;
pinfo.usbinfo.vid = USB_VENDOR_ATMEL;
pinfo.usbinfo.flags = 0;
pinfo.usbinfo.pid = USB_DEVICE_JTAGICEMKII;
pgm->fd.usb.max_xfer = USBDEV_MAX_XFER_MKII;
pgm->fd.usb.rep = USBDEV_BULK_EP_READ_MKII;
pgm->fd.usb.wep = USBDEV_BULK_EP_WRITE_MKII;
pgm->fd.usb.eep = 0; /* no seperate EP for events */
#else
pmsg_error("avrdude was compiled without usb support\n");
return -1;
#endif
}
strcpy(pgm->port, port);
if (serial_open(port, pinfo, &pgm->fd)==-1) {
return -1;
}
/*
* drain any extraneous input
*/
stk500v2_drain(pgm, 0);
mycookie = pgm->cookie;
pgm->cookie = PDATA(pgm)->chained_pdata;
if ((rv = jtagmkII_getsync(pgm, EMULATOR_MODE_SPI)) != 0) {
if (rv != JTAGII_GETSYNC_FAIL_GRACEFUL)
pmsg_error("unable to sync with the JTAG ICE mkII in ISP mode\n");
pgm->cookie = mycookie;
return -1;
}
pgm->cookie = mycookie;
PDATA(pgm)->pgmtype = PGMTYPE_JTAGICE_MKII;
if (pgm->bitclock != 0.0) {
if (pgm->set_sck_period(pgm, pgm->bitclock) != 0)
return -1;
}
return 0;
}
/*
* Close an AVR Dragon or JTAG ICE mkII in ISP/HVSP/PP mode.
*/
static void stk500v2_jtagmkII_close(PROGRAMMER * pgm)
{
void *mycookie;
pmsg_notice2("stk500v2_jtagmkII_close()\n");
mycookie = pgm->cookie;
pgm->cookie = PDATA(pgm)->chained_pdata;
jtagmkII_close(pgm);
pgm->cookie = mycookie;
}
/*
* Close JTAGICE3.
*/
static void stk500v2_jtag3_close(PROGRAMMER * pgm)
{
void *mycookie;
pmsg_notice2("stk500v2_jtag3_close()\n");
mycookie = pgm->cookie;
pgm->cookie = PDATA(pgm)->chained_pdata;
jtag3_close(pgm);
pgm->cookie = mycookie;
}
/*
* Wrapper functions for the AVR Dragon in ISP mode. This mode
* uses the normal JTAG ICE mkII packet stream to communicate with the
* ICE, but then encapsulates AVRISP mkII commands using
* CMND_ISP_PACKET.
*/
/*
* Open an AVR Dragon in ISP mode.
*/
static int stk500v2_dragon_isp_open(PROGRAMMER *pgm, const char *port) {
union pinfo pinfo;
void *mycookie;
pmsg_notice2("stk500v2_dragon_isp_open()\n");
/*
* The JTAG ICE mkII always starts with a baud rate of 19200 Bd upon
* attaching. If the config file or command-line parameters specify
* a higher baud rate, we switch to it later on, after establishing
* the connection with the ICE.
*/
pinfo.serialinfo.baud = 19200;
pinfo.serialinfo.cflags = SERIAL_8N1;
/*
* If the port name starts with "usb", divert the serial routines
* to the USB ones. The serial_open() function for USB overrides
* the meaning of the "baud" parameter to be the USB device ID to
* search for.
*/
if (strncmp(port, "usb", 3) == 0) {
#if defined(HAVE_LIBUSB)
serdev = &usb_serdev;
pinfo.usbinfo.vid = USB_VENDOR_ATMEL;
pinfo.usbinfo.flags = 0;
pinfo.usbinfo.pid = USB_DEVICE_AVRDRAGON;
pgm->fd.usb.max_xfer = USBDEV_MAX_XFER_MKII;
pgm->fd.usb.rep = USBDEV_BULK_EP_READ_MKII;
pgm->fd.usb.wep = USBDEV_BULK_EP_WRITE_MKII;
pgm->fd.usb.eep = 0; /* no seperate EP for events */
#else
pmsg_error("avrdude was compiled without usb support\n");
return -1;
#endif
}
strcpy(pgm->port, port);
if (serial_open(port, pinfo, &pgm->fd)==-1) {
return -1;
}
/*
* drain any extraneous input
*/
stk500v2_drain(pgm, 0);
mycookie = pgm->cookie;
pgm->cookie = PDATA(pgm)->chained_pdata;
if (jtagmkII_getsync(pgm, EMULATOR_MODE_SPI) != 0) {
pmsg_error("unable to sync with the AVR Dragon in ISP mode\n");
pgm->cookie = mycookie;
return -1;
}
pgm->cookie = mycookie;
PDATA(pgm)->pgmtype = PGMTYPE_JTAGICE_MKII;
if (pgm->bitclock != 0.0) {
if (pgm->set_sck_period(pgm, pgm->bitclock) != 0)
return -1;
}
return 0;
}
/*
* Wrapper functions for the AVR Dragon in HV mode. This mode
* uses the normal JTAG ICE mkII packet stream to communicate with the
* ICE, but then encapsulates AVRISP mkII commands using
* CMND_ISP_PACKET.
*/
/*
* Open an AVR Dragon in HV mode (HVSP or parallel).
*/
static int stk500v2_dragon_hv_open(PROGRAMMER *pgm, const char *port) {
union pinfo pinfo;
pmsg_notice2("stk500v2_dragon_hv_open()\n");
/*
* The JTAG ICE mkII always starts with a baud rate of 19200 Bd upon
* attaching. If the config file or command-line parameters specify
* a higher baud rate, we switch to it later on, after establishing
* the connection with the ICE.
*/
pinfo.serialinfo.baud = 19200;
pinfo.serialinfo.cflags = SERIAL_8N1;
/*
* If the port name starts with "usb", divert the serial routines
* to the USB ones. The serial_open() function for USB overrides
* the meaning of the "baud" parameter to be the USB device ID to
* search for.
*/
if (strncmp(port, "usb", 3) == 0) {
#if defined(HAVE_LIBUSB)
serdev = &usb_serdev;
pinfo.usbinfo.vid = USB_VENDOR_ATMEL;
pinfo.usbinfo.flags = 0;
pinfo.usbinfo.pid = USB_DEVICE_AVRDRAGON;
pgm->fd.usb.max_xfer = USBDEV_MAX_XFER_MKII;
pgm->fd.usb.rep = USBDEV_BULK_EP_READ_MKII;
pgm->fd.usb.wep = USBDEV_BULK_EP_WRITE_MKII;
pgm->fd.usb.eep = 0; /* no seperate EP for events */
#else
pmsg_error("avrdude was compiled without usb support\n");
return -1;
#endif
}
strcpy(pgm->port, port);
if (serial_open(port, pinfo, &pgm->fd)==-1) {
return -1;
}
/*
* drain any extraneous input
*/
stk500v2_drain(pgm, 0);
PROGRAMMER *pgmcp = pgm_dup(pgm);
pgmcp->cookie = PDATA(pgm)->chained_pdata;
if (jtagmkII_getsync(pgmcp, EMULATOR_MODE_HV) != 0) {
pmsg_error("unable to sync with the AVR Dragon in HV mode\n");
pgm_free(pgmcp);
return -1;
}
pgm_free(pgmcp);
PDATA(pgm)->pgmtype = PGMTYPE_JTAGICE_MKII;
if (pgm->bitclock != 0.0) {
if (pgm->set_sck_period(pgm, pgm->bitclock) != 0)
return -1;
}
return 0;
}
/*
* Wrapper functions for the JTAGICE3 in ISP mode. This mode
* uses the normal JTAGICE3 packet stream to communicate with the
* ICE, but then encapsulates AVRISP mkII commands using
* scope AVRISP.
*/
/*
* Open a JTAGICE3 in ISP mode.
*/
static int stk500v2_jtag3_open(PROGRAMMER *pgm, const char *port) {
void *mycookie;
int rv;
pmsg_notice2("stk500v2_jtag3_open()\n");
if (jtag3_open_common(pgm, port) < 0)
return -1;
mycookie = pgm->cookie;
pgm->cookie = PDATA(pgm)->chained_pdata;
if ((rv = jtag3_getsync(pgm, 42)) != 0) {
if (rv != JTAGII_GETSYNC_FAIL_GRACEFUL)
pmsg_error("unable to sync with the JTAGICE3 in ISP mode\n");
pgm->cookie = mycookie;
return -1;
}
pgm->cookie = mycookie;
PDATA(pgm)->pgmtype = PGMTYPE_JTAGICE3;
if (pgm->bitclock != 0.0) {
if (pgm->set_sck_period(pgm, pgm->bitclock) != 0)
return -1;
}
return 0;
}
/*
* XPROG wrapper
*/
static int stk600_xprog_command(const PROGRAMMER *pgm, unsigned char *b,
unsigned int cmdsize, unsigned int responsesize)
{
unsigned char *newb;
unsigned int s;
int rv;
if (cmdsize < responsesize)
s = responsesize;
else
s = cmdsize;
if ((newb = malloc(s + 1)) == 0) {
pmsg_error("out of memory\n");
return -1;
}
newb[0] = CMD_XPROG;
memcpy(newb + 1, b, cmdsize);
rv = stk500v2_command(pgm, newb, cmdsize + 1, responsesize + 1);
if (rv == 0) {
memcpy(b, newb + 1, responsesize);
}
free(newb);
return rv;
}
/*
* issue the 'program enable' command to the AVR device, XPROG version
*/
static int stk600_xprog_program_enable(const PROGRAMMER *pgm, const AVRPART *p) {
unsigned char buf[16];
unsigned int eepagesize = 42;
unsigned int nvm_base;
AVRMEM *mem = NULL;
int use_tpi;
use_tpi = (p->prog_modes & PM_TPI) != 0;
if (!use_tpi) {
if (p->nvm_base == 0) {
pmsg_error("no nvm_base parameter for PDI device\n");
return -1;
}
if ((mem = avr_locate_mem(p, "eeprom")) != NULL) {
if (mem->page_size <= 1) {
pmsg_error("no EEPROM page_size parameter for PDI device\n");
return -1;
}
eepagesize = mem->page_size;
}
}
buf[0] = CMD_XPROG_SETMODE;
buf[1] = use_tpi? XPRG_MODE_TPI: XPRG_MODE_PDI;
if (stk500v2_command(pgm, buf, 2, sizeof(buf)) < 0) {
pmsg_error("CMD_XPROG_SETMODE(XPRG_MODE_%s) failed\n", use_tpi? "TPI": "PDI");
return -1;
}
buf[0] = XPRG_CMD_ENTER_PROGMODE;
if (stk600_xprog_command(pgm, buf, 1, 2) < 0) {
pmsg_error("XPRG_CMD_ENTER_PROGMODE failed\n");
return -1;
}
if (use_tpi) {
/*
* Whatever all that might mean, it matches what AVR Studio
* does.
*/
if (stk500v2_setparm_real(pgm, PARAM_DISCHARGEDELAY, 232) < 0)
return -1;
buf[0] = XPRG_CMD_SET_PARAM;
buf[1] = XPRG_PARAM_NVMCMD_ADDR;
buf[2] = 51;
if (stk600_xprog_command(pgm, buf, 3, 2) < 0) {
pmsg_error("XPRG_CMD_SET_PARAM(XPRG_PARAM_NVMCMD_ADDR) failed\n");
return -1;
}
buf[0] = XPRG_CMD_SET_PARAM;
buf[1] = XPRG_PARAM_NVMCSR_ADDR;
buf[2] = 50;
if (stk600_xprog_command(pgm, buf, 3, 2) < 0) {
pmsg_error("XPRG_CMD_SET_PARAM(XPRG_PARAM_NVMCSR_ADDR) failed\n");
return -1;
}
} else {
buf[0] = XPRG_CMD_SET_PARAM;
buf[1] = XPRG_PARAM_NVMBASE;
nvm_base = p->nvm_base;
/*
* The 0x01000000 appears to be an indication to the programmer
* that the respective address is located in IO (i.e., SRAM)
* memory address space rather than flash. This is not documented
* anywhere in AVR079 but matches what AVR Studio does.
*/
nvm_base |= 0x01000000;
buf[2] = nvm_base >> 24;
buf[3] = nvm_base >> 16;
buf[4] = nvm_base >> 8;
buf[5] = nvm_base;
if (stk600_xprog_command(pgm, buf, 6, 2) < 0) {
pmsg_error("XPRG_CMD_SET_PARAM(XPRG_PARAM_NVMBASE) failed\n");
return -1;
}
if (mem != NULL) {
buf[0] = XPRG_CMD_SET_PARAM;
buf[1] = XPRG_PARAM_EEPPAGESIZE;
buf[2] = eepagesize >> 8;
buf[3] = eepagesize;
if (stk600_xprog_command(pgm, buf, 4, 2) < 0) {
pmsg_error("XPRG_CMD_SET_PARAM(XPRG_PARAM_EEPPAGESIZE) failed\n");
return -1;
}
}
}
return 0;
}
static unsigned char stk600_xprog_memtype(const PROGRAMMER *pgm, unsigned long addr) {
if (addr >= PDATA(pgm)->boot_start)
return XPRG_MEM_TYPE_BOOT;
else
return XPRG_MEM_TYPE_APPL;
}
static void stk600_xprog_disable(const PROGRAMMER *pgm) {
unsigned char buf[2];
buf[0] = XPRG_CMD_LEAVE_PROGMODE;
if (stk600_xprog_command(pgm, buf, 1, 2) < 0) {
pmsg_error("XPRG_CMD_LEAVE_PROGMODE failed\n");
}
}
static int stk600_xprog_write_byte(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned long addr, unsigned char data)
{
unsigned char b[9 + 256];
int need_erase = 0;
unsigned char write_size = 1;
unsigned char memcode;
memset(b, 0, sizeof(b));
if (strcmp(mem->desc, "flash") == 0) {
memcode = stk600_xprog_memtype(pgm, addr);
} else if (strcmp(mem->desc, "application") == 0 ||
strcmp(mem->desc, "apptable") == 0) {
memcode = XPRG_MEM_TYPE_APPL;
} else if (strcmp(mem->desc, "boot") == 0) {
memcode = XPRG_MEM_TYPE_BOOT;
} else if (strcmp(mem->desc, "eeprom") == 0) {
memcode = XPRG_MEM_TYPE_EEPROM;
} else if (strncmp(mem->desc, "lock", strlen("lock")) == 0) {
memcode = XPRG_MEM_TYPE_LOCKBITS;
} else if (strncmp(mem->desc, "fuse", strlen("fuse")) == 0) {
memcode = XPRG_MEM_TYPE_FUSE;
if (p->prog_modes & PM_TPI)
/*
* TPI devices need a mystic erase prior to writing their
* fuses.
*/
need_erase = 1;
} else if (strcmp(mem->desc, "usersig") == 0 ||
strcmp(mem->desc, "userrow") == 0) {
memcode = XPRG_MEM_TYPE_USERSIG;
} else {
pmsg_error("unknown memory %s\n", mem->desc);
return -1;
}
addr += mem->offset;
if (need_erase) {
b[0] = XPRG_CMD_ERASE;
b[1] = XPRG_ERASE_CONFIG;
b[2] = mem->offset >> 24;
b[3] = mem->offset >> 16;
b[4] = mem->offset >> 8;
b[5] = mem->offset + 1;
if (stk600_xprog_command(pgm, b, 6, 2) < 0) {
pmsg_error("XPRG_CMD_ERASE(XPRG_ERASE_CONFIG) failed\n");
return -1;
}
}
if (p->prog_modes & PM_TPI) {
/*
* Some TPI memories (configuration aka. fuse) require a
* larger write block size. We record that as a blocksize in
* avrdude.conf.
*/
if (mem->blocksize != 0)
write_size = mem->blocksize;
}
b[0] = XPRG_CMD_WRITE_MEM;
b[1] = memcode;
b[2] = 0; /* pagemode: non-paged write */
b[3] = addr >> 24;
b[4] = addr >> 16;
b[5] = addr >> 8;
b[6] = addr;
b[7] = 0;
b[8] = write_size;
b[9] = data;
if (stk600_xprog_command(pgm, b, 9 + write_size, 2) < 0) {
pmsg_error("XPRG_CMD_WRITE_MEM failed\n");
return -1;
}
return 0;
}
static int stk600_xprog_read_byte(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned long addr, unsigned char * value)
{
unsigned char b[8];
if (strcmp(mem->desc, "flash") == 0) {
b[1] = stk600_xprog_memtype(pgm, addr);
} else if (strcmp(mem->desc, "application") == 0 ||
strcmp(mem->desc, "apptable") == 0) {
b[1] = XPRG_MEM_TYPE_APPL;
} else if (strcmp(mem->desc, "boot") == 0) {
b[1] = XPRG_MEM_TYPE_BOOT;
} else if (strcmp(mem->desc, "eeprom") == 0) {
b[1] = XPRG_MEM_TYPE_EEPROM;
} else if (strcmp(mem->desc, "signature") == 0) {
b[1] = XPRG_MEM_TYPE_APPL;
} else if (strncmp(mem->desc, "fuse", strlen("fuse")) == 0) {
b[1] = XPRG_MEM_TYPE_FUSE;
} else if (strncmp(mem->desc, "lock", strlen("lock")) == 0) {
b[1] = XPRG_MEM_TYPE_LOCKBITS;
} else if (strcmp(mem->desc, "calibration") == 0 ||
strcmp(mem->desc, "prodsig") == 0) {
b[1] = XPRG_MEM_TYPE_FACTORY_CALIBRATION;
} else if (strcmp(mem->desc, "usersig") == 0 ||
strcmp(mem->desc, "userrow") == 0) {
b[1] = XPRG_MEM_TYPE_USERSIG;
} else {
pmsg_error("unknown memory %s\n", mem->desc);
return -1;
}
addr += mem->offset;
b[0] = XPRG_CMD_READ_MEM;
b[2] = addr >> 24;
b[3] = addr >> 16;
b[4] = addr >> 8;
b[5] = addr;
b[6] = 0;
b[7] = 1;
if (stk600_xprog_command(pgm, b, 8, 3) < 0) {
pmsg_error("XPRG_CMD_READ_MEM failed\n");
return -1;
}
*value = b[2];
return 0;
}
static int stk600_xprog_paged_load(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
unsigned char *b;
unsigned int offset;
unsigned char memtype;
int n_bytes_orig = n_bytes, dynamic_memtype = 0;
unsigned long use_ext_addr = 0;
/*
* The XPROG read command supports at most 256 bytes in one
* transfer.
*/
if (page_size > 256)
page_size = 256; /* not really a page size anymore */
/*
* Fancy offsets everywhere.
* This is probably what AVR079 means when writing about the
* "TIF address space".
*/
if (strcmp(mem->desc, "flash") == 0) {
memtype = 0;
dynamic_memtype = 1;
if (mem->size > 64 * 1024)
use_ext_addr = (1UL << 31);
} else if (strcmp(mem->desc, "application") == 0 ||
strcmp(mem->desc, "apptable") == 0) {
memtype = XPRG_MEM_TYPE_APPL;
if (mem->size > 64 * 1024)
use_ext_addr = (1UL << 31);
} else if (strcmp(mem->desc, "boot") == 0) {
memtype = XPRG_MEM_TYPE_BOOT;
// Do we have to consider the total amount of flash
// instead to decide whether to use extended addressing?
if (mem->size > 64 * 1024)
use_ext_addr = (1UL << 31);
} else if (strcmp(mem->desc, "eeprom") == 0) {
memtype = XPRG_MEM_TYPE_EEPROM;
} else if (strcmp(mem->desc, "signature") == 0) {
memtype = XPRG_MEM_TYPE_APPL;
} else if (strncmp(mem->desc, "fuse", strlen("fuse")) == 0) {
memtype = XPRG_MEM_TYPE_FUSE;
} else if (strncmp(mem->desc, "lock", strlen("lock")) == 0) {
memtype = XPRG_MEM_TYPE_LOCKBITS;
} else if (strcmp(mem->desc, "calibration") == 0 ||
strcmp(mem->desc, "prodsig") == 0) {
memtype = XPRG_MEM_TYPE_FACTORY_CALIBRATION;
} else if (strcmp(mem->desc, "usersig") == 0 ||
strcmp(mem->desc, "userrow") == 0) {
memtype = XPRG_MEM_TYPE_USERSIG;
} else {
pmsg_error("unknown paged memory %s\n", mem->desc);
return -1;
}
offset = addr;
addr += mem->offset;
if ((b = malloc(page_size + 2)) == NULL) {
pmsg_error("out of memory\n");
return -1;
}
if (stk500v2_loadaddr(pgm, use_ext_addr) < 0) {
free(b);
return -1;
}
while (n_bytes != 0) {
if (dynamic_memtype)
memtype = stk600_xprog_memtype(pgm, addr - mem->offset);
b[0] = XPRG_CMD_READ_MEM;
b[1] = memtype;
b[2] = addr >> 24;
b[3] = addr >> 16;
b[4] = addr >> 8;
b[5] = addr;
b[6] = page_size >> 8;
b[7] = page_size;
if (stk600_xprog_command(pgm, b, 8, page_size + 2) < 0) {
pmsg_error("XPRG_CMD_READ_MEM failed\n");
free(b);
return -1;
}
memcpy(mem->buf + offset, b + 2, page_size);
if (n_bytes < page_size) {
n_bytes = page_size;
}
offset += page_size;
addr += page_size;
n_bytes -= page_size;
}
free(b);
return n_bytes_orig;
}
static int stk600_xprog_paged_write(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
unsigned char *b;
unsigned int offset;
unsigned char memtype;
int n_bytes_orig = n_bytes, dynamic_memtype = 0;
size_t writesize;
unsigned long use_ext_addr = 0;
unsigned char writemode;
/*
* The XPROG read command supports at most 256 bytes in one
* transfer.
*/
if (page_size > 512) {
pmsg_error("cannot handle page size > 512\n");
return -1;
}
/*
* Fancy offsets everywhere.
* This is probably what AVR079 means when writing about the
* "TIF address space".
*/
if (strcmp(mem->desc, "flash") == 0) {
memtype = 0;
dynamic_memtype = 1;
writemode = (1 << XPRG_MEM_WRITE_WRITE);
if (mem->size > 64 * 1024)
use_ext_addr = (1UL << 31);
} else if (strcmp(mem->desc, "application") == 0 ||
strcmp(mem->desc, "apptable") == 0) {
memtype = XPRG_MEM_TYPE_APPL;
writemode = (1 << XPRG_MEM_WRITE_WRITE);
if (mem->size > 64 * 1024)
use_ext_addr = (1UL << 31);
} else if (strcmp(mem->desc, "boot") == 0) {
memtype = XPRG_MEM_TYPE_BOOT;
writemode = (1 << XPRG_MEM_WRITE_WRITE);
// Do we have to consider the total amount of flash
// instead to decide whether to use extended addressing?
if (mem->size > 64 * 1024)
use_ext_addr = (1UL << 31);
} else if (strcmp(mem->desc, "eeprom") == 0) {
memtype = XPRG_MEM_TYPE_EEPROM;
writemode = (1 << XPRG_MEM_WRITE_WRITE) | (1 << XPRG_MEM_WRITE_ERASE);
} else if (strcmp(mem->desc, "signature") == 0) {
memtype = XPRG_MEM_TYPE_APPL;
writemode = (1 << XPRG_MEM_WRITE_WRITE);
} else if (strncmp(mem->desc, "fuse", strlen("fuse")) == 0) {
memtype = XPRG_MEM_TYPE_FUSE;
writemode = (1 << XPRG_MEM_WRITE_WRITE);
} else if (strncmp(mem->desc, "lock", strlen("lock")) == 0) {
memtype = XPRG_MEM_TYPE_LOCKBITS;
writemode = (1 << XPRG_MEM_WRITE_WRITE);
} else if (strcmp(mem->desc, "calibration") == 0) {
memtype = XPRG_MEM_TYPE_FACTORY_CALIBRATION;
writemode = (1 << XPRG_MEM_WRITE_WRITE);
} else if (strcmp(mem->desc, "usersig") == 0 ||
strcmp(mem->desc, "userrow") == 0) {
memtype = XPRG_MEM_TYPE_USERSIG;
writemode = (1 << XPRG_MEM_WRITE_WRITE);
} else {
pmsg_error("unknown paged memory %s\n", mem->desc);
return -1;
}
offset = addr;
addr += mem->offset;
if ((b = malloc(page_size + 9)) == NULL) {
pmsg_error("out of memory\n");
return -1;
}
if (stk500v2_loadaddr(pgm, use_ext_addr) < 0) {
free(b);
return -1;
}
while (n_bytes != 0) {
if (dynamic_memtype)
memtype = stk600_xprog_memtype(pgm, addr - mem->offset);
if (page_size > 256) {
/*
* AVR079 is not quite clear. While it suggests that
* downloading up to 512 bytes (256 words) were OK, it
* obviously isn't -- 512-byte pages on the ATxmega128A1
* are getting corrupted when written as a single piece.
* It writes random junk somewhere beyond byte 256.
* Splitting it into 256 byte chunks, and only setting the
* erase page / write page bits in the final chunk helps.
*/
if (page_size % 256 != 0) {
pmsg_error("page size not multiple of 256\n");
free(b);
return -1;
}
unsigned int chunk;
for (chunk = 0; chunk < page_size; chunk += 256) {
if (n_bytes < 256) {
memset(b + 9 + n_bytes, 0xff, 256 - n_bytes);
writesize = n_bytes;
} else {
writesize = 256;
}
b[0] = XPRG_CMD_WRITE_MEM;
b[1] = memtype;
b[2] = writemode;
b[3] = addr >> 24;
b[4] = addr >> 16;
b[5] = addr >> 8;
b[6] = addr;
b[7] = 1;
b[8] = 0;
memcpy(b + 9, mem->buf + offset, writesize);
if (stk600_xprog_command(pgm, b, 256 + 9, 2) < 0) {
pmsg_error("XPRG_CMD_WRITE_MEM failed\n");
free(b);
return -1;
}
if (n_bytes < 256)
n_bytes = 256;
offset += 256;
addr += 256;
n_bytes -= 256;
}
} else {
if (n_bytes < page_size) {
/*
* This can easily happen if the input file was not a
* multiple of the page size.
*/
memset(b + 9 + n_bytes, 0xff, page_size - n_bytes);
writesize = n_bytes;
} else {
writesize = page_size;
}
b[0] = XPRG_CMD_WRITE_MEM;
b[1] = memtype;
b[2] = writemode;
b[3] = addr >> 24;
b[4] = addr >> 16;
b[5] = addr >> 8;
b[6] = addr;
b[7] = page_size >> 8;
b[8] = page_size;
memcpy(b + 9, mem->buf + offset, writesize);
if (stk600_xprog_command(pgm, b, page_size + 9, 2) < 0) {
pmsg_error("XPRG_CMD_WRITE_MEM failed\n");
free(b);
return -1;
}
if (n_bytes < page_size)
n_bytes = page_size;
offset += page_size;
addr += page_size;
n_bytes -= page_size;
}
}
free(b);
return n_bytes_orig;
}
static int stk600_xprog_chip_erase(const PROGRAMMER *pgm, const AVRPART *p) {
unsigned char b[6];
AVRMEM *mem;
unsigned int addr = 0;
if (p->prog_modes & PM_TPI) {
if ((mem = avr_locate_mem(p, "flash")) == NULL) {
pmsg_error("no FLASH definition found for TPI device\n");
return -1;
}
addr = mem->offset + 1;
}
b[0] = XPRG_CMD_ERASE;
b[1] = XPRG_ERASE_CHIP;
b[2] = addr >> 24;
b[3] = addr >> 16;
b[4] = addr >> 8;
b[5] = addr;
if (stk600_xprog_command(pgm, b, 6, 2) < 0) {
pmsg_error("XPRG_CMD_ERASE(XPRG_ERASE_CHIP) failed\n");
return -1;
}
return 0;
}
static int stk600_xprog_page_erase(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int addr)
{
unsigned char b[6];
if (strcmp(m->desc, "flash") == 0) {
b[1] = stk600_xprog_memtype(pgm, addr) == XPRG_MEM_TYPE_APPL?
XPRG_ERASE_APP_PAGE: XPRG_ERASE_BOOT_PAGE;
} else if (strcmp(m->desc, "application") == 0 ||
strcmp(m->desc, "apptable") == 0) {
b[1] = XPRG_ERASE_APP_PAGE;
} else if (strcmp(m->desc, "boot") == 0) {
b[1] = XPRG_ERASE_BOOT_PAGE;
} else if (strcmp(m->desc, "eeprom") == 0) {
b[1] = XPRG_ERASE_EEPROM_PAGE;
} else if (strcmp(m->desc, "usersig") == 0 ||
strcmp(m->desc, "userrow") == 0) {
b[1] = XPRG_ERASE_USERSIG;
} else {
pmsg_error("unknown paged memory %s\n", m->desc);
return -1;
}
addr += m->offset;
b[0] = XPRG_CMD_ERASE;
b[2] = addr >> 24;
b[3] = addr >> 16;
b[4] = addr >> 8;
b[5] = addr;
if (stk600_xprog_command(pgm, b, 6, 2) < 0) {
pmsg_error("XPRG_CMD_ERASE(%d) failed\n", b[1]);
return -1;
}
return 0;
}
/*
* Modify pgm's methods for XPROG operation.
*/
static void stk600_setup_xprog(PROGRAMMER * pgm)
{
pgm->program_enable = stk600_xprog_program_enable;
pgm->disable = stk600_xprog_disable;
pgm->read_byte = stk600_xprog_read_byte;
pgm->write_byte = stk600_xprog_write_byte;
pgm->paged_load = stk600_xprog_paged_load;
pgm->paged_write = stk600_xprog_paged_write;
pgm->page_erase = stk600_xprog_page_erase;
pgm->chip_erase = stk600_xprog_chip_erase;
}
/*
* Modify pgm's methods for ISP operation.
*/
static void stk600_setup_isp(PROGRAMMER * pgm)
{
pgm->program_enable = stk500v2_program_enable;
pgm->disable = stk500v2_disable;
pgm->read_byte = stk500isp_read_byte;
pgm->write_byte = stk500isp_write_byte;
pgm->paged_load = stk500v2_paged_load;
pgm->paged_write = stk500v2_paged_write;
pgm->page_erase = stk500v2_page_erase;
pgm->chip_erase = stk500v2_chip_erase;
}
const char stk500v2_desc[] = "Atmel STK500 Version 2.x firmware";
void stk500v2_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "STK500V2");
/*
* mandatory functions
*/
pgm->initialize = stk500v2_initialize;
pgm->display = stk500v2_display;
pgm->enable = stk500v2_enable;
pgm->disable = stk500v2_disable;
pgm->program_enable = stk500v2_program_enable;
pgm->chip_erase = stk500v2_chip_erase;
pgm->cmd = stk500v2_cmd;
pgm->open = stk500v2_open;
pgm->close = stk500v2_close;
pgm->read_byte = stk500isp_read_byte;
pgm->write_byte = stk500isp_write_byte;
/*
* optional functions
*/
pgm->paged_write = stk500v2_paged_write;
pgm->paged_load = stk500v2_paged_load;
pgm->page_erase = stk500v2_page_erase;
pgm->print_parms = stk500v2_print_parms;
pgm->set_vtarget = stk500v2_set_vtarget;
pgm->set_varef = stk500v2_set_varef;
pgm->set_fosc = stk500v2_set_fosc;
pgm->set_sck_period = stk500v2_set_sck_period;
pgm->perform_osccal = stk500v2_perform_osccal;
pgm->setup = stk500v2_setup;
pgm->teardown = stk500v2_teardown;
pgm->page_size = 256;
}
const char stk500pp_desc[] = "Atmel STK500 V2 in parallel programming mode";
void stk500pp_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "STK500PP");
/*
* mandatory functions
*/
pgm->initialize = stk500pp_initialize;
pgm->display = stk500v2_display;
pgm->enable = stk500v2_enable;
pgm->disable = stk500pp_disable;
pgm->program_enable = stk500pp_program_enable;
pgm->chip_erase = stk500pp_chip_erase;
pgm->open = stk500v2_open;
pgm->close = stk500v2_close;
pgm->read_byte = stk500pp_read_byte;
pgm->write_byte = stk500pp_write_byte;
/*
* optional functions
*/
pgm->paged_write = stk500pp_paged_write;
pgm->paged_load = stk500pp_paged_load;
pgm->print_parms = stk500v2_print_parms;
pgm->set_vtarget = stk500v2_set_vtarget;
pgm->set_varef = stk500v2_set_varef;
pgm->set_fosc = stk500v2_set_fosc;
pgm->set_sck_period = stk500v2_set_sck_period;
pgm->setup = stk500v2_setup;
pgm->teardown = stk500v2_teardown;
pgm->page_size = 256;
}
const char stk500hvsp_desc[] = "Atmel STK500 V2 in high-voltage serial programming mode";
void stk500hvsp_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "STK500HVSP");
/*
* mandatory functions
*/
pgm->initialize = stk500hvsp_initialize;
pgm->display = stk500v2_display;
pgm->enable = stk500v2_enable;
pgm->disable = stk500hvsp_disable;
pgm->program_enable = stk500hvsp_program_enable;
pgm->chip_erase = stk500hvsp_chip_erase;
pgm->open = stk500v2_open;
pgm->close = stk500v2_close;
pgm->read_byte = stk500hvsp_read_byte;
pgm->write_byte = stk500hvsp_write_byte;
/*
* optional functions
*/
pgm->paged_write = stk500hvsp_paged_write;
pgm->paged_load = stk500hvsp_paged_load;
pgm->print_parms = stk500v2_print_parms;
pgm->set_vtarget = stk500v2_set_vtarget;
pgm->set_varef = stk500v2_set_varef;
pgm->set_fosc = stk500v2_set_fosc;
pgm->set_sck_period = stk500v2_set_sck_period;
pgm->setup = stk500v2_setup;
pgm->teardown = stk500v2_teardown;
pgm->page_size = 256;
}
const char stk500v2_jtagmkII_desc[] = "Atmel JTAG ICE mkII in ISP mode";
void stk500v2_jtagmkII_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "JTAGMKII_ISP");
/*
* mandatory functions
*/
pgm->initialize = stk500v2_initialize;
pgm->display = stk500v2_display;
pgm->enable = stk500v2_enable;
pgm->disable = stk500v2_disable;
pgm->program_enable = stk500v2_program_enable;
pgm->chip_erase = stk500v2_chip_erase;
pgm->cmd = stk500v2_cmd;
pgm->open = stk500v2_jtagmkII_open;
pgm->close = stk500v2_jtagmkII_close;
pgm->read_byte = stk500isp_read_byte;
pgm->write_byte = stk500isp_write_byte;
/*
* optional functions
*/
pgm->paged_write = stk500v2_paged_write;
pgm->paged_load = stk500v2_paged_load;
pgm->page_erase = stk500v2_page_erase;
pgm->print_parms = stk500v2_print_parms;
pgm->set_sck_period = stk500v2_set_sck_period_mk2;
pgm->perform_osccal = stk500v2_perform_osccal;
pgm->setup = stk500v2_jtagmkII_setup;
pgm->teardown = stk500v2_jtagmkII_teardown;
pgm->page_size = 256;
}
const char stk500v2_dragon_isp_desc[] = "Atmel AVR Dragon in ISP mode";
void stk500v2_dragon_isp_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "DRAGON_ISP");
/*
* mandatory functions
*/
pgm->initialize = stk500v2_initialize;
pgm->display = stk500v2_display;
pgm->enable = stk500v2_enable;
pgm->disable = stk500v2_disable;
pgm->program_enable = stk500v2_program_enable;
pgm->chip_erase = stk500v2_chip_erase;
pgm->cmd = stk500v2_cmd;
pgm->open = stk500v2_dragon_isp_open;
pgm->close = stk500v2_jtagmkII_close;
pgm->read_byte = stk500isp_read_byte;
pgm->write_byte = stk500isp_write_byte;
/*
* optional functions
*/
pgm->paged_write = stk500v2_paged_write;
pgm->paged_load = stk500v2_paged_load;
pgm->page_erase = stk500v2_page_erase;
pgm->print_parms = stk500v2_print_parms;
pgm->set_sck_period = stk500v2_set_sck_period_mk2;
pgm->setup = stk500v2_jtagmkII_setup;
pgm->teardown = stk500v2_jtagmkII_teardown;
pgm->page_size = 256;
}
const char stk500v2_dragon_pp_desc[] = "Atmel AVR Dragon in PP mode";
void stk500v2_dragon_pp_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "DRAGON_PP");
/*
* mandatory functions
*/
pgm->initialize = stk500pp_initialize;
pgm->display = stk500v2_display;
pgm->enable = stk500v2_enable;
pgm->disable = stk500pp_disable;
pgm->program_enable = stk500pp_program_enable;
pgm->chip_erase = stk500pp_chip_erase;
pgm->open = stk500v2_dragon_hv_open;
pgm->close = stk500v2_jtagmkII_close;
pgm->read_byte = stk500pp_read_byte;
pgm->write_byte = stk500pp_write_byte;
/*
* optional functions
*/
pgm->paged_write = stk500pp_paged_write;
pgm->paged_load = stk500pp_paged_load;
pgm->print_parms = stk500v2_print_parms;
pgm->set_vtarget = stk500v2_set_vtarget;
pgm->set_varef = stk500v2_set_varef;
pgm->set_fosc = stk500v2_set_fosc;
pgm->set_sck_period = stk500v2_set_sck_period_mk2;
pgm->setup = stk500v2_jtagmkII_setup;
pgm->teardown = stk500v2_jtagmkII_teardown;
pgm->page_size = 256;
}
const char stk500v2_dragon_hvsp_desc[] = "Atmel AVR Dragon in HVSP mode";
void stk500v2_dragon_hvsp_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "DRAGON_HVSP");
/*
* mandatory functions
*/
pgm->initialize = stk500hvsp_initialize;
pgm->display = stk500v2_display;
pgm->enable = stk500v2_enable;
pgm->disable = stk500hvsp_disable;
pgm->program_enable = stk500hvsp_program_enable;
pgm->chip_erase = stk500hvsp_chip_erase;
pgm->open = stk500v2_dragon_hv_open;
pgm->close = stk500v2_jtagmkII_close;
pgm->read_byte = stk500hvsp_read_byte;
pgm->write_byte = stk500hvsp_write_byte;
/*
* optional functions
*/
pgm->paged_write = stk500hvsp_paged_write;
pgm->paged_load = stk500hvsp_paged_load;
pgm->print_parms = stk500v2_print_parms;
pgm->set_vtarget = stk500v2_set_vtarget;
pgm->set_varef = stk500v2_set_varef;
pgm->set_fosc = stk500v2_set_fosc;
pgm->set_sck_period = stk500v2_set_sck_period_mk2;
pgm->setup = stk500v2_jtagmkII_setup;
pgm->teardown = stk500v2_jtagmkII_teardown;
pgm->page_size = 256;
}
const char stk600_desc[] = "Atmel STK600";
void stk600_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "STK600");
/*
* mandatory functions
*/
pgm->initialize = stk500v2_initialize;
pgm->display = stk500v2_display;
pgm->enable = stk500v2_enable;
pgm->disable = stk500v2_disable;
pgm->program_enable = stk500v2_program_enable;
pgm->chip_erase = stk500v2_chip_erase;
pgm->cmd = stk500v2_cmd;
pgm->open = stk600_open;
pgm->close = stk500v2_close;
pgm->read_byte = stk500isp_read_byte;
pgm->write_byte = stk500isp_write_byte;
/*
* optional functions
*/
pgm->paged_write = stk500v2_paged_write;
pgm->paged_load = stk500v2_paged_load;
pgm->page_erase = stk500v2_page_erase;
pgm->print_parms = stk500v2_print_parms;
pgm->set_vtarget = stk600_set_vtarget;
pgm->set_varef = stk600_set_varef;
pgm->set_fosc = stk600_set_fosc;
pgm->set_sck_period = stk600_set_sck_period;
pgm->perform_osccal = stk500v2_perform_osccal;
pgm->setup = stk500v2_setup;
pgm->teardown = stk500v2_teardown;
pgm->page_size = 256;
}
const char stk600pp_desc[] = "Atmel STK600 in parallel programming mode";
void stk600pp_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "STK600PP");
/*
* mandatory functions
*/
pgm->initialize = stk500pp_initialize;
pgm->display = stk500v2_display;
pgm->enable = stk500v2_enable;
pgm->disable = stk500pp_disable;
pgm->program_enable = stk500pp_program_enable;
pgm->chip_erase = stk500pp_chip_erase;
pgm->open = stk600_open;
pgm->close = stk500v2_close;
pgm->read_byte = stk500pp_read_byte;
pgm->write_byte = stk500pp_write_byte;
/*
* optional functions
*/
pgm->paged_write = stk500pp_paged_write;
pgm->paged_load = stk500pp_paged_load;
pgm->print_parms = stk500v2_print_parms;
pgm->set_vtarget = stk600_set_vtarget;
pgm->set_varef = stk600_set_varef;
pgm->set_fosc = stk600_set_fosc;
pgm->set_sck_period = stk600_set_sck_period;
pgm->setup = stk500v2_setup;
pgm->teardown = stk500v2_teardown;
pgm->page_size = 256;
}
const char stk600hvsp_desc[] = "Atmel STK600 in high-voltage serial programming mode";
void stk600hvsp_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "STK600HVSP");
/*
* mandatory functions
*/
pgm->initialize = stk500hvsp_initialize;
pgm->display = stk500v2_display;
pgm->enable = stk500v2_enable;
pgm->disable = stk500hvsp_disable;
pgm->program_enable = stk500hvsp_program_enable;
pgm->chip_erase = stk500hvsp_chip_erase;
pgm->open = stk600_open;
pgm->close = stk500v2_close;
pgm->read_byte = stk500hvsp_read_byte;
pgm->write_byte = stk500hvsp_write_byte;
/*
* optional functions
*/
pgm->paged_write = stk500hvsp_paged_write;
pgm->paged_load = stk500hvsp_paged_load;
pgm->print_parms = stk500v2_print_parms;
pgm->set_vtarget = stk600_set_vtarget;
pgm->set_varef = stk600_set_varef;
pgm->set_fosc = stk600_set_fosc;
pgm->set_sck_period = stk600_set_sck_period;
pgm->setup = stk500v2_setup;
pgm->teardown = stk500v2_teardown;
pgm->page_size = 256;
}
const char stk500v2_jtag3_desc[] = "Atmel JTAGICE3 in ISP mode";
void stk500v2_jtag3_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "JTAG3_ISP");
/*
* mandatory functions
*/
pgm->initialize = stk500v2_jtag3_initialize;
pgm->display = stk500v2_display;
pgm->enable = stk500v2_enable;
pgm->disable = stk500v2_jtag3_disable;
pgm->program_enable = stk500v2_program_enable;
pgm->chip_erase = stk500v2_chip_erase;
pgm->cmd = stk500v2_jtag3_cmd;
pgm->open = stk500v2_jtag3_open;
pgm->close = stk500v2_jtag3_close;
pgm->read_byte = stk500isp_read_byte;
pgm->write_byte = stk500isp_write_byte;
/*
* optional functions
*/
pgm->paged_write = stk500v2_paged_write;
pgm->paged_load = stk500v2_paged_load;
pgm->page_erase = stk500v2_page_erase;
pgm->print_parms = stk500v2_print_parms;
pgm->set_sck_period = stk500v2_jtag3_set_sck_period;
pgm->perform_osccal = stk500v2_perform_osccal;
pgm->setup = stk500v2_jtag3_setup;
pgm->teardown = stk500v2_jtag3_teardown;
pgm->page_size = 256;
if (strcmp(ldata(lfirst(pgm->id)), "powerdebugger_isp") == 0)
pgm->set_vtarget = jtag3_set_vtarget;
}