1289 lines
34 KiB
C
1289 lines
34 KiB
C
/*
|
|
* avrdude - A Downloader/Uploader for AVR device programmers
|
|
* Copyright (C) 2000-2004 Brian S. Dean <bsd@bsdhome.com>
|
|
* Copyright (C) 2011 Darell Tan <darell.tan@gmail.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* $Id$ */
|
|
|
|
#include "ac_cfg.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <string.h>
|
|
#include <sys/time.h>
|
|
#include <time.h>
|
|
|
|
#include "avrdude.h"
|
|
#include "libavrdude.h"
|
|
|
|
#include "tpi.h"
|
|
|
|
FP_UpdateProgress update_progress;
|
|
|
|
#define DEBUG 0
|
|
|
|
/* TPI: returns 1 if NVM controller busy, 0 if free */
|
|
int avr_tpi_poll_nvmbsy(PROGRAMMER *pgm)
|
|
{
|
|
unsigned char cmd;
|
|
unsigned char res;
|
|
|
|
cmd = TPI_CMD_SIN | TPI_SIO_ADDR(TPI_IOREG_NVMCSR);
|
|
(void)pgm->cmd_tpi(pgm, &cmd, 1, &res, 1);
|
|
return (res & TPI_IOREG_NVMCSR_NVMBSY);
|
|
}
|
|
|
|
/* TPI chip erase sequence */
|
|
int avr_tpi_chip_erase(PROGRAMMER * pgm, AVRPART * p)
|
|
{
|
|
int err;
|
|
AVRMEM *mem;
|
|
|
|
if (p->flags & AVRPART_HAS_TPI) {
|
|
pgm->pgm_led(pgm, ON);
|
|
|
|
/* Set Pointer Register */
|
|
mem = avr_locate_mem(p, "flash");
|
|
if (mem == NULL) {
|
|
avrdude_message(MSG_INFO, "No flash memory to erase for part %s\n",
|
|
p->desc);
|
|
return -1;
|
|
}
|
|
|
|
unsigned char cmd[] = {
|
|
/* write pointer register high byte */
|
|
(TPI_CMD_SSTPR | 0),
|
|
((mem->offset & 0xFF) | 1),
|
|
/* and low byte */
|
|
(TPI_CMD_SSTPR | 1),
|
|
((mem->offset >> 8) & 0xFF),
|
|
/* write CHIP_ERASE command to NVMCMD register */
|
|
(TPI_CMD_SOUT | TPI_SIO_ADDR(TPI_IOREG_NVMCMD)),
|
|
TPI_NVMCMD_CHIP_ERASE,
|
|
/* write dummy value to start erase */
|
|
TPI_CMD_SST,
|
|
0xFF
|
|
};
|
|
|
|
while (avr_tpi_poll_nvmbsy(pgm))
|
|
;
|
|
|
|
err = pgm->cmd_tpi(pgm, cmd, sizeof(cmd), NULL, 0);
|
|
if(err)
|
|
return err;
|
|
|
|
while (avr_tpi_poll_nvmbsy(pgm));
|
|
|
|
pgm->pgm_led(pgm, OFF);
|
|
|
|
return 0;
|
|
} else {
|
|
avrdude_message(MSG_INFO, "%s called for a part that has no TPI\n", __func__);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* TPI program enable sequence */
|
|
int avr_tpi_program_enable(PROGRAMMER * pgm, AVRPART * p, unsigned char guard_time)
|
|
{
|
|
int err, retry;
|
|
unsigned char cmd[2];
|
|
unsigned char response;
|
|
|
|
if(p->flags & AVRPART_HAS_TPI) {
|
|
/* set guard time */
|
|
cmd[0] = (TPI_CMD_SSTCS | TPI_REG_TPIPCR);
|
|
cmd[1] = guard_time;
|
|
|
|
err = pgm->cmd_tpi(pgm, cmd, sizeof(cmd), NULL, 0);
|
|
if(err)
|
|
return err;
|
|
|
|
/* read TPI ident reg */
|
|
cmd[0] = (TPI_CMD_SLDCS | TPI_REG_TPIIR);
|
|
err = pgm->cmd_tpi(pgm, cmd, 1, &response, sizeof(response));
|
|
if (err || response != TPI_IDENT_CODE) {
|
|
avrdude_message(MSG_INFO, "TPIIR not correct\n");
|
|
return -1;
|
|
}
|
|
|
|
/* send SKEY command + SKEY */
|
|
err = pgm->cmd_tpi(pgm, tpi_skey_cmd, sizeof(tpi_skey_cmd), NULL, 0);
|
|
if(err)
|
|
return err;
|
|
|
|
/* check if device is ready */
|
|
for(retry = 0; retry < 10; retry++)
|
|
{
|
|
cmd[0] = (TPI_CMD_SLDCS | TPI_REG_TPISR);
|
|
err = pgm->cmd_tpi(pgm, cmd, 1, &response, sizeof(response));
|
|
if(err || !(response & TPI_REG_TPISR_NVMEN))
|
|
continue;
|
|
|
|
return 0;
|
|
}
|
|
|
|
avrdude_message(MSG_INFO, "Error enabling TPI external programming mode:");
|
|
avrdude_message(MSG_INFO, "Target does not reply\n");
|
|
return -1;
|
|
|
|
} else {
|
|
avrdude_message(MSG_INFO, "%s called for a part that has no TPI\n", __func__);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* TPI: setup NVMCMD register and pointer register (PR) for read/write/erase */
|
|
static int avr_tpi_setup_rw(PROGRAMMER * pgm, AVRMEM * mem,
|
|
unsigned long addr, unsigned char nvmcmd)
|
|
{
|
|
unsigned char cmd[4];
|
|
int rc;
|
|
|
|
/* set NVMCMD register */
|
|
cmd[0] = TPI_CMD_SOUT | TPI_SIO_ADDR(TPI_IOREG_NVMCMD);
|
|
cmd[1] = nvmcmd;
|
|
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
|
|
if (rc == -1)
|
|
return -1;
|
|
|
|
/* set Pointer Register (PR) */
|
|
cmd[0] = TPI_CMD_SSTPR | 0;
|
|
cmd[1] = (mem->offset + addr) & 0xFF;
|
|
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
|
|
if (rc == -1)
|
|
return -1;
|
|
|
|
cmd[0] = TPI_CMD_SSTPR | 1;
|
|
cmd[1] = ((mem->offset + addr) >> 8) & 0xFF;
|
|
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
|
|
if (rc == -1)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int avr_read_byte_default(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
|
|
unsigned long addr, unsigned char * value)
|
|
{
|
|
unsigned char cmd[4];
|
|
unsigned char res[4];
|
|
unsigned char data;
|
|
int r;
|
|
OPCODE * readop, * lext;
|
|
|
|
if (pgm->cmd == NULL) {
|
|
avrdude_message(MSG_INFO, "%s: Error: %s programmer uses avr_read_byte_default() but does not\n"
|
|
"provide a cmd() method.\n",
|
|
progname, pgm->type);
|
|
return -1;
|
|
}
|
|
|
|
pgm->pgm_led(pgm, ON);
|
|
pgm->err_led(pgm, OFF);
|
|
|
|
if (p->flags & AVRPART_HAS_TPI) {
|
|
if (pgm->cmd_tpi == NULL) {
|
|
avrdude_message(MSG_INFO, "%s: Error: %s programmer does not support TPI\n",
|
|
progname, pgm->type);
|
|
return -1;
|
|
}
|
|
|
|
while (avr_tpi_poll_nvmbsy(pgm));
|
|
|
|
/* setup for read */
|
|
avr_tpi_setup_rw(pgm, mem, addr, TPI_NVMCMD_NO_OPERATION);
|
|
|
|
/* load byte */
|
|
cmd[0] = TPI_CMD_SLD;
|
|
r = pgm->cmd_tpi(pgm, cmd, 1, value, 1);
|
|
if (r == -1)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* figure out what opcode to use
|
|
*/
|
|
if (mem->op[AVR_OP_READ_LO]) {
|
|
if (addr & 0x00000001)
|
|
readop = mem->op[AVR_OP_READ_HI];
|
|
else
|
|
readop = mem->op[AVR_OP_READ_LO];
|
|
addr = addr / 2;
|
|
}
|
|
else {
|
|
readop = mem->op[AVR_OP_READ];
|
|
}
|
|
|
|
if (readop == NULL) {
|
|
#if DEBUG
|
|
avrdude_message(MSG_INFO, "avr_read_byte(): operation not supported on memory type \"%s\"\n",
|
|
mem->desc);
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* If this device has a "load extended address" command, issue it.
|
|
*/
|
|
lext = mem->op[AVR_OP_LOAD_EXT_ADDR];
|
|
if (lext != NULL) {
|
|
memset(cmd, 0, sizeof(cmd));
|
|
|
|
avr_set_bits(lext, cmd);
|
|
avr_set_addr(lext, cmd, addr);
|
|
r = pgm->cmd(pgm, cmd, res);
|
|
if (r < 0)
|
|
return r;
|
|
}
|
|
|
|
memset(cmd, 0, sizeof(cmd));
|
|
|
|
avr_set_bits(readop, cmd);
|
|
avr_set_addr(readop, cmd, addr);
|
|
r = pgm->cmd(pgm, cmd, res);
|
|
if (r < 0)
|
|
return r;
|
|
data = 0;
|
|
avr_get_output(readop, res, &data);
|
|
|
|
pgm->pgm_led(pgm, OFF);
|
|
|
|
*value = data;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Return the number of "interesting" bytes in a memory buffer,
|
|
* "interesting" being defined as up to the last non-0xff data
|
|
* value. This is useful for determining where to stop when dealing
|
|
* with "flash" memory, since writing 0xff to flash is typically a
|
|
* no-op. Always return an even number since flash is word addressed.
|
|
*/
|
|
int avr_mem_hiaddr(AVRMEM * mem)
|
|
{
|
|
int i, n;
|
|
|
|
/* return the highest non-0xff address regardless of how much
|
|
memory was read */
|
|
for (i=mem->size-1; i>0; i--) {
|
|
if (mem->buf[i] != 0xff) {
|
|
n = i+1;
|
|
if (n & 0x01)
|
|
return n+1;
|
|
else
|
|
return n;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Read the entirety of the specified memory type into the
|
|
* corresponding buffer of the avrpart pointed to by 'p'.
|
|
* If v is non-NULL, verify against v's memory area, only
|
|
* those cells that are tagged TAG_ALLOCATED are verified.
|
|
*
|
|
* Return the number of bytes read, or < 0 if an error occurs.
|
|
*/
|
|
int avr_read(PROGRAMMER * pgm, AVRPART * p, char * memtype,
|
|
AVRPART * v)
|
|
{
|
|
unsigned long i, lastaddr;
|
|
unsigned char cmd[4];
|
|
AVRMEM * mem, * vmem = NULL;
|
|
int rc;
|
|
|
|
mem = avr_locate_mem(p, memtype);
|
|
if (v != NULL)
|
|
vmem = avr_locate_mem(v, memtype);
|
|
if (mem == NULL) {
|
|
avrdude_message(MSG_INFO, "No \"%s\" memory for part %s\n",
|
|
memtype, p->desc);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* start with all 0xff
|
|
*/
|
|
memset(mem->buf, 0xff, mem->size);
|
|
|
|
/* supports "paged load" thru post-increment */
|
|
if ((p->flags & AVRPART_HAS_TPI) && mem->page_size > 1 &&
|
|
mem->size % mem->page_size == 0 && pgm->cmd_tpi != NULL) {
|
|
|
|
while (avr_tpi_poll_nvmbsy(pgm));
|
|
|
|
/* setup for read (NOOP) */
|
|
avr_tpi_setup_rw(pgm, mem, 0, TPI_NVMCMD_NO_OPERATION);
|
|
|
|
/* load bytes */
|
|
for (lastaddr = i = 0; i < mem->size; i++) {
|
|
if (vmem == NULL ||
|
|
(vmem->tags[i] & TAG_ALLOCATED) != 0)
|
|
{
|
|
if (lastaddr != i) {
|
|
/* need to setup new address */
|
|
avr_tpi_setup_rw(pgm, mem, i, TPI_NVMCMD_NO_OPERATION);
|
|
lastaddr = i;
|
|
}
|
|
cmd[0] = TPI_CMD_SLD_PI;
|
|
rc = pgm->cmd_tpi(pgm, cmd, 1, mem->buf + i, 1);
|
|
lastaddr++;
|
|
if (rc == -1) {
|
|
avrdude_message(MSG_INFO, "avr_read(): error reading address 0x%04lx\n", i);
|
|
return -1;
|
|
}
|
|
}
|
|
report_progress(i, mem->size, NULL);
|
|
}
|
|
return avr_mem_hiaddr(mem);
|
|
}
|
|
|
|
if (pgm->paged_load != NULL && mem->page_size > 1 &&
|
|
mem->size % mem->page_size == 0) {
|
|
/*
|
|
* the programmer supports a paged mode read
|
|
*/
|
|
int need_read, failure;
|
|
unsigned int pageaddr;
|
|
unsigned int npages, nread;
|
|
|
|
/* quickly scan number of pages to be written to first */
|
|
for (pageaddr = 0, npages = 0;
|
|
pageaddr < mem->size;
|
|
pageaddr += mem->page_size) {
|
|
/* check whether this page must be read */
|
|
for (i = pageaddr;
|
|
i < pageaddr + mem->page_size;
|
|
i++)
|
|
if (vmem == NULL /* no verify, read everything */ ||
|
|
(mem->tags[i] & TAG_ALLOCATED) != 0 /* verify, do only
|
|
read pages that
|
|
are needed in
|
|
input file */) {
|
|
npages++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (pageaddr = 0, failure = 0, nread = 0;
|
|
!failure && pageaddr < mem->size;
|
|
pageaddr += mem->page_size) {
|
|
/* check whether this page must be read */
|
|
for (i = pageaddr, need_read = 0;
|
|
i < pageaddr + mem->page_size;
|
|
i++)
|
|
if (vmem == NULL /* no verify, read everything */ ||
|
|
(vmem->tags[i] & TAG_ALLOCATED) != 0 /* verify, do only
|
|
read pages that
|
|
are needed in
|
|
input file */) {
|
|
need_read = 1;
|
|
break;
|
|
}
|
|
if (need_read) {
|
|
rc = pgm->paged_load(pgm, p, mem, mem->page_size,
|
|
pageaddr, mem->page_size);
|
|
if (rc < 0)
|
|
/* paged load failed, fall back to byte-at-a-time read below */
|
|
failure = 1;
|
|
} else {
|
|
avrdude_message(MSG_DEBUG, "%s: avr_read(): skipping page %u: no interesting data\n",
|
|
progname, pageaddr / mem->page_size);
|
|
}
|
|
nread++;
|
|
report_progress(nread, npages, NULL);
|
|
}
|
|
if (!failure) {
|
|
if (strcasecmp(mem->desc, "flash") == 0 ||
|
|
strcasecmp(mem->desc, "application") == 0 ||
|
|
strcasecmp(mem->desc, "apptable") == 0 ||
|
|
strcasecmp(mem->desc, "boot") == 0)
|
|
return avr_mem_hiaddr(mem);
|
|
else
|
|
return mem->size;
|
|
}
|
|
/* else: fall back to byte-at-a-time write, for historical reasons */
|
|
}
|
|
|
|
if (strcmp(mem->desc, "signature") == 0) {
|
|
if (pgm->read_sig_bytes) {
|
|
return pgm->read_sig_bytes(pgm, p, mem);
|
|
}
|
|
}
|
|
|
|
for (i=0; i < mem->size; i++) {
|
|
if (vmem == NULL ||
|
|
(vmem->tags[i] & TAG_ALLOCATED) != 0)
|
|
{
|
|
rc = pgm->read_byte(pgm, p, mem, i, mem->buf + i);
|
|
if (rc != 0) {
|
|
avrdude_message(MSG_INFO, "avr_read(): error reading address 0x%04lx\n", i);
|
|
if (rc == -1) {
|
|
avrdude_message(MSG_INFO, " read operation not supported for memory \"%s\"\n",
|
|
memtype);
|
|
return -2;
|
|
}
|
|
avrdude_message(MSG_INFO, " read operation failed for memory \"%s\"\n",
|
|
memtype);
|
|
return rc;
|
|
}
|
|
}
|
|
report_progress(i, mem->size, NULL);
|
|
}
|
|
|
|
if (strcasecmp(mem->desc, "flash") == 0 ||
|
|
strcasecmp(mem->desc, "application") == 0 ||
|
|
strcasecmp(mem->desc, "apptable") == 0 ||
|
|
strcasecmp(mem->desc, "boot") == 0)
|
|
return avr_mem_hiaddr(mem);
|
|
else
|
|
return i;
|
|
}
|
|
|
|
|
|
/*
|
|
* write a page data at the specified address
|
|
*/
|
|
int avr_write_page(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
|
|
unsigned long addr)
|
|
{
|
|
unsigned char cmd[4];
|
|
unsigned char res[4];
|
|
OPCODE * wp, * lext;
|
|
|
|
if (pgm->cmd == NULL) {
|
|
avrdude_message(MSG_INFO, "%s: Error: %s programmer uses avr_write_page() but does not\n"
|
|
"provide a cmd() method.\n",
|
|
progname, pgm->type);
|
|
return -1;
|
|
}
|
|
|
|
wp = mem->op[AVR_OP_WRITEPAGE];
|
|
if (wp == NULL) {
|
|
avrdude_message(MSG_INFO, "avr_write_page(): memory \"%s\" not configured for page writes\n",
|
|
mem->desc);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* if this memory is word-addressable, adjust the address
|
|
* accordingly
|
|
*/
|
|
if ((mem->op[AVR_OP_LOADPAGE_LO]) || (mem->op[AVR_OP_READ_LO]))
|
|
addr = addr / 2;
|
|
|
|
pgm->pgm_led(pgm, ON);
|
|
pgm->err_led(pgm, OFF);
|
|
|
|
/*
|
|
* If this device has a "load extended address" command, issue it.
|
|
*/
|
|
lext = mem->op[AVR_OP_LOAD_EXT_ADDR];
|
|
if (lext != NULL) {
|
|
memset(cmd, 0, sizeof(cmd));
|
|
|
|
avr_set_bits(lext, cmd);
|
|
avr_set_addr(lext, cmd, addr);
|
|
pgm->cmd(pgm, cmd, res);
|
|
}
|
|
|
|
memset(cmd, 0, sizeof(cmd));
|
|
|
|
avr_set_bits(wp, cmd);
|
|
avr_set_addr(wp, cmd, addr);
|
|
pgm->cmd(pgm, cmd, res);
|
|
|
|
/*
|
|
* since we don't know what voltage the target AVR is powered by, be
|
|
* conservative and delay the max amount the spec says to wait
|
|
*/
|
|
usleep(mem->max_write_delay);
|
|
|
|
pgm->pgm_led(pgm, OFF);
|
|
return 0;
|
|
}
|
|
|
|
|
|
int avr_write_byte_default(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
|
|
unsigned long addr, unsigned char data)
|
|
{
|
|
unsigned char cmd[4];
|
|
unsigned char res[4];
|
|
unsigned char r;
|
|
int ready;
|
|
int tries;
|
|
unsigned long start_time;
|
|
unsigned long prog_time;
|
|
unsigned char b;
|
|
unsigned short caddr;
|
|
OPCODE * writeop;
|
|
int rc;
|
|
int readok=0;
|
|
struct timeval tv;
|
|
|
|
if (pgm->cmd == NULL) {
|
|
avrdude_message(MSG_INFO, "%s: Error: %s programmer uses avr_write_byte_default() but does not\n"
|
|
"provide a cmd() method.\n",
|
|
progname, pgm->type);
|
|
return -1;
|
|
}
|
|
|
|
if (p->flags & AVRPART_HAS_TPI) {
|
|
if (pgm->cmd_tpi == NULL) {
|
|
avrdude_message(MSG_INFO, "%s: Error: %s programmer does not support TPI\n",
|
|
progname, pgm->type);
|
|
return -1;
|
|
}
|
|
|
|
if (strcmp(mem->desc, "flash") == 0) {
|
|
avrdude_message(MSG_INFO, "Writing a byte to flash is not supported for %s\n", p->desc);
|
|
return -1;
|
|
} else if ((mem->offset + addr) & 1) {
|
|
avrdude_message(MSG_INFO, "Writing a byte to an odd location is not supported for %s\n", p->desc);
|
|
return -1;
|
|
}
|
|
|
|
while (avr_tpi_poll_nvmbsy(pgm));
|
|
|
|
/* must erase fuse first */
|
|
if (strcmp(mem->desc, "fuse") == 0) {
|
|
/* setup for SECTION_ERASE (high byte) */
|
|
avr_tpi_setup_rw(pgm, mem, addr | 1, TPI_NVMCMD_SECTION_ERASE);
|
|
|
|
/* write dummy byte */
|
|
cmd[0] = TPI_CMD_SST;
|
|
cmd[1] = 0xFF;
|
|
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
|
|
|
|
while (avr_tpi_poll_nvmbsy(pgm));
|
|
}
|
|
|
|
/* setup for WORD_WRITE */
|
|
avr_tpi_setup_rw(pgm, mem, addr, TPI_NVMCMD_WORD_WRITE);
|
|
|
|
cmd[0] = TPI_CMD_SST_PI;
|
|
cmd[1] = data;
|
|
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
|
|
/* dummy high byte to start WORD_WRITE */
|
|
cmd[0] = TPI_CMD_SST_PI;
|
|
cmd[1] = data;
|
|
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
|
|
|
|
while (avr_tpi_poll_nvmbsy(pgm));
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (!mem->paged &&
|
|
(p->flags & AVRPART_IS_AT90S1200) == 0) {
|
|
/*
|
|
* check to see if the write is necessary by reading the existing
|
|
* value and only write if we are changing the value; we can't
|
|
* use this optimization for paged addressing.
|
|
*
|
|
* For mysterious reasons, on the AT90S1200, this read operation
|
|
* sometimes causes the high byte of the same word to be
|
|
* programmed to the value of the low byte that has just been
|
|
* programmed before. Avoid that optimization on this device.
|
|
*/
|
|
rc = pgm->read_byte(pgm, p, mem, addr, &b);
|
|
if (rc != 0) {
|
|
if (rc != -1) {
|
|
return -2;
|
|
}
|
|
/*
|
|
* the read operation is not support on this memory type
|
|
*/
|
|
}
|
|
else {
|
|
readok = 1;
|
|
if (b == data) {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* determine which memory opcode to use
|
|
*/
|
|
if (mem->op[AVR_OP_WRITE_LO]) {
|
|
if (addr & 0x01)
|
|
writeop = mem->op[AVR_OP_WRITE_HI];
|
|
else
|
|
writeop = mem->op[AVR_OP_WRITE_LO];
|
|
caddr = addr / 2;
|
|
}
|
|
else if (mem->paged && mem->op[AVR_OP_LOADPAGE_LO]) {
|
|
if (addr & 0x01)
|
|
writeop = mem->op[AVR_OP_LOADPAGE_HI];
|
|
else
|
|
writeop = mem->op[AVR_OP_LOADPAGE_LO];
|
|
caddr = addr / 2;
|
|
}
|
|
else {
|
|
writeop = mem->op[AVR_OP_WRITE];
|
|
caddr = addr;
|
|
}
|
|
|
|
if (writeop == NULL) {
|
|
#if DEBUG
|
|
avrdude_message(MSG_INFO, "avr_write_byte(): write not supported for memory type \"%s\"\n",
|
|
mem->desc);
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
|
|
pgm->pgm_led(pgm, ON);
|
|
pgm->err_led(pgm, OFF);
|
|
|
|
memset(cmd, 0, sizeof(cmd));
|
|
|
|
avr_set_bits(writeop, cmd);
|
|
avr_set_addr(writeop, cmd, caddr);
|
|
avr_set_input(writeop, cmd, data);
|
|
pgm->cmd(pgm, cmd, res);
|
|
|
|
if (mem->paged) {
|
|
/*
|
|
* in paged addressing, single bytes to be written to the memory
|
|
* page complete immediately, we only need to delay when we commit
|
|
* the whole page via the avr_write_page() routine.
|
|
*/
|
|
pgm->pgm_led(pgm, OFF);
|
|
return 0;
|
|
}
|
|
|
|
if (readok == 0) {
|
|
/*
|
|
* read operation not supported for this memory type, just wait
|
|
* the max programming time and then return
|
|
*/
|
|
usleep(mem->max_write_delay); /* maximum write delay */
|
|
pgm->pgm_led(pgm, OFF);
|
|
return 0;
|
|
}
|
|
|
|
tries = 0;
|
|
ready = 0;
|
|
while (!ready) {
|
|
|
|
if ((data == mem->readback[0]) ||
|
|
(data == mem->readback[1])) {
|
|
/*
|
|
* use an extra long delay when we happen to be writing values
|
|
* used for polled data read-back. In this case, polling
|
|
* doesn't work, and we need to delay the worst case write time
|
|
* specified for the chip.
|
|
*/
|
|
usleep(mem->max_write_delay);
|
|
rc = pgm->read_byte(pgm, p, mem, addr, &r);
|
|
if (rc != 0) {
|
|
pgm->pgm_led(pgm, OFF);
|
|
pgm->err_led(pgm, OFF);
|
|
return -5;
|
|
}
|
|
}
|
|
else {
|
|
gettimeofday (&tv, NULL);
|
|
start_time = (tv.tv_sec * 1000000) + tv.tv_usec;
|
|
do {
|
|
/*
|
|
* Do polling, but timeout after max_write_delay.
|
|
*/
|
|
rc = pgm->read_byte(pgm, p, mem, addr, &r);
|
|
if (rc != 0) {
|
|
pgm->pgm_led(pgm, OFF);
|
|
pgm->err_led(pgm, ON);
|
|
return -4;
|
|
}
|
|
gettimeofday (&tv, NULL);
|
|
prog_time = (tv.tv_sec * 1000000) + tv.tv_usec;
|
|
} while ((r != data) &&
|
|
((prog_time-start_time) < mem->max_write_delay));
|
|
}
|
|
|
|
/*
|
|
* At this point we either have a valid readback or the
|
|
* max_write_delay is expired.
|
|
*/
|
|
|
|
if (r == data) {
|
|
ready = 1;
|
|
}
|
|
else if (mem->pwroff_after_write) {
|
|
/*
|
|
* The device has been flagged as power-off after write to this
|
|
* memory type. The reason we don't just blindly follow the
|
|
* flag is that the power-off advice may only apply to some
|
|
* memory bits but not all. We only actually power-off the
|
|
* device if the data read back does not match what we wrote.
|
|
*/
|
|
pgm->pgm_led(pgm, OFF);
|
|
avrdude_message(MSG_INFO, "%s: this device must be powered off and back on to continue\n",
|
|
progname);
|
|
if (pgm->pinno[PPI_AVR_VCC]) {
|
|
avrdude_message(MSG_INFO, "%s: attempting to do this now ...\n", progname);
|
|
pgm->powerdown(pgm);
|
|
usleep(250000);
|
|
rc = pgm->initialize(pgm, p);
|
|
if (rc < 0) {
|
|
avrdude_message(MSG_INFO, "%s: initialization failed, rc=%d\n", progname, rc);
|
|
avrdude_message(MSG_INFO, "%s: can't re-initialize device after programming the "
|
|
"%s bits\n", progname, mem->desc);
|
|
avrdude_message(MSG_INFO, "%s: you must manually power-down the device and restart\n"
|
|
"%s: %s to continue.\n",
|
|
progname, progname, progname);
|
|
return -3;
|
|
}
|
|
|
|
avrdude_message(MSG_INFO, "%s: device was successfully re-initialized\n",
|
|
progname);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
tries++;
|
|
if (!ready && tries > 5) {
|
|
/*
|
|
* we wrote the data, but after waiting for what should have
|
|
* been plenty of time, the memory cell still doesn't match what
|
|
* we wrote. Indicate a write error.
|
|
*/
|
|
pgm->pgm_led(pgm, OFF);
|
|
pgm->err_led(pgm, ON);
|
|
|
|
return -6;
|
|
}
|
|
}
|
|
|
|
pgm->pgm_led(pgm, OFF);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* write a byte of data at the specified address
|
|
*/
|
|
int avr_write_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
|
|
unsigned long addr, unsigned char data)
|
|
{
|
|
return pgm->write_byte(pgm, p, mem, addr, data);
|
|
}
|
|
|
|
|
|
/*
|
|
* Write the whole memory region of the specified memory from the
|
|
* corresponding buffer of the avrpart pointed to by 'p'. Write up to
|
|
* 'size' bytes from the buffer. Data is only written if the new data
|
|
* value is different from the existing data value. Data beyond
|
|
* 'size' bytes is not affected.
|
|
*
|
|
* Return the number of bytes written, or -1 if an error occurs.
|
|
*/
|
|
int avr_write(PROGRAMMER * pgm, AVRPART * p, char * memtype, int size,
|
|
int auto_erase)
|
|
{
|
|
int rc;
|
|
int newpage, page_tainted, flush_page, do_write;
|
|
int wsize;
|
|
unsigned int i, lastaddr;
|
|
unsigned char data;
|
|
int werror;
|
|
unsigned char cmd[4];
|
|
AVRMEM * m;
|
|
|
|
m = avr_locate_mem(p, memtype);
|
|
if (m == NULL) {
|
|
avrdude_message(MSG_INFO, "No \"%s\" memory for part %s\n",
|
|
memtype, p->desc);
|
|
return -1;
|
|
}
|
|
|
|
pgm->err_led(pgm, OFF);
|
|
|
|
werror = 0;
|
|
|
|
wsize = m->size;
|
|
if (size < wsize) {
|
|
wsize = size;
|
|
}
|
|
else if (size > wsize) {
|
|
avrdude_message(MSG_INFO, "%s: WARNING: %d bytes requested, but memory region is only %d"
|
|
"bytes\n"
|
|
"%sOnly %d bytes will actually be written\n",
|
|
progname, size, wsize,
|
|
progbuf, wsize);
|
|
}
|
|
|
|
|
|
if ((p->flags & AVRPART_HAS_TPI) && m->page_size > 1 &&
|
|
pgm->cmd_tpi != NULL) {
|
|
|
|
if (wsize == 1) {
|
|
/* fuse (configuration) memory: only single byte to write */
|
|
return avr_write_byte(pgm, p, m, 0, m->buf[0]) == 0? 1: -1;
|
|
}
|
|
|
|
while (avr_tpi_poll_nvmbsy(pgm));
|
|
|
|
/* setup for WORD_WRITE */
|
|
avr_tpi_setup_rw(pgm, m, 0, TPI_NVMCMD_WORD_WRITE);
|
|
|
|
/* make sure it's aligned to a word boundary */
|
|
if (wsize & 0x1) {
|
|
wsize++;
|
|
}
|
|
|
|
/* write words, low byte first */
|
|
for (lastaddr = i = 0; i < wsize; i += 2) {
|
|
if ((m->tags[i] & TAG_ALLOCATED) != 0 ||
|
|
(m->tags[i + 1] & TAG_ALLOCATED) != 0) {
|
|
|
|
if (lastaddr != i) {
|
|
/* need to setup new address */
|
|
avr_tpi_setup_rw(pgm, m, i, TPI_NVMCMD_WORD_WRITE);
|
|
lastaddr = i;
|
|
}
|
|
|
|
cmd[0] = TPI_CMD_SST_PI;
|
|
cmd[1] = m->buf[i];
|
|
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
|
|
|
|
cmd[1] = m->buf[i + 1];
|
|
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
|
|
|
|
lastaddr += 2;
|
|
|
|
while (avr_tpi_poll_nvmbsy(pgm));
|
|
}
|
|
report_progress(i, wsize, NULL);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
if (pgm->paged_write != NULL && m->page_size > 1) {
|
|
/*
|
|
* the programmer supports a paged mode write
|
|
*/
|
|
int need_write, failure;
|
|
unsigned int pageaddr;
|
|
unsigned int npages, nwritten;
|
|
|
|
/* quickly scan number of pages to be written to first */
|
|
for (pageaddr = 0, npages = 0;
|
|
pageaddr < wsize;
|
|
pageaddr += m->page_size) {
|
|
/* check whether this page must be written to */
|
|
for (i = pageaddr;
|
|
i < pageaddr + m->page_size;
|
|
i++)
|
|
if ((m->tags[i] & TAG_ALLOCATED) != 0) {
|
|
npages++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (pageaddr = 0, failure = 0, nwritten = 0;
|
|
!failure && pageaddr < wsize;
|
|
pageaddr += m->page_size) {
|
|
/* check whether this page must be written to */
|
|
for (i = pageaddr, need_write = 0;
|
|
i < pageaddr + m->page_size;
|
|
i++)
|
|
if ((m->tags[i] & TAG_ALLOCATED) != 0) {
|
|
need_write = 1;
|
|
break;
|
|
}
|
|
if (need_write) {
|
|
rc = 0;
|
|
if (auto_erase)
|
|
rc = pgm->page_erase(pgm, p, m, pageaddr);
|
|
if (rc >= 0)
|
|
rc = pgm->paged_write(pgm, p, m, m->page_size, pageaddr, m->page_size);
|
|
if (rc < 0)
|
|
/* paged write failed, fall back to byte-at-a-time write below */
|
|
failure = 1;
|
|
} else {
|
|
avrdude_message(MSG_DEBUG, "%s: avr_write(): skipping page %u: no interesting data\n",
|
|
progname, pageaddr / m->page_size);
|
|
}
|
|
nwritten++;
|
|
report_progress(nwritten, npages, NULL);
|
|
}
|
|
if (!failure)
|
|
return wsize;
|
|
/* else: fall back to byte-at-a-time write, for historical reasons */
|
|
}
|
|
|
|
if (pgm->write_setup) {
|
|
pgm->write_setup(pgm, p, m);
|
|
}
|
|
|
|
newpage = 1;
|
|
page_tainted = 0;
|
|
flush_page = 0;
|
|
|
|
for (i=0; i<wsize; i++) {
|
|
data = m->buf[i];
|
|
report_progress(i, wsize, NULL);
|
|
|
|
/*
|
|
* Find out whether the write action must be invoked for this
|
|
* byte.
|
|
*
|
|
* For non-paged memory, this only happens if TAG_ALLOCATED is
|
|
* set for the byte.
|
|
*
|
|
* For paged memory, TAG_ALLOCATED also invokes the write
|
|
* operation, which is actually a page buffer fill only. This
|
|
* "taints" the page, and upon encountering the last byte of each
|
|
* tainted page, the write operation must also be invoked in order
|
|
* to actually write the page buffer to memory.
|
|
*/
|
|
do_write = (m->tags[i] & TAG_ALLOCATED) != 0;
|
|
if (m->paged) {
|
|
if (newpage) {
|
|
page_tainted = do_write;
|
|
} else {
|
|
page_tainted |= do_write;
|
|
}
|
|
if (i % m->page_size == m->page_size - 1 ||
|
|
i == wsize - 1) {
|
|
/* last byte this page */
|
|
flush_page = page_tainted;
|
|
newpage = 1;
|
|
} else {
|
|
flush_page = newpage = 0;
|
|
}
|
|
}
|
|
|
|
if (!do_write && !flush_page) {
|
|
continue;
|
|
}
|
|
|
|
if (do_write) {
|
|
rc = avr_write_byte(pgm, p, m, i, data);
|
|
if (rc) {
|
|
avrdude_message(MSG_INFO, " ***failed; ");
|
|
avrdude_message(MSG_INFO, "\n");
|
|
pgm->err_led(pgm, ON);
|
|
werror = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* check to see if it is time to flush the page with a page
|
|
* write
|
|
*/
|
|
if (flush_page) {
|
|
rc = avr_write_page(pgm, p, m, i);
|
|
if (rc) {
|
|
avrdude_message(MSG_INFO, " *** page %d (addresses 0x%04x - 0x%04x) failed "
|
|
"to write\n",
|
|
i % m->page_size,
|
|
i - m->page_size + 1, i);
|
|
avrdude_message(MSG_INFO, "\n");
|
|
pgm->err_led(pgm, ON);
|
|
werror = 1;
|
|
}
|
|
}
|
|
|
|
if (werror) {
|
|
/*
|
|
* make sure the error led stay on if there was a previous write
|
|
* error, otherwise it gets cleared in avr_write_byte()
|
|
*/
|
|
pgm->err_led(pgm, ON);
|
|
}
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* read the AVR device's signature bytes
|
|
*/
|
|
int avr_signature(PROGRAMMER * pgm, AVRPART * p)
|
|
{
|
|
int rc;
|
|
|
|
report_progress (0,1,"Reading");
|
|
rc = avr_read(pgm, p, "signature", 0);
|
|
if (rc < 0) {
|
|
avrdude_message(MSG_INFO, "%s: error reading signature data for part \"%s\", rc=%d\n",
|
|
progname, p->desc, rc);
|
|
return rc;
|
|
}
|
|
report_progress (1,1,NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint8_t get_fuse_bitmask(AVRMEM * m) {
|
|
uint8_t bitmask_r = 0;
|
|
uint8_t bitmask_w = 0;
|
|
int i;
|
|
|
|
if (!m || m->size > 1) {
|
|
// not a fuse, compare bytes directly
|
|
return 0xFF;
|
|
}
|
|
|
|
if (m->op[AVR_OP_WRITE] == NULL ||
|
|
m->op[AVR_OP_READ] == NULL)
|
|
// no memory operations provided by configuration, compare directly
|
|
return 0xFF;
|
|
|
|
// For fuses, only compare bytes that are actually written *and* read.
|
|
for (i = 0; i < 32; i++) {
|
|
if (m->op[AVR_OP_WRITE]->bit[i].type == AVR_CMDBIT_INPUT)
|
|
bitmask_w |= (1 << m->op[AVR_OP_WRITE]->bit[i].bitno);
|
|
if (m->op[AVR_OP_READ]->bit[i].type == AVR_CMDBIT_OUTPUT)
|
|
bitmask_r |= (1 << m->op[AVR_OP_READ]->bit[i].bitno);
|
|
}
|
|
return bitmask_r & bitmask_w;
|
|
}
|
|
|
|
int compare_memory_masked(AVRMEM * m, uint8_t b1, uint8_t b2) {
|
|
uint8_t bitmask = get_fuse_bitmask(m);
|
|
return (b1 & bitmask) != (b2 & bitmask);
|
|
}
|
|
|
|
/*
|
|
* Verify the memory buffer of p with that of v. The byte range of v,
|
|
* may be a subset of p. The byte range of p should cover the whole
|
|
* chip's memory size.
|
|
*
|
|
* Return the number of bytes verified, or -1 if they don't match.
|
|
*/
|
|
int avr_verify(AVRPART * p, AVRPART * v, char * memtype, int size)
|
|
{
|
|
int i;
|
|
unsigned char * buf1, * buf2;
|
|
int vsize;
|
|
AVRMEM * a, * b;
|
|
|
|
a = avr_locate_mem(p, memtype);
|
|
if (a == NULL) {
|
|
avrdude_message(MSG_INFO, "avr_verify(): memory type \"%s\" not defined for part %s\n",
|
|
memtype, p->desc);
|
|
return -1;
|
|
}
|
|
|
|
b = avr_locate_mem(v, memtype);
|
|
if (b == NULL) {
|
|
avrdude_message(MSG_INFO, "avr_verify(): memory type \"%s\" not defined for part %s\n",
|
|
memtype, v->desc);
|
|
return -1;
|
|
}
|
|
|
|
buf1 = a->buf;
|
|
buf2 = b->buf;
|
|
vsize = a->size;
|
|
|
|
if (vsize < size) {
|
|
avrdude_message(MSG_INFO, "%s: WARNING: requested verification for %d bytes\n"
|
|
"%s%s memory region only contains %d bytes\n"
|
|
"%sOnly %d bytes will be verified.\n",
|
|
progname, size,
|
|
progbuf, memtype, vsize,
|
|
progbuf, vsize);
|
|
size = vsize;
|
|
}
|
|
|
|
for (i=0; i<size; i++) {
|
|
if ((b->tags[i] & TAG_ALLOCATED) != 0 &&
|
|
buf1[i] != buf2[i]) {
|
|
uint8_t bitmask = get_fuse_bitmask(a);
|
|
if((buf1[i] & bitmask) != (buf2[i] & bitmask)) {
|
|
// Mismatch is not just in unused bits
|
|
avrdude_message(MSG_INFO, "%s: verification error, first mismatch at byte 0x%04x\n"
|
|
"%s0x%02x != 0x%02x\n",
|
|
progname, i,
|
|
progbuf, buf1[i], buf2[i]);
|
|
return -1;
|
|
} else {
|
|
// Mismatch is only in unused bits
|
|
if ((buf1[i] | bitmask) != 0xff) {
|
|
// Programmer returned unused bits as 0, must be the part/programmer
|
|
avrdude_message(MSG_INFO, "%s: WARNING: ignoring mismatch in unused bits of \"%s\"\n"
|
|
"%s(0x%02x != 0x%02x). To prevent this warning fix the part\n"
|
|
"%sor programmer definition in the config file.\n",
|
|
progname, memtype, progbuf, buf1[i], buf2[i], progbuf);
|
|
} else {
|
|
// Programmer returned unused bits as 1, must be the user
|
|
avrdude_message(MSG_INFO, "%s: WARNING: ignoring mismatch in unused bits of \"%s\"\n"
|
|
"%s(0x%02x != 0x%02x). To prevent this warning set unused bits\n"
|
|
"%sto 1 when writing (double check with your datasheet first).\n",
|
|
progname, memtype, progbuf, buf1[i], buf2[i], progbuf);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
|
|
int avr_get_cycle_count(PROGRAMMER * pgm, AVRPART * p, int * cycles)
|
|
{
|
|
AVRMEM * a;
|
|
unsigned int cycle_count = 0;
|
|
unsigned char v1;
|
|
int rc;
|
|
int i;
|
|
|
|
a = avr_locate_mem(p, "eeprom");
|
|
if (a == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
for (i=4; i>0; i--) {
|
|
rc = pgm->read_byte(pgm, p, a, a->size-i, &v1);
|
|
if (rc < 0) {
|
|
avrdude_message(MSG_INFO, "%s: WARNING: can't read memory for cycle count, rc=%d\n",
|
|
progname, rc);
|
|
return -1;
|
|
}
|
|
cycle_count = (cycle_count << 8) | v1;
|
|
}
|
|
|
|
/*
|
|
* If the EEPROM is erased, the cycle count reads 0xffffffff.
|
|
* In this case we return a cycle_count of zero.
|
|
* So, the calling function don't have to care about whether or not
|
|
* the cycle count was initialized.
|
|
*/
|
|
if (cycle_count == 0xffffffff) {
|
|
cycle_count = 0;
|
|
}
|
|
|
|
*cycles = (int) cycle_count;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int avr_put_cycle_count(PROGRAMMER * pgm, AVRPART * p, int cycles)
|
|
{
|
|
AVRMEM * a;
|
|
unsigned char v1;
|
|
int rc;
|
|
int i;
|
|
|
|
a = avr_locate_mem(p, "eeprom");
|
|
if (a == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
for (i=1; i<=4; i++) {
|
|
v1 = cycles & 0xff;
|
|
cycles = cycles >> 8;
|
|
|
|
rc = avr_write_byte(pgm, p, a, a->size-i, v1);
|
|
if (rc < 0) {
|
|
avrdude_message(MSG_INFO, "%s: WARNING: can't write memory for cycle count, rc=%d\n",
|
|
progname, rc);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int avr_chip_erase(PROGRAMMER * pgm, AVRPART * p)
|
|
{
|
|
int rc;
|
|
|
|
rc = pgm->chip_erase(pgm, p);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int avr_unlock(PROGRAMMER * pgm, AVRPART * p)
|
|
{
|
|
int rc = -1;
|
|
|
|
if (pgm->unlock)
|
|
rc = pgm->unlock(pgm, p);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Report the progress of a read or write operation from/to the
|
|
* device.
|
|
*
|
|
* The first call of report_progress() should look like this (for a write op):
|
|
*
|
|
* report_progress (0, 1, "Writing");
|
|
*
|
|
* Then hdr should be passed NULL on subsequent calls while the
|
|
* operation is progressing. Once the operation is complete, a final
|
|
* call should be made as such to ensure proper termination of the
|
|
* progress report:
|
|
*
|
|
* report_progress (1, 1, NULL);
|
|
*
|
|
* It would be nice if we could reduce the usage to one and only one
|
|
* call for each of start, during and end cases. As things stand now,
|
|
* that is not possible and makes maintenance a bit more work.
|
|
*/
|
|
void report_progress (int completed, int total, char *hdr)
|
|
{
|
|
static int last = 0;
|
|
static double start_time;
|
|
int percent = (total > 0) ? ((completed * 100) / total) : 100;
|
|
struct timeval tv;
|
|
double t;
|
|
|
|
if (update_progress == NULL)
|
|
return;
|
|
|
|
gettimeofday(&tv, NULL);
|
|
t = tv.tv_sec + ((double)tv.tv_usec)/1000000;
|
|
|
|
if (hdr) {
|
|
last = 0;
|
|
start_time = t;
|
|
update_progress (percent, t - start_time, hdr);
|
|
}
|
|
|
|
if (percent > 100)
|
|
percent = 100;
|
|
|
|
if (percent > last) {
|
|
last = percent;
|
|
update_progress (percent, t - start_time, hdr);
|
|
}
|
|
|
|
if (percent == 100)
|
|
last = 0; /* Get ready for next time. */
|
|
}
|