avrdude/avrpart.c

540 lines
12 KiB
C

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2000-2004 Brian S. Dean <bsd@bsdhome.com>
* Copyright (C) 2006 Joerg Wunsch <j@uriah.heep.sax.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* $Id$ */
#include <stdlib.h>
#include <string.h>
#include "avrdude.h"
#include "avrpart.h"
#include "pindefs.h"
/***
*** Elementary functions dealing with OPCODE structures
***/
OPCODE * avr_new_opcode(void)
{
OPCODE * m;
m = (OPCODE *)malloc(sizeof(*m));
if (m == NULL) {
fprintf(stderr, "avr_new_opcode(): out of memory\n");
exit(1);
}
memset(m, 0, sizeof(*m));
return m;
}
/*
* avr_set_bits()
*
* Set instruction bits in the specified command based on the opcode.
*/
int avr_set_bits(OPCODE * op, unsigned char * cmd)
{
int i, j, bit;
unsigned char mask;
for (i=0; i<32; i++) {
if (op->bit[i].type == AVR_CMDBIT_VALUE) {
j = 3 - i / 8;
bit = i % 8;
mask = 1 << bit;
if (op->bit[i].value)
cmd[j] = cmd[j] | mask;
else
cmd[j] = cmd[j] & ~mask;
}
}
return 0;
}
/*
* avr_set_addr()
*
* Set address bits in the specified command based on the opcode, and
* the address.
*/
int avr_set_addr(OPCODE * op, unsigned char * cmd, unsigned long addr)
{
int i, j, bit;
unsigned long value;
unsigned char mask;
for (i=0; i<32; i++) {
if (op->bit[i].type == AVR_CMDBIT_ADDRESS) {
j = 3 - i / 8;
bit = i % 8;
mask = 1 << bit;
value = addr >> op->bit[i].bitno & 0x01;
if (value)
cmd[j] = cmd[j] | mask;
else
cmd[j] = cmd[j] & ~mask;
}
}
return 0;
}
/*
* avr_set_input()
*
* Set input data bits in the specified command based on the opcode,
* and the data byte.
*/
int avr_set_input(OPCODE * op, unsigned char * cmd, unsigned char data)
{
int i, j, bit;
unsigned char value;
unsigned char mask;
for (i=0; i<32; i++) {
if (op->bit[i].type == AVR_CMDBIT_INPUT) {
j = 3 - i / 8;
bit = i % 8;
mask = 1 << bit;
value = data >> op->bit[i].bitno & 0x01;
if (value)
cmd[j] = cmd[j] | mask;
else
cmd[j] = cmd[j] & ~mask;
}
}
return 0;
}
/*
* avr_get_output()
*
* Retreive output data bits from the command results based on the
* opcode data.
*/
int avr_get_output(OPCODE * op, unsigned char * res, unsigned char * data)
{
int i, j, bit;
unsigned char value;
unsigned char mask;
for (i=0; i<32; i++) {
if (op->bit[i].type == AVR_CMDBIT_OUTPUT) {
j = 3 - i / 8;
bit = i % 8;
mask = 1 << bit;
value = ((res[j] & mask) >> bit) & 0x01;
value = value << op->bit[i].bitno;
if (value)
*data = *data | value;
else
*data = *data & ~value;
}
}
return 0;
}
char * avr_op_str(int op)
{
switch (op) {
case AVR_OP_READ : return "READ"; break;
case AVR_OP_WRITE : return "WRITE"; break;
case AVR_OP_READ_LO : return "READ_LO"; break;
case AVR_OP_READ_HI : return "READ_HI"; break;
case AVR_OP_WRITE_LO : return "WRITE_LO"; break;
case AVR_OP_WRITE_HI : return "WRITE_HI"; break;
case AVR_OP_LOADPAGE_LO : return "LOADPAGE_LO"; break;
case AVR_OP_LOADPAGE_HI : return "LOADPAGE_HI"; break;
case AVR_OP_LOAD_EXT_ADDR : return "LOAD_EXT_ADDR"; break;
case AVR_OP_WRITEPAGE : return "WRITEPAGE"; break;
case AVR_OP_CHIP_ERASE : return "CHIP_ERASE"; break;
case AVR_OP_PGM_ENABLE : return "PGM_ENABLE"; break;
default : return "<unknown opcode>"; break;
}
}
char * bittype(int type)
{
switch (type) {
case AVR_CMDBIT_IGNORE : return "IGNORE"; break;
case AVR_CMDBIT_VALUE : return "VALUE"; break;
case AVR_CMDBIT_ADDRESS : return "ADDRESS"; break;
case AVR_CMDBIT_INPUT : return "INPUT"; break;
case AVR_CMDBIT_OUTPUT : return "OUTPUT"; break;
default : return "<unknown bit type>"; break;
}
}
/***
*** Elementary functions dealing with AVRMEM structures
***/
AVRMEM * avr_new_memtype(void)
{
AVRMEM * m;
m = (AVRMEM *)malloc(sizeof(*m));
if (m == NULL) {
fprintf(stderr, "avr_new_memtype(): out of memory\n");
exit(1);
}
memset(m, 0, sizeof(*m));
return m;
}
/*
* Allocate and initialize memory buffers for each of the device's
* defined memory regions.
*/
int avr_initmem(AVRPART * p)
{
LNODEID ln;
AVRMEM * m;
for (ln=lfirst(p->mem); ln; ln=lnext(ln)) {
m = ldata(ln);
m->buf = (unsigned char *) malloc(m->size);
if (m->buf == NULL) {
fprintf(stderr, "%s: can't alloc buffer for %s size of %d bytes\n",
progname, m->desc, m->size);
return -1;
}
}
return 0;
}
AVRMEM * avr_dup_mem(AVRMEM * m)
{
AVRMEM * n;
n = avr_new_memtype();
*n = *m;
n->buf = (unsigned char *)malloc(n->size);
if (n->buf == NULL) {
fprintf(stderr,
"avr_dup_mem(): out of memory (memsize=%d)\n",
n->size);
exit(1);
}
memset(n->buf, 0, n->size);
return n;
}
AVRMEM * avr_locate_mem(AVRPART * p, char * desc)
{
AVRMEM * m, * match;
LNODEID ln;
int matches;
int l;
l = strlen(desc);
matches = 0;
match = NULL;
for (ln=lfirst(p->mem); ln; ln=lnext(ln)) {
m = ldata(ln);
if (strncmp(desc, m->desc, l) == 0) {
match = m;
matches++;
}
}
if (matches == 1)
return match;
return NULL;
}
void avr_mem_display(char * prefix, FILE * f, AVRMEM * m, int type,
int verbose)
{
int i, j;
char * optr;
if (m == NULL) {
fprintf(f,
"%s Block Poll Page Polled\n"
"%sMemory Type Mode Delay Size Indx Paged Size Size #Pages MinW MaxW ReadBack\n"
"%s----------- ---- ----- ----- ---- ------ ------ ---- ------ ----- ----- ---------\n",
prefix, prefix, prefix);
}
else {
if (verbose > 2) {
fprintf(f,
"%s Block Poll Page Polled\n"
"%sMemory Type Mode Delay Size Indx Paged Size Size #Pages MinW MaxW ReadBack\n"
"%s----------- ---- ----- ----- ---- ------ ------ ---- ------ ----- ----- ---------\n",
prefix, prefix, prefix);
}
fprintf(f,
"%s%-11s %4d %5d %5d %4d %-6s %6d %4d %6d %5d %5d 0x%02x 0x%02x\n",
prefix, m->desc, m->mode, m->delay, m->blocksize, m->pollindex,
m->paged ? "yes" : "no",
m->size,
m->page_size,
m->num_pages,
m->min_write_delay,
m->max_write_delay,
m->readback[0],
m->readback[1]);
if (verbose > 4) {
fprintf(stderr,
"%s Memory Ops:\n"
"%s Oeration Inst Bit Bit Type Bitno Value\n"
"%s ----------- -------- -------- ----- -----\n",
prefix, prefix, prefix);
for (i=0; i<AVR_OP_MAX; i++) {
if (m->op[i]) {
for (j=31; j>=0; j--) {
if (j==31)
optr = avr_op_str(i);
else
optr = " ";
fprintf(f,
"%s %-11s %8d %8s %5d %5d\n",
prefix, optr, j,
bittype(m->op[i]->bit[j].type),
m->op[i]->bit[j].bitno,
m->op[i]->bit[j].value);
}
}
}
}
}
}
/*
* Elementary functions dealing with AVRPART structures
*/
AVRPART * avr_new_part(void)
{
AVRPART * p;
p = (AVRPART *)malloc(sizeof(AVRPART));
if (p == NULL) {
fprintf(stderr, "new_part(): out of memory\n");
exit(1);
}
memset(p, 0, sizeof(*p));
p->id[0] = 0;
p->desc[0] = 0;
p->reset_disposition = RESET_DEDICATED;
p->retry_pulse = PIN_AVR_SCK;
p->flags = AVRPART_SERIALOK | AVRPART_PARALLELOK | AVRPART_ENABLEPAGEPROGRAMMING;
p->config_file[0] = 0;
p->lineno = 0;
memset(p->signature, 0xFF, 3);
p->ctl_stack_type = CTL_STACK_NONE;
p->mem = lcreat(NULL, 0);
return p;
}
AVRPART * avr_dup_part(AVRPART * d)
{
AVRPART * p;
LISTID save;
LNODEID ln;
p = avr_new_part();
save = p->mem;
*p = *d;
p->mem = save;
for (ln=lfirst(d->mem); ln; ln=lnext(ln)) {
ladd(p->mem, avr_dup_mem(ldata(ln)));
}
return p;
}
AVRPART * locate_part(LISTID parts, char * partdesc)
{
LNODEID ln1;
AVRPART * p = NULL;
int found;
found = 0;
for (ln1=lfirst(parts); ln1 && !found; ln1=lnext(ln1)) {
p = ldata(ln1);
if ((strcasecmp(partdesc, p->id) == 0) ||
(strcasecmp(partdesc, p->desc) == 0))
found = 1;
}
if (found)
return p;
return NULL;
}
AVRPART * locate_part_by_avr910_devcode(LISTID parts, int devcode)
{
LNODEID ln1;
AVRPART * p = NULL;
for (ln1=lfirst(parts); ln1; ln1=lnext(ln1)) {
p = ldata(ln1);
if (p->avr910_devcode == devcode)
return p;
}
return NULL;
}
void list_parts(FILE * f, char * prefix, LISTID parts)
{
LNODEID ln1;
AVRPART * p;
for (ln1=lfirst(parts); ln1; ln1=lnext(ln1)) {
p = ldata(ln1);
fprintf(f, "%s%-4s = %-15s [%s:%d]\n",
prefix, p->id, p->desc, p->config_file, p->lineno);
}
return;
}
char * reset_disp_str(int r)
{
switch (r) {
case RESET_DEDICATED : return "dedicated";
case RESET_IO : return "possible i/o";
default : return "<invalid>";
}
}
char * pin_name(int pinno)
{
switch (pinno) {
case PIN_AVR_RESET : return "RESET";
case PIN_AVR_MISO : return "MISO";
case PIN_AVR_MOSI : return "MOSI";
case PIN_AVR_SCK : return "SCK";
default : return "<unknown>";
}
}
void avr_display(FILE * f, AVRPART * p, char * prefix, int verbose)
{
int i;
char * buf;
char * px;
LNODEID ln;
AVRMEM * m;
fprintf(f,
"%sAVR Part : %s\n"
"%sChip Erase delay : %d us\n"
"%sPAGEL : P%02X\n"
"%sBS2 : P%02X\n"
"%sRESET disposition : %s\n"
"%sRETRY pulse : %s\n"
"%sserial program mode : %s\n"
"%sparallel program mode : %s\n"
"%sTimeout : %d\n"
"%sStabDelay : %d\n"
"%sCmdexeDelay : %d\n"
"%sSyncLoops : %d\n"
"%sByteDelay : %d\n"
"%sPollIndex : %d\n"
"%sPollValue : 0x%02x\n"
"%sMemory Detail :\n\n",
prefix, p->desc,
prefix, p->chip_erase_delay,
prefix, p->pagel,
prefix, p->bs2,
prefix, reset_disp_str(p->reset_disposition),
prefix, pin_name(p->retry_pulse),
prefix, (p->flags & AVRPART_SERIALOK) ? "yes" : "no",
prefix, (p->flags & AVRPART_PARALLELOK) ?
((p->flags & AVRPART_PSEUDOPARALLEL) ? "psuedo" : "yes") : "no",
prefix, p->timeout,
prefix, p->stabdelay,
prefix, p->cmdexedelay,
prefix, p->synchloops,
prefix, p->bytedelay,
prefix, p->pollindex,
prefix, p->pollvalue,
prefix);
px = prefix;
i = strlen(prefix) + 5;
buf = (char *)malloc(i);
if (buf == NULL) {
/* ugh, this is not important enough to bail, just ignore it */
}
else {
strcpy(buf, prefix);
strcat(buf, " ");
px = buf;
}
if (verbose <= 2) {
avr_mem_display(px, f, NULL, 0, verbose);
}
for (ln=lfirst(p->mem); ln; ln=lnext(ln)) {
m = ldata(ln);
avr_mem_display(px, f, m, i, verbose);
}
if (buf)
free(buf);
}