avrdude/src/avr.c

1289 lines
34 KiB
C

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2000-2004 Brian S. Dean <bsd@bsdhome.com>
* Copyright (C) 2011 Darell Tan <darell.tan@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* $Id$ */
#include "ac_cfg.h"
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/time.h>
#include <time.h>
#include "avrdude.h"
#include "libavrdude.h"
#include "tpi.h"
FP_UpdateProgress update_progress;
#define DEBUG 0
/* TPI: returns 1 if NVM controller busy, 0 if free */
int avr_tpi_poll_nvmbsy(PROGRAMMER *pgm)
{
unsigned char cmd;
unsigned char res;
cmd = TPI_CMD_SIN | TPI_SIO_ADDR(TPI_IOREG_NVMCSR);
(void)pgm->cmd_tpi(pgm, &cmd, 1, &res, 1);
return (res & TPI_IOREG_NVMCSR_NVMBSY);
}
/* TPI chip erase sequence */
int avr_tpi_chip_erase(PROGRAMMER * pgm, AVRPART * p)
{
int err;
AVRMEM *mem;
if (p->flags & AVRPART_HAS_TPI) {
pgm->pgm_led(pgm, ON);
/* Set Pointer Register */
mem = avr_locate_mem(p, "flash");
if (mem == NULL) {
avrdude_message(MSG_INFO, "No flash memory to erase for part %s\n",
p->desc);
return -1;
}
unsigned char cmd[] = {
/* write pointer register high byte */
(TPI_CMD_SSTPR | 0),
((mem->offset & 0xFF) | 1),
/* and low byte */
(TPI_CMD_SSTPR | 1),
((mem->offset >> 8) & 0xFF),
/* write CHIP_ERASE command to NVMCMD register */
(TPI_CMD_SOUT | TPI_SIO_ADDR(TPI_IOREG_NVMCMD)),
TPI_NVMCMD_CHIP_ERASE,
/* write dummy value to start erase */
TPI_CMD_SST,
0xFF
};
while (avr_tpi_poll_nvmbsy(pgm))
;
err = pgm->cmd_tpi(pgm, cmd, sizeof(cmd), NULL, 0);
if(err)
return err;
while (avr_tpi_poll_nvmbsy(pgm));
pgm->pgm_led(pgm, OFF);
return 0;
} else {
avrdude_message(MSG_INFO, "%s called for a part that has no TPI\n", __func__);
return -1;
}
}
/* TPI program enable sequence */
int avr_tpi_program_enable(PROGRAMMER * pgm, AVRPART * p, unsigned char guard_time)
{
int err, retry;
unsigned char cmd[2];
unsigned char response;
if(p->flags & AVRPART_HAS_TPI) {
/* set guard time */
cmd[0] = (TPI_CMD_SSTCS | TPI_REG_TPIPCR);
cmd[1] = guard_time;
err = pgm->cmd_tpi(pgm, cmd, sizeof(cmd), NULL, 0);
if(err)
return err;
/* read TPI ident reg */
cmd[0] = (TPI_CMD_SLDCS | TPI_REG_TPIIR);
err = pgm->cmd_tpi(pgm, cmd, 1, &response, sizeof(response));
if (err || response != TPI_IDENT_CODE) {
avrdude_message(MSG_INFO, "TPIIR not correct\n");
return -1;
}
/* send SKEY command + SKEY */
err = pgm->cmd_tpi(pgm, tpi_skey_cmd, sizeof(tpi_skey_cmd), NULL, 0);
if(err)
return err;
/* check if device is ready */
for(retry = 0; retry < 10; retry++)
{
cmd[0] = (TPI_CMD_SLDCS | TPI_REG_TPISR);
err = pgm->cmd_tpi(pgm, cmd, 1, &response, sizeof(response));
if(err || !(response & TPI_REG_TPISR_NVMEN))
continue;
return 0;
}
avrdude_message(MSG_INFO, "Error enabling TPI external programming mode:");
avrdude_message(MSG_INFO, "Target does not reply\n");
return -1;
} else {
avrdude_message(MSG_INFO, "%s called for a part that has no TPI\n", __func__);
return -1;
}
}
/* TPI: setup NVMCMD register and pointer register (PR) for read/write/erase */
static int avr_tpi_setup_rw(PROGRAMMER * pgm, AVRMEM * mem,
unsigned long addr, unsigned char nvmcmd)
{
unsigned char cmd[4];
int rc;
/* set NVMCMD register */
cmd[0] = TPI_CMD_SOUT | TPI_SIO_ADDR(TPI_IOREG_NVMCMD);
cmd[1] = nvmcmd;
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
if (rc == -1)
return -1;
/* set Pointer Register (PR) */
cmd[0] = TPI_CMD_SSTPR | 0;
cmd[1] = (mem->offset + addr) & 0xFF;
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
if (rc == -1)
return -1;
cmd[0] = TPI_CMD_SSTPR | 1;
cmd[1] = ((mem->offset + addr) >> 8) & 0xFF;
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
if (rc == -1)
return -1;
return 0;
}
int avr_read_byte_default(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char * value)
{
unsigned char cmd[4];
unsigned char res[4];
unsigned char data;
int r;
OPCODE * readop, * lext;
if (pgm->cmd == NULL) {
avrdude_message(MSG_INFO, "%s: Error: %s programmer uses avr_read_byte_default() but does not\n"
"provide a cmd() method.\n",
progname, pgm->type);
return -1;
}
pgm->pgm_led(pgm, ON);
pgm->err_led(pgm, OFF);
if (p->flags & AVRPART_HAS_TPI) {
if (pgm->cmd_tpi == NULL) {
avrdude_message(MSG_INFO, "%s: Error: %s programmer does not support TPI\n",
progname, pgm->type);
return -1;
}
while (avr_tpi_poll_nvmbsy(pgm));
/* setup for read */
avr_tpi_setup_rw(pgm, mem, addr, TPI_NVMCMD_NO_OPERATION);
/* load byte */
cmd[0] = TPI_CMD_SLD;
r = pgm->cmd_tpi(pgm, cmd, 1, value, 1);
if (r == -1)
return -1;
return 0;
}
/*
* figure out what opcode to use
*/
if (mem->op[AVR_OP_READ_LO]) {
if (addr & 0x00000001)
readop = mem->op[AVR_OP_READ_HI];
else
readop = mem->op[AVR_OP_READ_LO];
addr = addr / 2;
}
else {
readop = mem->op[AVR_OP_READ];
}
if (readop == NULL) {
#if DEBUG
avrdude_message(MSG_INFO, "avr_read_byte(): operation not supported on memory type \"%s\"\n",
mem->desc);
#endif
return -1;
}
/*
* If this device has a "load extended address" command, issue it.
*/
lext = mem->op[AVR_OP_LOAD_EXT_ADDR];
if (lext != NULL) {
memset(cmd, 0, sizeof(cmd));
avr_set_bits(lext, cmd);
avr_set_addr(lext, cmd, addr);
r = pgm->cmd(pgm, cmd, res);
if (r < 0)
return r;
}
memset(cmd, 0, sizeof(cmd));
avr_set_bits(readop, cmd);
avr_set_addr(readop, cmd, addr);
r = pgm->cmd(pgm, cmd, res);
if (r < 0)
return r;
data = 0;
avr_get_output(readop, res, &data);
pgm->pgm_led(pgm, OFF);
*value = data;
return 0;
}
/*
* Return the number of "interesting" bytes in a memory buffer,
* "interesting" being defined as up to the last non-0xff data
* value. This is useful for determining where to stop when dealing
* with "flash" memory, since writing 0xff to flash is typically a
* no-op. Always return an even number since flash is word addressed.
*/
int avr_mem_hiaddr(AVRMEM * mem)
{
int i, n;
/* return the highest non-0xff address regardless of how much
memory was read */
for (i=mem->size-1; i>0; i--) {
if (mem->buf[i] != 0xff) {
n = i+1;
if (n & 0x01)
return n+1;
else
return n;
}
}
return 0;
}
/*
* Read the entirety of the specified memory type into the
* corresponding buffer of the avrpart pointed to by 'p'.
* If v is non-NULL, verify against v's memory area, only
* those cells that are tagged TAG_ALLOCATED are verified.
*
* Return the number of bytes read, or < 0 if an error occurs.
*/
int avr_read(PROGRAMMER * pgm, AVRPART * p, char * memtype,
AVRPART * v)
{
unsigned long i, lastaddr;
unsigned char cmd[4];
AVRMEM * mem, * vmem = NULL;
int rc;
mem = avr_locate_mem(p, memtype);
if (v != NULL)
vmem = avr_locate_mem(v, memtype);
if (mem == NULL) {
avrdude_message(MSG_INFO, "No \"%s\" memory for part %s\n",
memtype, p->desc);
return -1;
}
/*
* start with all 0xff
*/
memset(mem->buf, 0xff, mem->size);
/* supports "paged load" thru post-increment */
if ((p->flags & AVRPART_HAS_TPI) && mem->page_size > 1 &&
mem->size % mem->page_size == 0 && pgm->cmd_tpi != NULL) {
while (avr_tpi_poll_nvmbsy(pgm));
/* setup for read (NOOP) */
avr_tpi_setup_rw(pgm, mem, 0, TPI_NVMCMD_NO_OPERATION);
/* load bytes */
for (lastaddr = i = 0; i < mem->size; i++) {
if (vmem == NULL ||
(vmem->tags[i] & TAG_ALLOCATED) != 0)
{
if (lastaddr != i) {
/* need to setup new address */
avr_tpi_setup_rw(pgm, mem, i, TPI_NVMCMD_NO_OPERATION);
lastaddr = i;
}
cmd[0] = TPI_CMD_SLD_PI;
rc = pgm->cmd_tpi(pgm, cmd, 1, mem->buf + i, 1);
lastaddr++;
if (rc == -1) {
avrdude_message(MSG_INFO, "avr_read(): error reading address 0x%04lx\n", i);
return -1;
}
}
report_progress(i, mem->size, NULL);
}
return avr_mem_hiaddr(mem);
}
if (pgm->paged_load != NULL && mem->page_size > 1 &&
mem->size % mem->page_size == 0) {
/*
* the programmer supports a paged mode read
*/
int need_read, failure;
unsigned int pageaddr;
unsigned int npages, nread;
/* quickly scan number of pages to be written to first */
for (pageaddr = 0, npages = 0;
pageaddr < mem->size;
pageaddr += mem->page_size) {
/* check whether this page must be read */
for (i = pageaddr;
i < pageaddr + mem->page_size;
i++)
if (vmem == NULL /* no verify, read everything */ ||
(mem->tags[i] & TAG_ALLOCATED) != 0 /* verify, do only
read pages that
are needed in
input file */) {
npages++;
break;
}
}
for (pageaddr = 0, failure = 0, nread = 0;
!failure && pageaddr < mem->size;
pageaddr += mem->page_size) {
/* check whether this page must be read */
for (i = pageaddr, need_read = 0;
i < pageaddr + mem->page_size;
i++)
if (vmem == NULL /* no verify, read everything */ ||
(vmem->tags[i] & TAG_ALLOCATED) != 0 /* verify, do only
read pages that
are needed in
input file */) {
need_read = 1;
break;
}
if (need_read) {
rc = pgm->paged_load(pgm, p, mem, mem->page_size,
pageaddr, mem->page_size);
if (rc < 0)
/* paged load failed, fall back to byte-at-a-time read below */
failure = 1;
} else {
avrdude_message(MSG_DEBUG, "%s: avr_read(): skipping page %u: no interesting data\n",
progname, pageaddr / mem->page_size);
}
nread++;
report_progress(nread, npages, NULL);
}
if (!failure) {
if (strcasecmp(mem->desc, "flash") == 0 ||
strcasecmp(mem->desc, "application") == 0 ||
strcasecmp(mem->desc, "apptable") == 0 ||
strcasecmp(mem->desc, "boot") == 0)
return avr_mem_hiaddr(mem);
else
return mem->size;
}
/* else: fall back to byte-at-a-time write, for historical reasons */
}
if (strcmp(mem->desc, "signature") == 0) {
if (pgm->read_sig_bytes) {
return pgm->read_sig_bytes(pgm, p, mem);
}
}
for (i=0; i < mem->size; i++) {
if (vmem == NULL ||
(vmem->tags[i] & TAG_ALLOCATED) != 0)
{
rc = pgm->read_byte(pgm, p, mem, i, mem->buf + i);
if (rc != 0) {
avrdude_message(MSG_INFO, "avr_read(): error reading address 0x%04lx\n", i);
if (rc == -1) {
avrdude_message(MSG_INFO, " read operation not supported for memory \"%s\"\n",
memtype);
return -2;
}
avrdude_message(MSG_INFO, " read operation failed for memory \"%s\"\n",
memtype);
return rc;
}
}
report_progress(i, mem->size, NULL);
}
if (strcasecmp(mem->desc, "flash") == 0 ||
strcasecmp(mem->desc, "application") == 0 ||
strcasecmp(mem->desc, "apptable") == 0 ||
strcasecmp(mem->desc, "boot") == 0)
return avr_mem_hiaddr(mem);
else
return i;
}
/*
* write a page data at the specified address
*/
int avr_write_page(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr)
{
unsigned char cmd[4];
unsigned char res[4];
OPCODE * wp, * lext;
if (pgm->cmd == NULL) {
avrdude_message(MSG_INFO, "%s: Error: %s programmer uses avr_write_page() but does not\n"
"provide a cmd() method.\n",
progname, pgm->type);
return -1;
}
wp = mem->op[AVR_OP_WRITEPAGE];
if (wp == NULL) {
avrdude_message(MSG_INFO, "avr_write_page(): memory \"%s\" not configured for page writes\n",
mem->desc);
return -1;
}
/*
* if this memory is word-addressable, adjust the address
* accordingly
*/
if ((mem->op[AVR_OP_LOADPAGE_LO]) || (mem->op[AVR_OP_READ_LO]))
addr = addr / 2;
pgm->pgm_led(pgm, ON);
pgm->err_led(pgm, OFF);
/*
* If this device has a "load extended address" command, issue it.
*/
lext = mem->op[AVR_OP_LOAD_EXT_ADDR];
if (lext != NULL) {
memset(cmd, 0, sizeof(cmd));
avr_set_bits(lext, cmd);
avr_set_addr(lext, cmd, addr);
pgm->cmd(pgm, cmd, res);
}
memset(cmd, 0, sizeof(cmd));
avr_set_bits(wp, cmd);
avr_set_addr(wp, cmd, addr);
pgm->cmd(pgm, cmd, res);
/*
* since we don't know what voltage the target AVR is powered by, be
* conservative and delay the max amount the spec says to wait
*/
usleep(mem->max_write_delay);
pgm->pgm_led(pgm, OFF);
return 0;
}
int avr_write_byte_default(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char data)
{
unsigned char cmd[4];
unsigned char res[4];
unsigned char r;
int ready;
int tries;
unsigned long start_time;
unsigned long prog_time;
unsigned char b;
unsigned short caddr;
OPCODE * writeop;
int rc;
int readok=0;
struct timeval tv;
if (pgm->cmd == NULL) {
avrdude_message(MSG_INFO, "%s: Error: %s programmer uses avr_write_byte_default() but does not\n"
"provide a cmd() method.\n",
progname, pgm->type);
return -1;
}
if (p->flags & AVRPART_HAS_TPI) {
if (pgm->cmd_tpi == NULL) {
avrdude_message(MSG_INFO, "%s: Error: %s programmer does not support TPI\n",
progname, pgm->type);
return -1;
}
if (strcmp(mem->desc, "flash") == 0) {
avrdude_message(MSG_INFO, "Writing a byte to flash is not supported for %s\n", p->desc);
return -1;
} else if ((mem->offset + addr) & 1) {
avrdude_message(MSG_INFO, "Writing a byte to an odd location is not supported for %s\n", p->desc);
return -1;
}
while (avr_tpi_poll_nvmbsy(pgm));
/* must erase fuse first */
if (strcmp(mem->desc, "fuse") == 0) {
/* setup for SECTION_ERASE (high byte) */
avr_tpi_setup_rw(pgm, mem, addr | 1, TPI_NVMCMD_SECTION_ERASE);
/* write dummy byte */
cmd[0] = TPI_CMD_SST;
cmd[1] = 0xFF;
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
while (avr_tpi_poll_nvmbsy(pgm));
}
/* setup for WORD_WRITE */
avr_tpi_setup_rw(pgm, mem, addr, TPI_NVMCMD_WORD_WRITE);
cmd[0] = TPI_CMD_SST_PI;
cmd[1] = data;
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
/* dummy high byte to start WORD_WRITE */
cmd[0] = TPI_CMD_SST_PI;
cmd[1] = data;
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
while (avr_tpi_poll_nvmbsy(pgm));
return 0;
}
if (!mem->paged &&
(p->flags & AVRPART_IS_AT90S1200) == 0) {
/*
* check to see if the write is necessary by reading the existing
* value and only write if we are changing the value; we can't
* use this optimization for paged addressing.
*
* For mysterious reasons, on the AT90S1200, this read operation
* sometimes causes the high byte of the same word to be
* programmed to the value of the low byte that has just been
* programmed before. Avoid that optimization on this device.
*/
rc = pgm->read_byte(pgm, p, mem, addr, &b);
if (rc != 0) {
if (rc != -1) {
return -2;
}
/*
* the read operation is not support on this memory type
*/
}
else {
readok = 1;
if (b == data) {
return 0;
}
}
}
/*
* determine which memory opcode to use
*/
if (mem->op[AVR_OP_WRITE_LO]) {
if (addr & 0x01)
writeop = mem->op[AVR_OP_WRITE_HI];
else
writeop = mem->op[AVR_OP_WRITE_LO];
caddr = addr / 2;
}
else if (mem->paged && mem->op[AVR_OP_LOADPAGE_LO]) {
if (addr & 0x01)
writeop = mem->op[AVR_OP_LOADPAGE_HI];
else
writeop = mem->op[AVR_OP_LOADPAGE_LO];
caddr = addr / 2;
}
else {
writeop = mem->op[AVR_OP_WRITE];
caddr = addr;
}
if (writeop == NULL) {
#if DEBUG
avrdude_message(MSG_INFO, "avr_write_byte(): write not supported for memory type \"%s\"\n",
mem->desc);
#endif
return -1;
}
pgm->pgm_led(pgm, ON);
pgm->err_led(pgm, OFF);
memset(cmd, 0, sizeof(cmd));
avr_set_bits(writeop, cmd);
avr_set_addr(writeop, cmd, caddr);
avr_set_input(writeop, cmd, data);
pgm->cmd(pgm, cmd, res);
if (mem->paged) {
/*
* in paged addressing, single bytes to be written to the memory
* page complete immediately, we only need to delay when we commit
* the whole page via the avr_write_page() routine.
*/
pgm->pgm_led(pgm, OFF);
return 0;
}
if (readok == 0) {
/*
* read operation not supported for this memory type, just wait
* the max programming time and then return
*/
usleep(mem->max_write_delay); /* maximum write delay */
pgm->pgm_led(pgm, OFF);
return 0;
}
tries = 0;
ready = 0;
while (!ready) {
if ((data == mem->readback[0]) ||
(data == mem->readback[1])) {
/*
* use an extra long delay when we happen to be writing values
* used for polled data read-back. In this case, polling
* doesn't work, and we need to delay the worst case write time
* specified for the chip.
*/
usleep(mem->max_write_delay);
rc = pgm->read_byte(pgm, p, mem, addr, &r);
if (rc != 0) {
pgm->pgm_led(pgm, OFF);
pgm->err_led(pgm, OFF);
return -5;
}
}
else {
gettimeofday (&tv, NULL);
start_time = (tv.tv_sec * 1000000) + tv.tv_usec;
do {
/*
* Do polling, but timeout after max_write_delay.
*/
rc = pgm->read_byte(pgm, p, mem, addr, &r);
if (rc != 0) {
pgm->pgm_led(pgm, OFF);
pgm->err_led(pgm, ON);
return -4;
}
gettimeofday (&tv, NULL);
prog_time = (tv.tv_sec * 1000000) + tv.tv_usec;
} while ((r != data) &&
((prog_time-start_time) < mem->max_write_delay));
}
/*
* At this point we either have a valid readback or the
* max_write_delay is expired.
*/
if (r == data) {
ready = 1;
}
else if (mem->pwroff_after_write) {
/*
* The device has been flagged as power-off after write to this
* memory type. The reason we don't just blindly follow the
* flag is that the power-off advice may only apply to some
* memory bits but not all. We only actually power-off the
* device if the data read back does not match what we wrote.
*/
pgm->pgm_led(pgm, OFF);
avrdude_message(MSG_INFO, "%s: this device must be powered off and back on to continue\n",
progname);
if (pgm->pinno[PPI_AVR_VCC]) {
avrdude_message(MSG_INFO, "%s: attempting to do this now ...\n", progname);
pgm->powerdown(pgm);
usleep(250000);
rc = pgm->initialize(pgm, p);
if (rc < 0) {
avrdude_message(MSG_INFO, "%s: initialization failed, rc=%d\n", progname, rc);
avrdude_message(MSG_INFO, "%s: can't re-initialize device after programming the "
"%s bits\n", progname, mem->desc);
avrdude_message(MSG_INFO, "%s: you must manually power-down the device and restart\n"
"%s: %s to continue.\n",
progname, progname, progname);
return -3;
}
avrdude_message(MSG_INFO, "%s: device was successfully re-initialized\n",
progname);
return 0;
}
}
tries++;
if (!ready && tries > 5) {
/*
* we wrote the data, but after waiting for what should have
* been plenty of time, the memory cell still doesn't match what
* we wrote. Indicate a write error.
*/
pgm->pgm_led(pgm, OFF);
pgm->err_led(pgm, ON);
return -6;
}
}
pgm->pgm_led(pgm, OFF);
return 0;
}
/*
* write a byte of data at the specified address
*/
int avr_write_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char data)
{
return pgm->write_byte(pgm, p, mem, addr, data);
}
/*
* Write the whole memory region of the specified memory from the
* corresponding buffer of the avrpart pointed to by 'p'. Write up to
* 'size' bytes from the buffer. Data is only written if the new data
* value is different from the existing data value. Data beyond
* 'size' bytes is not affected.
*
* Return the number of bytes written, or -1 if an error occurs.
*/
int avr_write(PROGRAMMER * pgm, AVRPART * p, char * memtype, int size,
int auto_erase)
{
int rc;
int newpage, page_tainted, flush_page, do_write;
int wsize;
unsigned int i, lastaddr;
unsigned char data;
int werror;
unsigned char cmd[4];
AVRMEM * m;
m = avr_locate_mem(p, memtype);
if (m == NULL) {
avrdude_message(MSG_INFO, "No \"%s\" memory for part %s\n",
memtype, p->desc);
return -1;
}
pgm->err_led(pgm, OFF);
werror = 0;
wsize = m->size;
if (size < wsize) {
wsize = size;
}
else if (size > wsize) {
avrdude_message(MSG_INFO, "%s: WARNING: %d bytes requested, but memory region is only %d"
"bytes\n"
"%sOnly %d bytes will actually be written\n",
progname, size, wsize,
progbuf, wsize);
}
if ((p->flags & AVRPART_HAS_TPI) && m->page_size > 1 &&
pgm->cmd_tpi != NULL) {
if (wsize == 1) {
/* fuse (configuration) memory: only single byte to write */
return avr_write_byte(pgm, p, m, 0, m->buf[0]) == 0? 1: -1;
}
while (avr_tpi_poll_nvmbsy(pgm));
/* setup for WORD_WRITE */
avr_tpi_setup_rw(pgm, m, 0, TPI_NVMCMD_WORD_WRITE);
/* make sure it's aligned to a word boundary */
if (wsize & 0x1) {
wsize++;
}
/* write words, low byte first */
for (lastaddr = i = 0; i < wsize; i += 2) {
if ((m->tags[i] & TAG_ALLOCATED) != 0 ||
(m->tags[i + 1] & TAG_ALLOCATED) != 0) {
if (lastaddr != i) {
/* need to setup new address */
avr_tpi_setup_rw(pgm, m, i, TPI_NVMCMD_WORD_WRITE);
lastaddr = i;
}
cmd[0] = TPI_CMD_SST_PI;
cmd[1] = m->buf[i];
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
cmd[1] = m->buf[i + 1];
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
lastaddr += 2;
while (avr_tpi_poll_nvmbsy(pgm));
}
report_progress(i, wsize, NULL);
}
return i;
}
if (pgm->paged_write != NULL && m->page_size > 1) {
/*
* the programmer supports a paged mode write
*/
int need_write, failure;
unsigned int pageaddr;
unsigned int npages, nwritten;
/* quickly scan number of pages to be written to first */
for (pageaddr = 0, npages = 0;
pageaddr < wsize;
pageaddr += m->page_size) {
/* check whether this page must be written to */
for (i = pageaddr;
i < pageaddr + m->page_size;
i++)
if ((m->tags[i] & TAG_ALLOCATED) != 0) {
npages++;
break;
}
}
for (pageaddr = 0, failure = 0, nwritten = 0;
!failure && pageaddr < wsize;
pageaddr += m->page_size) {
/* check whether this page must be written to */
for (i = pageaddr, need_write = 0;
i < pageaddr + m->page_size;
i++)
if ((m->tags[i] & TAG_ALLOCATED) != 0) {
need_write = 1;
break;
}
if (need_write) {
rc = 0;
if (auto_erase)
rc = pgm->page_erase(pgm, p, m, pageaddr);
if (rc >= 0)
rc = pgm->paged_write(pgm, p, m, m->page_size, pageaddr, m->page_size);
if (rc < 0)
/* paged write failed, fall back to byte-at-a-time write below */
failure = 1;
} else {
avrdude_message(MSG_DEBUG, "%s: avr_write(): skipping page %u: no interesting data\n",
progname, pageaddr / m->page_size);
}
nwritten++;
report_progress(nwritten, npages, NULL);
}
if (!failure)
return wsize;
/* else: fall back to byte-at-a-time write, for historical reasons */
}
if (pgm->write_setup) {
pgm->write_setup(pgm, p, m);
}
newpage = 1;
page_tainted = 0;
flush_page = 0;
for (i=0; i<wsize; i++) {
data = m->buf[i];
report_progress(i, wsize, NULL);
/*
* Find out whether the write action must be invoked for this
* byte.
*
* For non-paged memory, this only happens if TAG_ALLOCATED is
* set for the byte.
*
* For paged memory, TAG_ALLOCATED also invokes the write
* operation, which is actually a page buffer fill only. This
* "taints" the page, and upon encountering the last byte of each
* tainted page, the write operation must also be invoked in order
* to actually write the page buffer to memory.
*/
do_write = (m->tags[i] & TAG_ALLOCATED) != 0;
if (m->paged) {
if (newpage) {
page_tainted = do_write;
} else {
page_tainted |= do_write;
}
if (i % m->page_size == m->page_size - 1 ||
i == wsize - 1) {
/* last byte this page */
flush_page = page_tainted;
newpage = 1;
} else {
flush_page = newpage = 0;
}
}
if (!do_write && !flush_page) {
continue;
}
if (do_write) {
rc = avr_write_byte(pgm, p, m, i, data);
if (rc) {
avrdude_message(MSG_INFO, " ***failed; ");
avrdude_message(MSG_INFO, "\n");
pgm->err_led(pgm, ON);
werror = 1;
}
}
/*
* check to see if it is time to flush the page with a page
* write
*/
if (flush_page) {
rc = avr_write_page(pgm, p, m, i);
if (rc) {
avrdude_message(MSG_INFO, " *** page %d (addresses 0x%04x - 0x%04x) failed "
"to write\n",
i % m->page_size,
i - m->page_size + 1, i);
avrdude_message(MSG_INFO, "\n");
pgm->err_led(pgm, ON);
werror = 1;
}
}
if (werror) {
/*
* make sure the error led stay on if there was a previous write
* error, otherwise it gets cleared in avr_write_byte()
*/
pgm->err_led(pgm, ON);
}
}
return i;
}
/*
* read the AVR device's signature bytes
*/
int avr_signature(PROGRAMMER * pgm, AVRPART * p)
{
int rc;
report_progress (0,1,"Reading");
rc = avr_read(pgm, p, "signature", 0);
if (rc < 0) {
avrdude_message(MSG_INFO, "%s: error reading signature data for part \"%s\", rc=%d\n",
progname, p->desc, rc);
return rc;
}
report_progress (1,1,NULL);
return 0;
}
static uint8_t get_fuse_bitmask(AVRMEM * m) {
uint8_t bitmask_r = 0;
uint8_t bitmask_w = 0;
int i;
if (!m || m->size > 1) {
// not a fuse, compare bytes directly
return 0xFF;
}
if (m->op[AVR_OP_WRITE] == NULL ||
m->op[AVR_OP_READ] == NULL)
// no memory operations provided by configuration, compare directly
return 0xFF;
// For fuses, only compare bytes that are actually written *and* read.
for (i = 0; i < 32; i++) {
if (m->op[AVR_OP_WRITE]->bit[i].type == AVR_CMDBIT_INPUT)
bitmask_w |= (1 << m->op[AVR_OP_WRITE]->bit[i].bitno);
if (m->op[AVR_OP_READ]->bit[i].type == AVR_CMDBIT_OUTPUT)
bitmask_r |= (1 << m->op[AVR_OP_READ]->bit[i].bitno);
}
return bitmask_r & bitmask_w;
}
int compare_memory_masked(AVRMEM * m, uint8_t b1, uint8_t b2) {
uint8_t bitmask = get_fuse_bitmask(m);
return (b1 & bitmask) != (b2 & bitmask);
}
/*
* Verify the memory buffer of p with that of v. The byte range of v,
* may be a subset of p. The byte range of p should cover the whole
* chip's memory size.
*
* Return the number of bytes verified, or -1 if they don't match.
*/
int avr_verify(AVRPART * p, AVRPART * v, char * memtype, int size)
{
int i;
unsigned char * buf1, * buf2;
int vsize;
AVRMEM * a, * b;
a = avr_locate_mem(p, memtype);
if (a == NULL) {
avrdude_message(MSG_INFO, "avr_verify(): memory type \"%s\" not defined for part %s\n",
memtype, p->desc);
return -1;
}
b = avr_locate_mem(v, memtype);
if (b == NULL) {
avrdude_message(MSG_INFO, "avr_verify(): memory type \"%s\" not defined for part %s\n",
memtype, v->desc);
return -1;
}
buf1 = a->buf;
buf2 = b->buf;
vsize = a->size;
if (vsize < size) {
avrdude_message(MSG_INFO, "%s: WARNING: requested verification for %d bytes\n"
"%s%s memory region only contains %d bytes\n"
"%sOnly %d bytes will be verified.\n",
progname, size,
progbuf, memtype, vsize,
progbuf, vsize);
size = vsize;
}
for (i=0; i<size; i++) {
if ((b->tags[i] & TAG_ALLOCATED) != 0 &&
buf1[i] != buf2[i]) {
uint8_t bitmask = get_fuse_bitmask(a);
if((buf1[i] & bitmask) != (buf2[i] & bitmask)) {
// Mismatch is not just in unused bits
avrdude_message(MSG_INFO, "%s: verification error, first mismatch at byte 0x%04x\n"
"%s0x%02x != 0x%02x\n",
progname, i,
progbuf, buf1[i], buf2[i]);
return -1;
} else {
// Mismatch is only in unused bits
if ((buf1[i] | bitmask) != 0xff) {
// Programmer returned unused bits as 0, must be the part/programmer
avrdude_message(MSG_INFO, "%s: WARNING: ignoring mismatch in unused bits of \"%s\"\n"
"%s(0x%02x != 0x%02x). To prevent this warning fix the part\n"
"%sor programmer definition in the config file.\n",
progname, memtype, progbuf, buf1[i], buf2[i], progbuf);
} else {
// Programmer returned unused bits as 1, must be the user
avrdude_message(MSG_INFO, "%s: WARNING: ignoring mismatch in unused bits of \"%s\"\n"
"%s(0x%02x != 0x%02x). To prevent this warning set unused bits\n"
"%sto 1 when writing (double check with your datasheet first).\n",
progname, memtype, progbuf, buf1[i], buf2[i], progbuf);
}
}
}
}
return size;
}
int avr_get_cycle_count(PROGRAMMER * pgm, AVRPART * p, int * cycles)
{
AVRMEM * a;
unsigned int cycle_count = 0;
unsigned char v1;
int rc;
int i;
a = avr_locate_mem(p, "eeprom");
if (a == NULL) {
return -1;
}
for (i=4; i>0; i--) {
rc = pgm->read_byte(pgm, p, a, a->size-i, &v1);
if (rc < 0) {
avrdude_message(MSG_INFO, "%s: WARNING: can't read memory for cycle count, rc=%d\n",
progname, rc);
return -1;
}
cycle_count = (cycle_count << 8) | v1;
}
/*
* If the EEPROM is erased, the cycle count reads 0xffffffff.
* In this case we return a cycle_count of zero.
* So, the calling function don't have to care about whether or not
* the cycle count was initialized.
*/
if (cycle_count == 0xffffffff) {
cycle_count = 0;
}
*cycles = (int) cycle_count;
return 0;
}
int avr_put_cycle_count(PROGRAMMER * pgm, AVRPART * p, int cycles)
{
AVRMEM * a;
unsigned char v1;
int rc;
int i;
a = avr_locate_mem(p, "eeprom");
if (a == NULL) {
return -1;
}
for (i=1; i<=4; i++) {
v1 = cycles & 0xff;
cycles = cycles >> 8;
rc = avr_write_byte(pgm, p, a, a->size-i, v1);
if (rc < 0) {
avrdude_message(MSG_INFO, "%s: WARNING: can't write memory for cycle count, rc=%d\n",
progname, rc);
return -1;
}
}
return 0;
}
int avr_chip_erase(PROGRAMMER * pgm, AVRPART * p)
{
int rc;
rc = pgm->chip_erase(pgm, p);
return rc;
}
int avr_unlock(PROGRAMMER * pgm, AVRPART * p)
{
int rc = -1;
if (pgm->unlock)
rc = pgm->unlock(pgm, p);
return rc;
}
/*
* Report the progress of a read or write operation from/to the
* device.
*
* The first call of report_progress() should look like this (for a write op):
*
* report_progress (0, 1, "Writing");
*
* Then hdr should be passed NULL on subsequent calls while the
* operation is progressing. Once the operation is complete, a final
* call should be made as such to ensure proper termination of the
* progress report:
*
* report_progress (1, 1, NULL);
*
* It would be nice if we could reduce the usage to one and only one
* call for each of start, during and end cases. As things stand now,
* that is not possible and makes maintenance a bit more work.
*/
void report_progress (int completed, int total, char *hdr)
{
static int last = 0;
static double start_time;
int percent = (total > 0) ? ((completed * 100) / total) : 100;
struct timeval tv;
double t;
if (update_progress == NULL)
return;
gettimeofday(&tv, NULL);
t = tv.tv_sec + ((double)tv.tv_usec)/1000000;
if (hdr) {
last = 0;
start_time = t;
update_progress (percent, t - start_time, hdr);
}
if (percent > 100)
percent = 100;
if (percent > last) {
last = percent;
update_progress (percent, t - start_time, hdr);
}
if (percent == 100)
last = 0; /* Get ready for next time. */
}