1999 lines
51 KiB
C
1999 lines
51 KiB
C
/*
|
|
* avrdude - A Downloader/Uploader for AVR device programmers
|
|
* Copyright (C) 2005,2006 Joerg Wunsch <j@uriah.heep.sax.de>
|
|
*
|
|
* Derived from stk500 code which is:
|
|
* Copyright (C) 2002-2004 Brian S. Dean <bsd@bsdhome.com>
|
|
* Copyright (C) 2005 Erik Walthinsen
|
|
*
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
/* $Id$ */
|
|
|
|
/*
|
|
* avrdude interface for Atmel JTAG ICE mkII programmer
|
|
*
|
|
* The AVR Dragon also uses the same protocol, so it is handled here
|
|
* as well.
|
|
*/
|
|
|
|
#include "ac_cfg.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <unistd.h>
|
|
#include <sys/time.h>
|
|
#include <time.h>
|
|
|
|
#include "avr.h"
|
|
#include "crc16.h"
|
|
#include "pgm.h"
|
|
#include "jtagmkII.h"
|
|
#include "jtagmkII_private.h"
|
|
#include "serial.h"
|
|
#include "usbdevs.h"
|
|
|
|
|
|
extern int verbose;
|
|
extern char * progname;
|
|
extern int do_cycles;
|
|
|
|
/*
|
|
* XXX There should really be a programmer-specific private data
|
|
* pointer in struct PROGRAMMER.
|
|
*/
|
|
static unsigned short command_sequence; /* Next cmd seqno to issue. */
|
|
|
|
/*
|
|
* See jtagmkII_read_byte() for an explanation of the flash and
|
|
* EEPROM page caches.
|
|
*/
|
|
static unsigned char *flash_pagecache;
|
|
static unsigned long flash_pageaddr;
|
|
static unsigned int flash_pagesize;
|
|
|
|
static unsigned char *eeprom_pagecache;
|
|
static unsigned long eeprom_pageaddr;
|
|
static unsigned int eeprom_pagesize;
|
|
|
|
static int prog_enabled; /* Cached value of PROGRAMMING status. */
|
|
static unsigned char serno[6]; /* JTAG ICE serial number. */
|
|
/*
|
|
* The OCDEN fuse is bit 7 of the high fuse (hfuse). In order to
|
|
* perform memory operations on MTYPE_SPM and MTYPE_EEPROM, OCDEN
|
|
* needs to be programmed.
|
|
*
|
|
* OCDEN should probably rather be defined via the configuration, but
|
|
* if this ever changes to a different fuse byte for one MCU, quite
|
|
* some code here needs to be generalized anyway.
|
|
*/
|
|
#define OCDEN (1 << 7)
|
|
|
|
#define RC(x) { x, #x },
|
|
static struct {
|
|
unsigned int code;
|
|
const char *descr;
|
|
} jtagresults[] = {
|
|
RC(RSP_DEBUGWIRE_SYNC_FAILED)
|
|
RC(RSP_FAILED)
|
|
RC(RSP_ILLEGAL_BREAKPOINT)
|
|
RC(RSP_ILLEGAL_COMMAND)
|
|
RC(RSP_ILLEGAL_EMULATOR_MODE)
|
|
RC(RSP_ILLEGAL_JTAG_ID)
|
|
RC(RSP_ILLEGAL_MCU_STATE)
|
|
RC(RSP_ILLEGAL_MEMORY_TYPE)
|
|
RC(RSP_ILLEGAL_MEMORY_RANGE)
|
|
RC(RSP_ILLEGAL_PARAMETER)
|
|
RC(RSP_ILLEGAL_POWER_STATE)
|
|
RC(RSP_ILLEGAL_VALUE)
|
|
RC(RSP_NO_TARGET_POWER)
|
|
RC(RSP_SET_N_PARAMETERS)
|
|
};
|
|
|
|
|
|
/* The length of the device descriptor is firmware-dependent. */
|
|
static size_t device_descriptor_length;
|
|
|
|
static int jtagmkII_read_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
|
|
unsigned long addr, unsigned char * value);
|
|
static int jtagmkII_write_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
|
|
unsigned long addr, unsigned char data);
|
|
static int jtagmkII_reset(PROGRAMMER * pgm, unsigned char flags);
|
|
static int jtagmkII_set_sck_period(PROGRAMMER * pgm, double v);
|
|
static int jtagmkII_setparm(PROGRAMMER * pgm, unsigned char parm,
|
|
unsigned char * value);
|
|
static void jtagmkII_print_parms1(PROGRAMMER * pgm, char * p);
|
|
|
|
static unsigned long
|
|
b4_to_u32(unsigned char *b)
|
|
{
|
|
unsigned long l;
|
|
l = b[0];
|
|
l += (unsigned)b[1] << 8;
|
|
l += (unsigned)b[2] << 16;
|
|
l += (unsigned)b[3] << 24;
|
|
|
|
return l;
|
|
}
|
|
|
|
static void
|
|
u32_to_b4(unsigned char *b, unsigned long l)
|
|
{
|
|
b[0] = l & 0xff;
|
|
b[1] = (l >> 8) & 0xff;
|
|
b[2] = (l >> 16) & 0xff;
|
|
b[3] = (l >> 24) & 0xff;
|
|
}
|
|
|
|
static unsigned short
|
|
b2_to_u16(unsigned char *b)
|
|
{
|
|
unsigned short l;
|
|
l = b[0];
|
|
l += (unsigned)b[1] << 8;
|
|
|
|
return l;
|
|
}
|
|
|
|
static void
|
|
u16_to_b2(unsigned char *b, unsigned short l)
|
|
{
|
|
b[0] = l & 0xff;
|
|
b[1] = (l >> 8) & 0xff;
|
|
}
|
|
|
|
static const char *
|
|
jtagmkII_get_rc(unsigned int rc)
|
|
{
|
|
int i;
|
|
static char msg[50];
|
|
|
|
for (i = 0; i < sizeof jtagresults / sizeof jtagresults[0]; i++)
|
|
if (jtagresults[i].code == rc)
|
|
return jtagresults[i].descr;
|
|
|
|
sprintf(msg, "Unknown JTAG ICE mkII result code 0x%02x", rc);
|
|
return msg;
|
|
}
|
|
|
|
|
|
static void jtagmkII_print_memory(unsigned char *b, size_t s)
|
|
{
|
|
int i;
|
|
|
|
if (s < 2)
|
|
return;
|
|
|
|
for (i = 0; i < s - 1; i++) {
|
|
fprintf(stderr, "0x%02x ", b[i + 1]);
|
|
if (i % 16 == 15)
|
|
putc('\n', stderr);
|
|
else
|
|
putc(' ', stderr);
|
|
}
|
|
if (i % 16 != 0)
|
|
putc('\n', stderr);
|
|
}
|
|
|
|
static void jtagmkII_prmsg(PROGRAMMER * pgm, unsigned char * data, size_t len)
|
|
{
|
|
int i;
|
|
|
|
if (verbose >= 4) {
|
|
fprintf(stderr, "Raw message:\n");
|
|
|
|
for (i = 0; i < len; i++) {
|
|
fprintf(stderr, "0x%02x", data[i]);
|
|
if (i % 16 == 15)
|
|
putc('\n', stderr);
|
|
else
|
|
putchar(' ');
|
|
}
|
|
if (i % 16 != 0)
|
|
putc('\n', stderr);
|
|
}
|
|
|
|
switch (data[0]) {
|
|
case RSP_OK:
|
|
fprintf(stderr, "OK\n");
|
|
break;
|
|
|
|
case RSP_FAILED:
|
|
fprintf(stderr, "FAILED\n");
|
|
break;
|
|
|
|
case RSP_ILLEGAL_BREAKPOINT:
|
|
fprintf(stderr, "Illegal breakpoint\n");
|
|
break;
|
|
|
|
case RSP_ILLEGAL_COMMAND:
|
|
fprintf(stderr, "Illegal command\n");
|
|
break;
|
|
|
|
case RSP_ILLEGAL_EMULATOR_MODE:
|
|
fprintf(stderr, "Illegal emulator mode");
|
|
if (len > 1)
|
|
switch (data[1]) {
|
|
case EMULATOR_MODE_DEBUGWIRE: fprintf(stderr, ": DebugWire"); break;
|
|
case EMULATOR_MODE_JTAG: fprintf(stderr, ": JTAG"); break;
|
|
case EMULATOR_MODE_UNKNOWN: fprintf(stderr, ": Unknown"); break;
|
|
case EMULATOR_MODE_SPI: fprintf(stderr, ": SPI"); break;
|
|
}
|
|
putc('\n', stderr);
|
|
break;
|
|
|
|
case RSP_ILLEGAL_JTAG_ID:
|
|
fprintf(stderr, "Illegal JTAG ID\n");
|
|
break;
|
|
|
|
case RSP_ILLEGAL_MCU_STATE:
|
|
fprintf(stderr, "Illegal MCU state");
|
|
if (len > 1)
|
|
switch (data[1]) {
|
|
case STOPPED: fprintf(stderr, ": Stopped"); break;
|
|
case RUNNING: fprintf(stderr, ": Running"); break;
|
|
case PROGRAMMING: fprintf(stderr, ": Programming"); break;
|
|
}
|
|
putc('\n', stderr);
|
|
break;
|
|
|
|
case RSP_ILLEGAL_MEMORY_TYPE:
|
|
fprintf(stderr, "Illegal memory type\n");
|
|
break;
|
|
|
|
case RSP_ILLEGAL_MEMORY_RANGE:
|
|
fprintf(stderr, "Illegal memory range\n");
|
|
break;
|
|
|
|
case RSP_ILLEGAL_PARAMETER:
|
|
fprintf(stderr, "Illegal parameter\n");
|
|
break;
|
|
|
|
case RSP_ILLEGAL_POWER_STATE:
|
|
fprintf(stderr, "Illegal power state\n");
|
|
break;
|
|
|
|
case RSP_ILLEGAL_VALUE:
|
|
fprintf(stderr, "Illegal value\n");
|
|
break;
|
|
|
|
case RSP_NO_TARGET_POWER:
|
|
fprintf(stderr, "No target power\n");
|
|
break;
|
|
|
|
case RSP_SIGN_ON:
|
|
fprintf(stderr, "Sign-on succeeded\n");
|
|
/* Sign-on data will be printed below anyway. */
|
|
break;
|
|
|
|
case RSP_MEMORY:
|
|
fprintf(stderr, "memory contents:\n");
|
|
jtagmkII_print_memory(data, len);
|
|
break;
|
|
|
|
case RSP_PARAMETER:
|
|
fprintf(stderr, "parameter values:\n");
|
|
jtagmkII_print_memory(data, len);
|
|
break;
|
|
|
|
case RSP_SPI_DATA:
|
|
fprintf(stderr, "SPI data returned:\n");
|
|
for (i = 1; i < len; i++)
|
|
fprintf(stderr, "0x%02x ", data[i]);
|
|
putc('\n', stderr);
|
|
break;
|
|
|
|
case EVT_BREAK:
|
|
fprintf(stderr, "BREAK event");
|
|
if (len >= 6) {
|
|
fprintf(stderr, ", PC = 0x%lx, reason ", b4_to_u32(data + 1));
|
|
switch (data[5]) {
|
|
case 0x00:
|
|
fprintf(stderr, "unspecified");
|
|
break;
|
|
case 0x01:
|
|
fprintf(stderr, "program break");
|
|
break;
|
|
case 0x02:
|
|
fprintf(stderr, "data break PDSB");
|
|
break;
|
|
case 0x03:
|
|
fprintf(stderr, "data break PDMSB");
|
|
break;
|
|
default:
|
|
fprintf(stderr, "unknown: 0x%02x", data[5]);
|
|
}
|
|
}
|
|
putc('\n', stderr);
|
|
break;
|
|
|
|
default:
|
|
fprintf(stderr, "unknown message 0x%02x\n", data[0]);
|
|
}
|
|
|
|
putc('\n', stderr);
|
|
}
|
|
|
|
|
|
int jtagmkII_send(PROGRAMMER * pgm, unsigned char * data, size_t len)
|
|
{
|
|
unsigned char *buf;
|
|
|
|
if (verbose >= 3)
|
|
fprintf(stderr, "\n%s: jtagmkII_send(): sending %zd bytes\n",
|
|
progname, len);
|
|
|
|
if ((buf = malloc(len + 10)) == NULL)
|
|
{
|
|
fprintf(stderr, "%s: jtagmkII_send(): out of memory",
|
|
progname);
|
|
return -1;
|
|
}
|
|
|
|
buf[0] = MESSAGE_START;
|
|
u16_to_b2(buf + 1, command_sequence);
|
|
u32_to_b4(buf + 3, len);
|
|
buf[7] = TOKEN;
|
|
memcpy(buf + 8, data, len);
|
|
|
|
crcappend(buf, len + 8);
|
|
|
|
if (serial_send(pgm->fd, buf, len + 10) != 0) {
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_send(): failed to send command to serial port\n",
|
|
progname);
|
|
exit(1);
|
|
}
|
|
|
|
free(buf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int jtagmkII_drain(PROGRAMMER * pgm, int display)
|
|
{
|
|
return serial_drain(pgm->fd, display);
|
|
}
|
|
|
|
|
|
/*
|
|
* Receive one frame, return it in *msg. Received sequence number is
|
|
* returned in seqno. Any valid frame will be returned, regardless
|
|
* whether it matches the expected sequence number, including event
|
|
* notification frames (seqno == 0xffff).
|
|
*
|
|
* Caller must eventually free the buffer.
|
|
*/
|
|
static int jtagmkII_recv_frame(PROGRAMMER * pgm, unsigned char **msg,
|
|
unsigned short * seqno) {
|
|
enum states { sSTART,
|
|
/* NB: do NOT change the sequence of the following: */
|
|
sSEQNUM1, sSEQNUM2,
|
|
sSIZE1, sSIZE2, sSIZE3, sSIZE4,
|
|
sTOKEN,
|
|
sDATA,
|
|
sCSUM1, sCSUM2,
|
|
/* end NB */
|
|
sDONE
|
|
} state = sSTART;
|
|
unsigned long msglen = 0, l = 0;
|
|
int headeridx = 0;
|
|
int timeout = 0;
|
|
int ignorpkt = 0;
|
|
int rv;
|
|
unsigned char c, *buf = NULL, header[8];
|
|
unsigned short r_seqno = 0;
|
|
unsigned short checksum = 0;
|
|
|
|
struct timeval tv;
|
|
double timeoutval = 5; /* seconds */
|
|
double tstart, tnow;
|
|
|
|
if (verbose >= 3)
|
|
fprintf(stderr, "%s: jtagmkII_recv():\n", progname);
|
|
|
|
gettimeofday(&tv, NULL);
|
|
tstart = tv.tv_sec;
|
|
|
|
while ( (state != sDONE ) && (!timeout) ) {
|
|
if (state == sDATA) {
|
|
rv = 0;
|
|
if (ignorpkt) {
|
|
/* skip packet's contents */
|
|
for(l = 0; l < msglen; l++)
|
|
rv += serial_recv(pgm->fd, &c, 1);
|
|
} else {
|
|
rv += serial_recv(pgm->fd, buf + 8, msglen);
|
|
}
|
|
if (rv != 0) {
|
|
timedout:
|
|
/* timeout in receive */
|
|
if (verbose > 1)
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_recv(): Timeout receiving packet\n",
|
|
progname);
|
|
free(buf);
|
|
return -1;
|
|
}
|
|
} else {
|
|
if (serial_recv(pgm->fd, &c, 1) != 0)
|
|
goto timedout;
|
|
}
|
|
checksum ^= c;
|
|
|
|
if (state < sDATA)
|
|
header[headeridx++] = c;
|
|
|
|
switch (state) {
|
|
case sSTART:
|
|
if (c == MESSAGE_START) {
|
|
state = sSEQNUM1;
|
|
} else {
|
|
headeridx = 0;
|
|
}
|
|
break;
|
|
case sSEQNUM1:
|
|
case sSEQNUM2:
|
|
r_seqno >>= 8;
|
|
r_seqno |= ((unsigned)c << 8);
|
|
state++;
|
|
break;
|
|
case sSIZE1:
|
|
case sSIZE2:
|
|
case sSIZE3:
|
|
case sSIZE4:
|
|
msglen >>= 8;
|
|
msglen |= ((unsigned)c << 24);
|
|
state++;
|
|
break;
|
|
case sTOKEN:
|
|
if (c == TOKEN) {
|
|
state = sDATA;
|
|
if (msglen > MAX_MESSAGE) {
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_recv(): msglen %lu exceeds max message "
|
|
"size %u, ignoring message\n",
|
|
progname, msglen, MAX_MESSAGE);
|
|
state = sSTART;
|
|
headeridx = 0;
|
|
} else if ((buf = malloc(msglen + 10)) == NULL) {
|
|
fprintf(stderr, "%s: jtagmkII_recv(): out of memory\n",
|
|
progname);
|
|
ignorpkt++;
|
|
} else {
|
|
memcpy(buf, header, 8);
|
|
}
|
|
} else {
|
|
state = sSTART;
|
|
headeridx = 0;
|
|
}
|
|
break;
|
|
case sDATA:
|
|
/* The entire payload has been read above. */
|
|
l = msglen + 8;
|
|
state = sCSUM1;
|
|
break;
|
|
case sCSUM1:
|
|
case sCSUM2:
|
|
buf[l++] = c;
|
|
if (state == sCSUM2) {
|
|
if (crcverify(buf, msglen + 10)) {
|
|
if (verbose >= 3)
|
|
fprintf(stderr, "%s: jtagmkII_recv(): CRC OK",
|
|
progname);
|
|
state = sDONE;
|
|
} else {
|
|
fprintf(stderr, "%s: jtagmkII_recv(): checksum error\n",
|
|
progname);
|
|
free(buf);
|
|
return -4;
|
|
}
|
|
} else
|
|
state++;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "%s: jtagmkII_recv(): unknown state\n",
|
|
progname);
|
|
free(buf);
|
|
return -5;
|
|
}
|
|
|
|
gettimeofday(&tv, NULL);
|
|
tnow = tv.tv_sec;
|
|
if (tnow - tstart > timeoutval) {
|
|
fprintf(stderr, "%s: jtagmkII_recv_frame(): timeout\n",
|
|
progname);
|
|
return -1;
|
|
}
|
|
|
|
}
|
|
if (verbose >= 3)
|
|
fprintf(stderr, "\n");
|
|
|
|
*seqno = r_seqno;
|
|
*msg = buf;
|
|
|
|
return msglen;
|
|
}
|
|
|
|
int jtagmkII_recv(PROGRAMMER * pgm, unsigned char **msg) {
|
|
unsigned short r_seqno;
|
|
int rv;
|
|
|
|
for (;;) {
|
|
if ((rv = jtagmkII_recv_frame(pgm, msg, &r_seqno)) <= 0)
|
|
return rv;
|
|
if (verbose >= 3)
|
|
fprintf(stderr, "%s: jtagmkII_recv(): "
|
|
"Got message seqno %d (command_sequence == %d)\n",
|
|
progname, r_seqno, command_sequence);
|
|
if (r_seqno == command_sequence) {
|
|
if (++command_sequence == 0xffff)
|
|
command_sequence = 0;
|
|
/*
|
|
* We move the payload to the beginning of the buffer, to make
|
|
* the job easier for the caller. We have to return the
|
|
* original pointer though, as the caller must free() it.
|
|
*/
|
|
memmove(*msg, *msg + 8, rv);
|
|
return rv;
|
|
}
|
|
if (r_seqno == 0xffff) {
|
|
if (verbose >= 3)
|
|
fprintf(stderr, "%s: jtagmkII_recv(): got asynchronous event\n",
|
|
progname);
|
|
} else {
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_recv(): "
|
|
"got wrong sequence number, %u != %u\n",
|
|
progname, r_seqno, command_sequence);
|
|
}
|
|
free(*msg);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
int jtagmkII_getsync(PROGRAMMER * pgm, int mode) {
|
|
int tries;
|
|
#define MAXTRIES 33
|
|
unsigned char buf[3], *resp, c = 0xff;
|
|
int status;
|
|
unsigned int fwver, hwver;
|
|
|
|
if (verbose >= 3)
|
|
fprintf(stderr, "%s: jtagmkII_getsync()\n", progname);
|
|
|
|
for (tries = 0; tries < MAXTRIES; tries++) {
|
|
|
|
/* Get the sign-on information. */
|
|
buf[0] = CMND_GET_SIGN_ON;
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_getsync(): Sending sign-on command: ",
|
|
progname);
|
|
jtagmkII_send(pgm, buf, 1);
|
|
|
|
status = jtagmkII_recv(pgm, &resp);
|
|
if (status <= 0) {
|
|
fprintf(stderr, "%s: jtagmkII_getsync(): sign-on command: "
|
|
"status %d\n",
|
|
progname, status);
|
|
} else if (verbose >= 3) {
|
|
putc('\n', stderr);
|
|
jtagmkII_prmsg(pgm, resp, status);
|
|
} else if (verbose == 2)
|
|
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
|
|
|
|
if (status > 0) {
|
|
if ((c = resp[0]) == RSP_SIGN_ON) {
|
|
fwver = ((unsigned)resp[8] << 8) | (unsigned)resp[7];
|
|
hwver = (unsigned)resp[9];
|
|
memcpy(serno, resp + 10, 6);
|
|
if (verbose >= 1 && status > 17) {
|
|
fprintf(stderr, "JTAG ICE mkII sign-on message:\n");
|
|
fprintf(stderr, "Communications protocol version: %u\n",
|
|
(unsigned)resp[1]);
|
|
fprintf(stderr, "M_MCU:\n");
|
|
fprintf(stderr, " boot-loader FW version: %u\n",
|
|
(unsigned)resp[2]);
|
|
fprintf(stderr, " firmware version: %u.%02u\n",
|
|
(unsigned)resp[4], (unsigned)resp[3]);
|
|
fprintf(stderr, " hardware version: %u\n",
|
|
(unsigned)resp[5]);
|
|
fprintf(stderr, "S_MCU:\n");
|
|
fprintf(stderr, " boot-loader FW version: %u\n",
|
|
(unsigned)resp[6]);
|
|
fprintf(stderr, " firmware version: %u.%02u\n",
|
|
(unsigned)resp[8], (unsigned)resp[7]);
|
|
fprintf(stderr, " hardware version: %u\n",
|
|
(unsigned)resp[9]);
|
|
fprintf(stderr, "Serial number: "
|
|
"%02x:%02x:%02x:%02x:%02x:%02x\n",
|
|
serno[0], serno[1], serno[2], serno[3], serno[4], serno[5]);
|
|
resp[status - 1] = '\0';
|
|
fprintf(stderr, "Device ID: %s\n",
|
|
resp + 16);
|
|
}
|
|
break;
|
|
}
|
|
free(resp);
|
|
}
|
|
}
|
|
if (tries >= MAXTRIES) {
|
|
if (status <= 0)
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_getsync(): "
|
|
"timeout/error communicating with programmer (status %d)\n",
|
|
progname, status);
|
|
else
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_getsync(): "
|
|
"bad response to sign-on command: %s\n",
|
|
progname, jtagmkII_get_rc(c));
|
|
return -1;
|
|
}
|
|
|
|
device_descriptor_length = sizeof(struct device_descriptor);
|
|
/*
|
|
* There's no official documentation from Atmel about what firmware
|
|
* revision matches what device descriptor length. The algorithm
|
|
* below has been found empirically.
|
|
*
|
|
* The original JTAG ICE mkII has hardware version 0, the AVR Dragon
|
|
* has hardware version 2 (on the slave MCU) and doesn't need the
|
|
* firmware version checks (by now).
|
|
*/
|
|
#define FWVER(maj, min) ((maj << 8) | (min))
|
|
if (hwver == 0 && fwver < FWVER(3, 16)) {
|
|
device_descriptor_length -= 2;
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_getsync(): "
|
|
"S_MCU firmware version might be too old to work correctly\n",
|
|
progname);
|
|
} else if (hwver == 0 && fwver < FWVER(4, 0)) {
|
|
device_descriptor_length -= 2;
|
|
}
|
|
if (verbose >= 2 && mode != EMULATOR_MODE_SPI)
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_getsync(): Using a %zu-byte device descriptor\n",
|
|
progname, device_descriptor_length);
|
|
if (mode == EMULATOR_MODE_SPI) {
|
|
device_descriptor_length = 0;
|
|
if (hwver == 0 && fwver < FWVER(4, 14)) {
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_getsync(): ISP functionality requires firmware "
|
|
"version >= 4.14\n",
|
|
progname);
|
|
return -1;
|
|
}
|
|
}
|
|
#undef FWVER
|
|
|
|
/* Turn the ICE into JTAG or ISP mode as requested. */
|
|
buf[0] = mode;
|
|
if (jtagmkII_setparm(pgm, PAR_EMULATOR_MODE, buf) < 0) {
|
|
if (mode == EMULATOR_MODE_SPI) {
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_getsync(): "
|
|
"ISP activation failed, trying debugWire\n",
|
|
progname);
|
|
buf[0] = EMULATOR_MODE_DEBUGWIRE;
|
|
if (jtagmkII_setparm(pgm, PAR_EMULATOR_MODE, buf) < 0)
|
|
return -1;
|
|
else {
|
|
/*
|
|
* We are supposed to send a CMND_RESET with the
|
|
* MONCOM_DISABLE flag set right now, and then
|
|
* restart from scratch.
|
|
*
|
|
* As this will make the ICE sign off from USB, so
|
|
* we risk losing our USB connection, it's easier
|
|
* to instruct the user to restart AVRDUDE rather
|
|
* than trying to cope with all this inside the
|
|
* program.
|
|
*/
|
|
(void)jtagmkII_reset(pgm, 0x04);
|
|
jtagmkII_close(pgm);
|
|
fprintf(stderr,
|
|
"%s: Target prepared for ISP, signed off.\n"
|
|
"%s: Please restart %s without power-cycling the target.\n",
|
|
progname, progname, progname);
|
|
exit(0);
|
|
}
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* GET SYNC forces the target into STOPPED mode */
|
|
buf[0] = CMND_GET_SYNC;
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_getsync(): Sending get sync command: ",
|
|
progname);
|
|
jtagmkII_send(pgm, buf, 1);
|
|
|
|
status = jtagmkII_recv(pgm, &resp);
|
|
if (status <= 0) {
|
|
if (verbose >= 2)
|
|
putc('\n', stderr);
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_getsync(): "
|
|
"timeout/error communicating with programmer (status %d)\n",
|
|
progname, status);
|
|
return -1;
|
|
}
|
|
if (verbose >= 3) {
|
|
putc('\n', stderr);
|
|
jtagmkII_prmsg(pgm, resp, status);
|
|
} else if (verbose == 2)
|
|
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
|
|
c = resp[0];
|
|
free(resp);
|
|
if (c != RSP_OK) {
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_getsync(): "
|
|
"bad response to set parameter command: %s\n",
|
|
progname, jtagmkII_get_rc(c));
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int jtagmkII_cmd(PROGRAMMER * pgm, unsigned char cmd[4],
|
|
unsigned char res[4])
|
|
{
|
|
|
|
fprintf(stderr, "%s: jtagmkII_command(): no direct SPI supported for JTAG\n",
|
|
progname);
|
|
return -1;
|
|
}
|
|
|
|
|
|
/*
|
|
* issue the 'chip erase' command to the AVR device
|
|
*/
|
|
static int jtagmkII_chip_erase(PROGRAMMER * pgm, AVRPART * p)
|
|
{
|
|
int status;
|
|
unsigned char buf[1], *resp, c;
|
|
|
|
buf[0] = CMND_CHIP_ERASE;
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_chip_erase(): Sending chip erase command: ",
|
|
progname);
|
|
jtagmkII_send(pgm, buf, 1);
|
|
|
|
status = jtagmkII_recv(pgm, &resp);
|
|
if (status <= 0) {
|
|
if (verbose >= 2)
|
|
putc('\n', stderr);
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_chip_erase(): "
|
|
"timeout/error communicating with programmer (status %d)\n",
|
|
progname, status);
|
|
return -1;
|
|
}
|
|
if (verbose >= 3) {
|
|
putc('\n', stderr);
|
|
jtagmkII_prmsg(pgm, resp, status);
|
|
} else if (verbose == 2)
|
|
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
|
|
c = resp[0];
|
|
free(resp);
|
|
if (c != RSP_OK) {
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_chip_erase(): "
|
|
"bad response to chip erase command: %s\n",
|
|
progname, jtagmkII_get_rc(c));
|
|
return -1;
|
|
}
|
|
|
|
pgm->initialize(pgm, p);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void jtagmkII_set_devdescr(PROGRAMMER * pgm, AVRPART * p)
|
|
{
|
|
int status;
|
|
unsigned char *resp, c;
|
|
LNODEID ln;
|
|
AVRMEM * m;
|
|
struct {
|
|
unsigned char cmd;
|
|
struct device_descriptor dd;
|
|
} sendbuf;
|
|
|
|
memset(&sendbuf, 0, sizeof sendbuf);
|
|
sendbuf.cmd = CMND_SET_DEVICE_DESCRIPTOR;
|
|
sendbuf.dd.ucSPMCRAddress = p->spmcr;
|
|
sendbuf.dd.ucRAMPZAddress = p->rampz;
|
|
sendbuf.dd.ucIDRAddress = p->idr;
|
|
u16_to_b2(sendbuf.dd.EECRAddress, p->eecr);
|
|
sendbuf.dd.ucAllowFullPageBitstream =
|
|
(p->flags & AVRPART_ALLOWFULLPAGEBITSTREAM) != 0;
|
|
sendbuf.dd.EnablePageProgramming =
|
|
(p->flags & AVRPART_ENABLEPAGEPROGRAMMING) != 0;
|
|
for (ln = lfirst(p->mem); ln; ln = lnext(ln)) {
|
|
m = ldata(ln);
|
|
if (strcmp(m->desc, "flash") == 0) {
|
|
flash_pagesize = m->page_size;
|
|
u32_to_b4(sendbuf.dd.ulFlashSize, m->size);
|
|
u16_to_b2(sendbuf.dd.uiFlashPageSize, flash_pagesize);
|
|
u16_to_b2(sendbuf.dd.uiFlashpages, m->size / flash_pagesize);
|
|
} else if (strcmp(m->desc, "eeprom") == 0) {
|
|
sendbuf.dd.ucEepromPageSize = eeprom_pagesize = m->page_size;
|
|
}
|
|
}
|
|
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_set_devdescr(): "
|
|
"Sending set device descriptor command: ",
|
|
progname);
|
|
jtagmkII_send(pgm, (unsigned char *)&sendbuf,
|
|
device_descriptor_length + sizeof(unsigned char));
|
|
|
|
status = jtagmkII_recv(pgm, &resp);
|
|
if (status <= 0) {
|
|
if (verbose >= 2)
|
|
putc('\n', stderr);
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_set_devdescr(): "
|
|
"timeout/error communicating with programmer (status %d)\n",
|
|
progname, status);
|
|
return;
|
|
}
|
|
if (verbose >= 3) {
|
|
putc('\n', stderr);
|
|
jtagmkII_prmsg(pgm, resp, status);
|
|
} else if (verbose == 2)
|
|
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
|
|
c = resp[0];
|
|
free(resp);
|
|
if (c != RSP_OK) {
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_set_devdescr(): "
|
|
"bad response to set device descriptor command: %s\n",
|
|
progname, jtagmkII_get_rc(c));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reset the target.
|
|
*/
|
|
static int jtagmkII_reset(PROGRAMMER * pgm, unsigned char flags)
|
|
{
|
|
int status;
|
|
unsigned char buf[2], *resp, c;
|
|
|
|
buf[0] = CMND_RESET;
|
|
buf[1] = flags;
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_reset(): Sending reset command: ",
|
|
progname);
|
|
jtagmkII_send(pgm, buf, 2);
|
|
|
|
status = jtagmkII_recv(pgm, &resp);
|
|
if (status <= 0) {
|
|
if (verbose >= 2)
|
|
putc('\n', stderr);
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_reset(): "
|
|
"timeout/error communicating with programmer (status %d)\n",
|
|
progname, status);
|
|
return -1;
|
|
}
|
|
if (verbose >= 3) {
|
|
putc('\n', stderr);
|
|
jtagmkII_prmsg(pgm, resp, status);
|
|
} else if (verbose == 2)
|
|
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
|
|
c = resp[0];
|
|
free(resp);
|
|
if (c != RSP_OK) {
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_reset(): "
|
|
"bad response to reset command: %s\n",
|
|
progname, jtagmkII_get_rc(c));
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int jtagmkII_program_enable_dummy(PROGRAMMER * pgm, AVRPART * p)
|
|
{
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int jtagmkII_program_enable(PROGRAMMER * pgm)
|
|
{
|
|
int status;
|
|
unsigned char buf[1], *resp, c;
|
|
|
|
if (prog_enabled)
|
|
return 0;
|
|
|
|
buf[0] = CMND_ENTER_PROGMODE;
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_program_enable(): "
|
|
"Sending enter progmode command: ",
|
|
progname);
|
|
jtagmkII_send(pgm, buf, 1);
|
|
|
|
status = jtagmkII_recv(pgm, &resp);
|
|
if (status <= 0) {
|
|
if (verbose >= 2)
|
|
putc('\n', stderr);
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_program_enable(): "
|
|
"timeout/error communicating with programmer (status %d)\n",
|
|
progname, status);
|
|
return -1;
|
|
}
|
|
if (verbose >= 3) {
|
|
putc('\n', stderr);
|
|
jtagmkII_prmsg(pgm, resp, status);
|
|
} else if (verbose == 2)
|
|
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
|
|
c = resp[0];
|
|
free(resp);
|
|
if (c != RSP_OK) {
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_program_enable(): "
|
|
"bad response to enter progmode command: %s\n",
|
|
progname, jtagmkII_get_rc(c));
|
|
if (c == RSP_ILLEGAL_JTAG_ID)
|
|
fprintf(stderr, "%s: JTAGEN fuse disabled?\n", progname);
|
|
return -1;
|
|
}
|
|
|
|
prog_enabled = 1;
|
|
return 0;
|
|
}
|
|
|
|
static int jtagmkII_program_disable(PROGRAMMER * pgm)
|
|
{
|
|
int status;
|
|
unsigned char buf[1], *resp, c;
|
|
|
|
if (!prog_enabled)
|
|
return 0;
|
|
|
|
buf[0] = CMND_LEAVE_PROGMODE;
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_program_disable(): "
|
|
"Sending leave progmode command: ",
|
|
progname);
|
|
jtagmkII_send(pgm, buf, 1);
|
|
|
|
status = jtagmkII_recv(pgm, &resp);
|
|
if (status <= 0) {
|
|
if (verbose >= 2)
|
|
putc('\n', stderr);
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_program_disable(): "
|
|
"timeout/error communicating with programmer (status %d)\n",
|
|
progname, status);
|
|
return -1;
|
|
}
|
|
if (verbose >= 3) {
|
|
putc('\n', stderr);
|
|
jtagmkII_prmsg(pgm, resp, status);
|
|
} else if (verbose == 2)
|
|
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
|
|
c = resp[0];
|
|
free(resp);
|
|
if (c != RSP_OK) {
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_program_disable(): "
|
|
"bad response to leave progmode command: %s\n",
|
|
progname, jtagmkII_get_rc(c));
|
|
return -1;
|
|
}
|
|
|
|
prog_enabled = 0;
|
|
(void)jtagmkII_reset(pgm, 0x01);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned char jtagmkII_get_baud(long baud)
|
|
{
|
|
static struct {
|
|
long baud;
|
|
unsigned char val;
|
|
} baudtab[] = {
|
|
{ 2400L, PAR_BAUD_2400 },
|
|
{ 4800L, PAR_BAUD_4800 },
|
|
{ 9600L, PAR_BAUD_9600 },
|
|
{ 19200L, PAR_BAUD_19200 },
|
|
{ 38400L, PAR_BAUD_38400 },
|
|
{ 57600L, PAR_BAUD_57600 },
|
|
{ 115200L, PAR_BAUD_115200 },
|
|
{ 14400L, PAR_BAUD_14400 },
|
|
};
|
|
int i;
|
|
|
|
for (i = 0; i < sizeof baudtab / sizeof baudtab[0]; i++)
|
|
if (baud == baudtab[i].baud)
|
|
return baudtab[i].val;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* initialize the AVR device and prepare it to accept commands
|
|
*/
|
|
static int jtagmkII_initialize(PROGRAMMER * pgm, AVRPART * p)
|
|
{
|
|
AVRMEM hfuse;
|
|
unsigned char b;
|
|
|
|
if (!(p->flags & AVRPART_HAS_JTAG)) {
|
|
fprintf(stderr, "%s: jtagmkII_initialize(): part %s has no JTAG interface\n",
|
|
progname, p->desc);
|
|
return -1;
|
|
}
|
|
|
|
if ((serdev->flags & SERDEV_FL_CANSETSPEED) && pgm->baudrate && pgm->baudrate != 19200) {
|
|
if ((b = jtagmkII_get_baud(pgm->baudrate)) == 0) {
|
|
fprintf(stderr, "%s: jtagmkII_initialize(): unsupported baudrate %d\n",
|
|
progname, pgm->baudrate);
|
|
} else {
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_initialize(): "
|
|
"trying to set baudrate to %d\n",
|
|
progname, pgm->baudrate);
|
|
if (jtagmkII_setparm(pgm, PAR_BAUD_RATE, &b) == 0)
|
|
serial_setspeed(pgm->fd, pgm->baudrate);
|
|
}
|
|
}
|
|
if (pgm->bitclock != 0.0) {
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_initialize(): "
|
|
"trying to set JTAG clock period to %.1f us\n",
|
|
progname, pgm->bitclock);
|
|
if (jtagmkII_set_sck_period(pgm, pgm->bitclock) != 0)
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Must set the device descriptor before entering programming mode.
|
|
*/
|
|
jtagmkII_set_devdescr(pgm, p);
|
|
|
|
free(flash_pagecache);
|
|
free(eeprom_pagecache);
|
|
if ((flash_pagecache = malloc(flash_pagesize)) == NULL) {
|
|
fprintf(stderr, "%s: jtagmkII_initialize(): Out of memory\n",
|
|
progname);
|
|
return -1;
|
|
}
|
|
if ((eeprom_pagecache = malloc(eeprom_pagesize)) == NULL) {
|
|
fprintf(stderr, "%s: jtagmkII_initialize(): Out of memory\n",
|
|
progname);
|
|
free(flash_pagecache);
|
|
return -1;
|
|
}
|
|
flash_pageaddr = eeprom_pageaddr = (unsigned long)-1L;
|
|
|
|
if (jtagmkII_reset(pgm, 0x01) < 0)
|
|
return -1;
|
|
|
|
strcpy(hfuse.desc, "hfuse");
|
|
if (jtagmkII_read_byte(pgm, p, &hfuse, 1, &b) < 0)
|
|
return -1;
|
|
if ((b & OCDEN) != 0)
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_initialize(): warning: OCDEN fuse not programmed, "
|
|
"single-byte EEPROM updates not possible\n",
|
|
progname);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void jtagmkII_disable(PROGRAMMER * pgm)
|
|
{
|
|
|
|
free(flash_pagecache);
|
|
flash_pagecache = NULL;
|
|
free(eeprom_pagecache);
|
|
eeprom_pagecache = NULL;
|
|
|
|
(void)jtagmkII_program_disable(pgm);
|
|
}
|
|
|
|
static void jtagmkII_enable(PROGRAMMER * pgm)
|
|
{
|
|
return;
|
|
}
|
|
|
|
|
|
static int jtagmkII_open(PROGRAMMER * pgm, char * port)
|
|
{
|
|
long baud;
|
|
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_open()\n", progname);
|
|
|
|
/*
|
|
* The JTAG ICE mkII always starts with a baud rate of 19200 Bd upon
|
|
* attaching. If the config file or command-line parameters specify
|
|
* a higher baud rate, we switch to it later on, after establishing
|
|
* the connection with the ICE.
|
|
*/
|
|
baud = 19200;
|
|
|
|
/*
|
|
* If the port name starts with "usb", divert the serial routines
|
|
* to the USB ones. The serial_open() function for USB overrides
|
|
* the meaning of the "baud" parameter to be the USB device ID to
|
|
* search for.
|
|
*/
|
|
if (strncmp(port, "usb", 3) == 0) {
|
|
#if defined(HAVE_LIBUSB)
|
|
serdev = &usb_serdev;
|
|
baud = USB_DEVICE_JTAGICEMKII;
|
|
#else
|
|
fprintf(stderr, "avrdude was compiled without usb support.\n");
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
strcpy(pgm->port, port);
|
|
pgm->fd = serial_open(port, baud);
|
|
|
|
/*
|
|
* drain any extraneous input
|
|
*/
|
|
jtagmkII_drain(pgm, 0);
|
|
|
|
jtagmkII_getsync(pgm, EMULATOR_MODE_JTAG);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int jtagmkII_dragon_open(PROGRAMMER * pgm, char * port)
|
|
{
|
|
long baud;
|
|
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_dragon_open()\n", progname);
|
|
|
|
/*
|
|
* The JTAG ICE mkII always starts with a baud rate of 19200 Bd upon
|
|
* attaching. If the config file or command-line parameters specify
|
|
* a higher baud rate, we switch to it later on, after establishing
|
|
* the connection with the ICE.
|
|
*/
|
|
baud = 19200;
|
|
|
|
/*
|
|
* If the port name starts with "usb", divert the serial routines
|
|
* to the USB ones. The serial_open() function for USB overrides
|
|
* the meaning of the "baud" parameter to be the USB device ID to
|
|
* search for.
|
|
*/
|
|
if (strncmp(port, "usb", 3) == 0) {
|
|
#if defined(HAVE_LIBUSB)
|
|
serdev = &usb_serdev;
|
|
baud = USB_DEVICE_AVRDRAGON;
|
|
#else
|
|
fprintf(stderr, "avrdude was compiled without usb support.\n");
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
strcpy(pgm->port, port);
|
|
pgm->fd = serial_open(port, baud);
|
|
|
|
/*
|
|
* drain any extraneous input
|
|
*/
|
|
jtagmkII_drain(pgm, 0);
|
|
|
|
jtagmkII_getsync(pgm, EMULATOR_MODE_JTAG);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void jtagmkII_close(PROGRAMMER * pgm)
|
|
{
|
|
int status;
|
|
unsigned char buf[1], *resp, c;
|
|
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_close()\n", progname);
|
|
|
|
if (device_descriptor_length) {
|
|
/* When in JTAG mode, restart target. */
|
|
buf[0] = CMND_GO;
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_close(): Sending GO command: ",
|
|
progname);
|
|
jtagmkII_send(pgm, buf, 1);
|
|
|
|
status = jtagmkII_recv(pgm, &resp);
|
|
if (status <= 0) {
|
|
if (verbose >= 2)
|
|
putc('\n', stderr);
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_close(): "
|
|
"timeout/error communicating with programmer (status %d)\n",
|
|
progname, status);
|
|
} else {
|
|
if (verbose >= 3) {
|
|
putc('\n', stderr);
|
|
jtagmkII_prmsg(pgm, resp, status);
|
|
} else if (verbose == 2)
|
|
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
|
|
c = resp[0];
|
|
free(resp);
|
|
if (c != RSP_OK) {
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_close(): "
|
|
"bad response to GO command: %s\n",
|
|
progname, jtagmkII_get_rc(c));
|
|
}
|
|
}
|
|
}
|
|
|
|
buf[0] = CMND_SIGN_OFF;
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_close(): Sending sign-off command: ",
|
|
progname);
|
|
jtagmkII_send(pgm, buf, 1);
|
|
|
|
status = jtagmkII_recv(pgm, &resp);
|
|
if (status <= 0) {
|
|
if (verbose >= 2)
|
|
putc('\n', stderr);
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_close(): "
|
|
"timeout/error communicating with programmer (status %d)\n",
|
|
progname, status);
|
|
return;
|
|
}
|
|
if (verbose >= 3) {
|
|
putc('\n', stderr);
|
|
jtagmkII_prmsg(pgm, resp, status);
|
|
} else if (verbose == 2)
|
|
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
|
|
c = resp[0];
|
|
free(resp);
|
|
if (c != RSP_OK) {
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_close(): "
|
|
"bad response to sign-off command: %s\n",
|
|
progname, jtagmkII_get_rc(c));
|
|
}
|
|
|
|
serial_close(pgm->fd);
|
|
pgm->fd = -1;
|
|
}
|
|
|
|
|
|
static int jtagmkII_paged_write(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
|
|
int page_size, int n_bytes)
|
|
{
|
|
int addr, block_size;
|
|
unsigned char *cmd;
|
|
unsigned char *resp;
|
|
int status, tries;
|
|
long otimeout = serial_recv_timeout;
|
|
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_paged_write(.., %s, %d, %d)\n",
|
|
progname, m->desc, page_size, n_bytes);
|
|
|
|
if (jtagmkII_program_enable(pgm) < 0)
|
|
return -1;
|
|
|
|
if (page_size == 0) page_size = 256;
|
|
|
|
if ((cmd = malloc(page_size + 10)) == NULL) {
|
|
fprintf(stderr, "%s: jtagmkII_paged_write(): Out of memory\n",
|
|
progname);
|
|
return -1;
|
|
}
|
|
|
|
cmd[0] = CMND_WRITE_MEMORY;
|
|
if (strcmp(m->desc, "flash") == 0) {
|
|
cmd[1] = MTYPE_FLASH_PAGE;
|
|
flash_pageaddr = (unsigned long)-1L;
|
|
page_size = flash_pagesize;
|
|
} else if (strcmp(m->desc, "eeprom") == 0) {
|
|
cmd[1] = MTYPE_EEPROM_PAGE;
|
|
eeprom_pageaddr = (unsigned long)-1L;
|
|
page_size = eeprom_pagesize;
|
|
}
|
|
|
|
serial_recv_timeout = 100;
|
|
for (addr = 0; addr < n_bytes; addr += page_size) {
|
|
report_progress(addr, n_bytes,NULL);
|
|
|
|
if ((n_bytes-addr) < page_size)
|
|
block_size = n_bytes - addr;
|
|
else
|
|
block_size = page_size;
|
|
if (verbose >= 3)
|
|
fprintf(stderr, "%s: jtagmkII_paged_write(): "
|
|
"block_size at addr %d is %d\n",
|
|
progname, addr, block_size);
|
|
|
|
u32_to_b4(cmd + 2, page_size);
|
|
u32_to_b4(cmd + 6, addr);
|
|
|
|
/*
|
|
* The JTAG ICE will refuse to write anything but a full page, at
|
|
* least for the flash ROM. If a partial page has been requested,
|
|
* set the remainder to 0xff. (Maybe we should rather read back
|
|
* the existing contents instead before? Doesn't matter much, as
|
|
* bits cannot be written to 1 anyway.)
|
|
*/
|
|
memset(cmd + 10, 0xff, page_size);
|
|
memcpy(cmd + 10, m->buf + addr, block_size);
|
|
|
|
tries = 0;
|
|
|
|
retry:
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_paged_write(): "
|
|
"Sending write memory command: ",
|
|
progname);
|
|
jtagmkII_send(pgm, cmd, page_size + 10);
|
|
|
|
status = jtagmkII_recv(pgm, &resp);
|
|
if (status <= 0) {
|
|
if (verbose >= 2)
|
|
putc('\n', stderr);
|
|
if (verbose >= 1)
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_paged_write(): "
|
|
"timeout/error communicating with programmer (status %d)\n",
|
|
progname, status);
|
|
if (tries++ < 4) {
|
|
serial_recv_timeout *= 2;
|
|
goto retry;
|
|
}
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_paged_write(): fatal timeout/"
|
|
"error communicating with programmer (status %d)\n",
|
|
progname, status);
|
|
free(cmd);
|
|
serial_recv_timeout = otimeout;
|
|
return -1;
|
|
}
|
|
if (verbose >= 3) {
|
|
putc('\n', stderr);
|
|
jtagmkII_prmsg(pgm, resp, status);
|
|
} else if (verbose == 2)
|
|
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
|
|
if (resp[0] != RSP_OK) {
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_paged_write(): "
|
|
"bad response to write memory command: %s\n",
|
|
progname, jtagmkII_get_rc(resp[0]));
|
|
free(resp);
|
|
free(cmd);
|
|
serial_recv_timeout = otimeout;
|
|
return -1;
|
|
}
|
|
free(resp);
|
|
}
|
|
|
|
free(cmd);
|
|
serial_recv_timeout = otimeout;
|
|
|
|
return n_bytes;
|
|
}
|
|
|
|
static int jtagmkII_paged_load(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
|
|
int page_size, int n_bytes)
|
|
{
|
|
int addr, block_size;
|
|
unsigned char cmd[10];
|
|
unsigned char *resp;
|
|
int status, tries;
|
|
long otimeout = serial_recv_timeout;
|
|
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_paged_load(.., %s, %d, %d)\n",
|
|
progname, m->desc, page_size, n_bytes);
|
|
|
|
if (jtagmkII_program_enable(pgm) < 0)
|
|
return -1;
|
|
|
|
page_size = m->readsize;
|
|
|
|
cmd[0] = CMND_READ_MEMORY;
|
|
if (strcmp(m->desc, "flash") == 0) {
|
|
cmd[1] = MTYPE_FLASH_PAGE;
|
|
} else if (strcmp(m->desc, "eeprom") == 0) {
|
|
cmd[1] = MTYPE_EEPROM_PAGE;
|
|
}
|
|
|
|
serial_recv_timeout = 100;
|
|
for (addr = 0; addr < n_bytes; addr += page_size) {
|
|
report_progress(addr, n_bytes,NULL);
|
|
|
|
if ((n_bytes-addr) < page_size)
|
|
block_size = n_bytes - addr;
|
|
else
|
|
block_size = page_size;
|
|
if (verbose >= 3)
|
|
fprintf(stderr, "%s: jtagmkII_paged_load(): "
|
|
"block_size at addr %d is %d\n",
|
|
progname, addr, block_size);
|
|
|
|
u32_to_b4(cmd + 2, block_size);
|
|
u32_to_b4(cmd + 6, addr);
|
|
|
|
tries = 0;
|
|
|
|
retry:
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_paged_load(): Sending read memory command: ",
|
|
progname);
|
|
jtagmkII_send(pgm, cmd, 10);
|
|
|
|
status = jtagmkII_recv(pgm, &resp);
|
|
if (status <= 0) {
|
|
if (verbose >= 2)
|
|
putc('\n', stderr);
|
|
if (verbose >= 1)
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_paged_load(): "
|
|
"timeout/error communicating with programmer (status %d)\n",
|
|
progname, status);
|
|
if (tries++ < 4) {
|
|
serial_recv_timeout *= 2;
|
|
goto retry;
|
|
}
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_paged_load(): fatal timeout/"
|
|
"error communicating with programmer (status %d)\n",
|
|
progname, status);
|
|
serial_recv_timeout = otimeout;
|
|
return -1;
|
|
}
|
|
if (verbose >= 3) {
|
|
putc('\n', stderr);
|
|
jtagmkII_prmsg(pgm, resp, status);
|
|
} else if (verbose == 2)
|
|
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
|
|
if (resp[0] != RSP_MEMORY) {
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_paged_load(): "
|
|
"bad response to read memory command: %s\n",
|
|
progname, jtagmkII_get_rc(resp[0]));
|
|
free(resp);
|
|
serial_recv_timeout = otimeout;
|
|
return -1;
|
|
}
|
|
memcpy(m->buf + addr, resp + 1, status);
|
|
free(resp);
|
|
}
|
|
serial_recv_timeout = otimeout;
|
|
|
|
return n_bytes;
|
|
}
|
|
|
|
static int jtagmkII_read_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
|
|
unsigned long addr, unsigned char * value)
|
|
{
|
|
unsigned char cmd[10];
|
|
unsigned char *resp = NULL, *cache_ptr = NULL;
|
|
int status, tries;
|
|
unsigned long paddr = 0UL, *paddr_ptr = NULL;
|
|
unsigned int pagesize = 0;
|
|
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_read_byte(.., %s, 0x%lx, ...)\n",
|
|
progname, mem->desc, addr);
|
|
|
|
if (jtagmkII_program_enable(pgm) < 0)
|
|
return -1;
|
|
|
|
cmd[0] = CMND_READ_MEMORY;
|
|
|
|
if (strcmp(mem->desc, "flash") == 0) {
|
|
cmd[1] = MTYPE_FLASH_PAGE;
|
|
pagesize = mem->page_size;
|
|
paddr = addr & ~(pagesize - 1);
|
|
paddr_ptr = &flash_pageaddr;
|
|
cache_ptr = flash_pagecache;
|
|
} else if (strcmp(mem->desc, "eeprom") == 0) {
|
|
cmd[1] = MTYPE_EEPROM_PAGE;
|
|
pagesize = mem->page_size;
|
|
paddr = addr & ~(pagesize - 1);
|
|
paddr_ptr = &eeprom_pageaddr;
|
|
cache_ptr = eeprom_pagecache;
|
|
} else if (strcmp(mem->desc, "lfuse") == 0) {
|
|
cmd[1] = MTYPE_FUSE_BITS;
|
|
addr = 0;
|
|
} else if (strcmp(mem->desc, "hfuse") == 0) {
|
|
cmd[1] = MTYPE_FUSE_BITS;
|
|
addr = 1;
|
|
} else if (strcmp(mem->desc, "efuse") == 0) {
|
|
cmd[1] = MTYPE_FUSE_BITS;
|
|
addr = 2;
|
|
} else if (strcmp(mem->desc, "lock") == 0) {
|
|
cmd[1] = MTYPE_LOCK_BITS;
|
|
} else if (strcmp(mem->desc, "calibration") == 0) {
|
|
cmd[1] = MTYPE_OSCCAL_BYTE;
|
|
} else if (strcmp(mem->desc, "signature") == 0) {
|
|
cmd[1] = MTYPE_SIGN_JTAG;
|
|
}
|
|
|
|
/*
|
|
* To improve the read speed, we used paged reads for flash and
|
|
* EEPROM, and cache the results in a page cache.
|
|
*
|
|
* Page cache validation is based on "{flash,eeprom}_pageaddr"
|
|
* (holding the base address of the most recent cache fill
|
|
* operation). This variable is set to (unsigned long)-1L when the
|
|
* cache needs to be invalidated.
|
|
*/
|
|
if (pagesize && paddr == *paddr_ptr) {
|
|
*value = cache_ptr[addr & (pagesize - 1)];
|
|
return 0;
|
|
}
|
|
|
|
if (pagesize) {
|
|
u32_to_b4(cmd + 2, pagesize);
|
|
u32_to_b4(cmd + 6, paddr);
|
|
} else {
|
|
u32_to_b4(cmd + 2, 1);
|
|
u32_to_b4(cmd + 6, addr);
|
|
}
|
|
|
|
tries = 0;
|
|
retry:
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_read_byte(): Sending read memory command: ",
|
|
progname);
|
|
jtagmkII_send(pgm, cmd, 10);
|
|
|
|
status = jtagmkII_recv(pgm, &resp);
|
|
if (status <= 0) {
|
|
if (verbose >= 2)
|
|
putc('\n', stderr);
|
|
if (verbose >= 1)
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_read_byte(): "
|
|
"timeout/error communicating with programmer (status %d)\n",
|
|
progname, status);
|
|
if (tries++ < 3)
|
|
goto retry;
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_read_byte(): "
|
|
"fatal timeout/error communicating with programmer (status %d)\n",
|
|
progname, status);
|
|
goto fail;
|
|
}
|
|
if (verbose >= 3) {
|
|
putc('\n', stderr);
|
|
jtagmkII_prmsg(pgm, resp, status);
|
|
} else if (verbose == 2)
|
|
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
|
|
if (resp[0] != RSP_MEMORY) {
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_read_byte(): "
|
|
"bad response to read memory command: %s\n",
|
|
progname, jtagmkII_get_rc(resp[0]));
|
|
goto fail;
|
|
}
|
|
|
|
if (pagesize) {
|
|
*paddr_ptr = paddr;
|
|
memcpy(cache_ptr, resp + 1, pagesize);
|
|
*value = cache_ptr[addr & (pagesize - 1)];
|
|
} else
|
|
*value = resp[1];
|
|
|
|
free(resp);
|
|
return 0;
|
|
|
|
fail:
|
|
/*
|
|
* XXX should return an error status here, but that would cause
|
|
* the generic methods to retry the request using the SPI method,
|
|
* which is complete nonsense for JTAG.
|
|
*/
|
|
*value = 42;
|
|
free(resp);
|
|
return 0;
|
|
}
|
|
|
|
static int jtagmkII_write_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
|
|
unsigned long addr, unsigned char data)
|
|
{
|
|
unsigned char cmd[11];
|
|
unsigned char *resp = NULL, writedata;
|
|
int status, tries, need_progmode = 1;
|
|
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_write_byte(.., %s, 0x%lx, ...)\n",
|
|
progname, mem->desc, addr);
|
|
|
|
writedata = data;
|
|
cmd[0] = CMND_WRITE_MEMORY;
|
|
if (strcmp(mem->desc, "flash") == 0) {
|
|
cmd[1] = MTYPE_SPM;
|
|
need_progmode = 0;
|
|
flash_pageaddr = (unsigned long)-1L;
|
|
} else if (strcmp(mem->desc, "eeprom") == 0) {
|
|
cmd[1] = MTYPE_EEPROM;
|
|
need_progmode = 0;
|
|
eeprom_pageaddr = (unsigned long)-1L;
|
|
} else if (strcmp(mem->desc, "lfuse") == 0) {
|
|
cmd[1] = MTYPE_FUSE_BITS;
|
|
addr = 0;
|
|
} else if (strcmp(mem->desc, "hfuse") == 0) {
|
|
cmd[1] = MTYPE_FUSE_BITS;
|
|
addr = 1;
|
|
} else if (strcmp(mem->desc, "efuse") == 0) {
|
|
cmd[1] = MTYPE_FUSE_BITS;
|
|
addr = 2;
|
|
} else if (strcmp(mem->desc, "lock") == 0) {
|
|
cmd[1] = MTYPE_LOCK_BITS;
|
|
} else if (strcmp(mem->desc, "calibration") == 0) {
|
|
cmd[1] = MTYPE_OSCCAL_BYTE;
|
|
} else if (strcmp(mem->desc, "signature") == 0) {
|
|
cmd[1] = MTYPE_SIGN_JTAG;
|
|
}
|
|
|
|
if (need_progmode) {
|
|
if (jtagmkII_program_enable(pgm) < 0)
|
|
return -1;
|
|
} else {
|
|
if (jtagmkII_program_disable(pgm) < 0)
|
|
return -1;
|
|
}
|
|
|
|
u32_to_b4(cmd + 2, 1);
|
|
u32_to_b4(cmd + 6, addr);
|
|
cmd[10] = writedata;
|
|
|
|
tries = 0;
|
|
retry:
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_write_byte(): Sending write memory command: ",
|
|
progname);
|
|
jtagmkII_send(pgm, cmd, 11);
|
|
|
|
status = jtagmkII_recv(pgm, &resp);
|
|
if (status <= 0) {
|
|
if (verbose >= 2)
|
|
putc('\n', stderr);
|
|
if (verbose > 1)
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_write_byte(): "
|
|
"timeout/error communicating with programmer (status %d)\n",
|
|
progname, status);
|
|
if (tries++ < 3)
|
|
goto retry;
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_write_byte(): "
|
|
"fatal timeout/error communicating with programmer (status %d)\n",
|
|
progname, status);
|
|
goto fail;
|
|
}
|
|
if (verbose >= 3) {
|
|
putc('\n', stderr);
|
|
jtagmkII_prmsg(pgm, resp, status);
|
|
} else if (verbose == 2)
|
|
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
|
|
if (resp[0] != RSP_OK) {
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_write_byte(): "
|
|
"bad response to write memory command: %s\n",
|
|
progname, jtagmkII_get_rc(resp[0]));
|
|
goto fail;
|
|
}
|
|
|
|
free(resp);
|
|
return 0;
|
|
|
|
fail:
|
|
/*
|
|
* XXX should return an error status here, but that would cause
|
|
* the generic methods to retry the request using the SPI method,
|
|
* which is complete nonsense for JTAG.
|
|
*/
|
|
free(resp);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Set the JTAG clock. The actual frequency is quite a bit of
|
|
* guesswork, based on the values claimed by AVR Studio. Inside the
|
|
* JTAG ICE, the value is the delay count of a delay loop between the
|
|
* JTAG clock edges. A count of 0 bypasses the delay loop.
|
|
*
|
|
* As the STK500 expresses it as a period length (and we actualy do
|
|
* program a period length as well), we rather call it by that name.
|
|
*/
|
|
static int jtagmkII_set_sck_period(PROGRAMMER * pgm, double v)
|
|
{
|
|
unsigned char dur;
|
|
|
|
v = 1 / v; /* convert to frequency */
|
|
if (v >= 6.4e6)
|
|
dur = 0;
|
|
else if (v >= 2.8e6)
|
|
dur = 1;
|
|
else if (v >= 20.9e3)
|
|
dur = (unsigned char)(5.35e6 / v);
|
|
else
|
|
dur = 255;
|
|
|
|
return jtagmkII_setparm(pgm, PAR_OCD_JTAG_CLK, &dur);
|
|
}
|
|
|
|
|
|
/*
|
|
* Read an emulator parameter. As the maximal parameter length is 4
|
|
* bytes by now, we always copy out 4 bytes to *value, so the caller
|
|
* must have allocated sufficient space.
|
|
*/
|
|
int jtagmkII_getparm(PROGRAMMER * pgm, unsigned char parm,
|
|
unsigned char * value)
|
|
{
|
|
int status;
|
|
unsigned char buf[2], *resp, c;
|
|
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_getparm()\n", progname);
|
|
|
|
buf[0] = CMND_GET_PARAMETER;
|
|
buf[1] = parm;
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_getparm(): "
|
|
"Sending get parameter command (parm 0x%02x): ",
|
|
progname, parm);
|
|
jtagmkII_send(pgm, buf, 2);
|
|
|
|
status = jtagmkII_recv(pgm, &resp);
|
|
if (status <= 0) {
|
|
if (verbose >= 2)
|
|
putc('\n', stderr);
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_getparm(): "
|
|
"timeout/error communicating with programmer (status %d)\n",
|
|
progname, status);
|
|
return -1;
|
|
}
|
|
if (verbose >= 3) {
|
|
putc('\n', stderr);
|
|
jtagmkII_prmsg(pgm, resp, status);
|
|
} else if (verbose == 2)
|
|
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
|
|
c = resp[0];
|
|
if (c != RSP_PARAMETER) {
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_getparm(): "
|
|
"bad response to get parameter command: %s\n",
|
|
progname, jtagmkII_get_rc(c));
|
|
free(resp);
|
|
return -1;
|
|
}
|
|
|
|
memcpy(value, resp + 1, 4);
|
|
free(resp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write an emulator parameter.
|
|
*/
|
|
static int jtagmkII_setparm(PROGRAMMER * pgm, unsigned char parm,
|
|
unsigned char * value)
|
|
{
|
|
int status;
|
|
/*
|
|
* As the maximal parameter length is 4 bytes, we use a fixed-length
|
|
* buffer, as opposed to malloc()ing it.
|
|
*/
|
|
unsigned char buf[2 + 4], *resp, c;
|
|
size_t size;
|
|
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_setparm()\n", progname);
|
|
|
|
switch (parm) {
|
|
case PAR_HW_VERSION: size = 2; break;
|
|
case PAR_FW_VERSION: size = 4; break;
|
|
case PAR_EMULATOR_MODE: size = 1; break;
|
|
case PAR_BAUD_RATE: size = 1; break;
|
|
case PAR_OCD_VTARGET: size = 2; break;
|
|
case PAR_OCD_JTAG_CLK: size = 1; break;
|
|
default:
|
|
fprintf(stderr, "%s: jtagmkII_setparm(): unknown parameter 0x%02x\n",
|
|
progname, parm);
|
|
return -1;
|
|
}
|
|
|
|
buf[0] = CMND_SET_PARAMETER;
|
|
buf[1] = parm;
|
|
memcpy(buf + 2, value, size);
|
|
if (verbose >= 2)
|
|
fprintf(stderr, "%s: jtagmkII_setparm(): "
|
|
"Sending set parameter command (parm 0x%02x, %zu bytes): ",
|
|
progname, parm, size);
|
|
jtagmkII_send(pgm, buf, size + 2);
|
|
|
|
status = jtagmkII_recv(pgm, &resp);
|
|
if (status <= 0) {
|
|
if (verbose >= 2)
|
|
putc('\n', stderr);
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_setparm(): "
|
|
"timeout/error communicating with programmer (status %d)\n",
|
|
progname, status);
|
|
return -1;
|
|
}
|
|
if (verbose >= 3) {
|
|
putc('\n', stderr);
|
|
jtagmkII_prmsg(pgm, resp, status);
|
|
} else if (verbose == 2)
|
|
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
|
|
c = resp[0];
|
|
free(resp);
|
|
if (c != RSP_OK) {
|
|
fprintf(stderr,
|
|
"%s: jtagmkII_setparm(): "
|
|
"bad response to set parameter command: %s\n",
|
|
progname, jtagmkII_get_rc(c));
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void jtagmkII_display(PROGRAMMER * pgm, char * p)
|
|
{
|
|
unsigned char hw[4], fw[4];
|
|
|
|
if (jtagmkII_getparm(pgm, PAR_HW_VERSION, hw) < 0 ||
|
|
jtagmkII_getparm(pgm, PAR_FW_VERSION, fw) < 0)
|
|
return;
|
|
|
|
fprintf(stderr, "%sM_MCU hardware version: %d\n", p, hw[0]);
|
|
fprintf(stderr, "%sM_MCU firmware version: %d.%02d\n", p, fw[1], fw[0]);
|
|
fprintf(stderr, "%sS_MCU hardware version: %d\n", p, hw[1]);
|
|
fprintf(stderr, "%sS_MCU firmware version: %d.%02d\n", p, fw[3], fw[2]);
|
|
fprintf(stderr, "%sSerial number: %02x:%02x:%02x:%02x:%02x:%02x\n",
|
|
p, serno[0], serno[1], serno[2], serno[3], serno[4], serno[5]);
|
|
|
|
jtagmkII_print_parms1(pgm, p);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
static void jtagmkII_print_parms1(PROGRAMMER * pgm, char * p)
|
|
{
|
|
unsigned char vtarget[4], jtag_clock[4];
|
|
char clkbuf[20];
|
|
double clk;
|
|
|
|
if (jtagmkII_getparm(pgm, PAR_OCD_VTARGET, vtarget) < 0 ||
|
|
jtagmkII_getparm(pgm, PAR_OCD_JTAG_CLK, jtag_clock) < 0)
|
|
return;
|
|
|
|
if (jtag_clock[0] == 0) {
|
|
strcpy(clkbuf, "6.4 MHz");
|
|
clk = 6.4e6;
|
|
} else if (jtag_clock[0] == 1) {
|
|
strcpy(clkbuf, "2.8 MHz");
|
|
clk = 2.8e6;
|
|
} else if (jtag_clock[0] <= 5) {
|
|
sprintf(clkbuf, "%.1f MHz", 5.35 / (double)jtag_clock[0]);
|
|
clk = 5.35e6 / (double)jtag_clock[0];
|
|
} else {
|
|
sprintf(clkbuf, "%.1f kHz", 5.35e3 / (double)jtag_clock[0]);
|
|
clk = 5.35e6 / (double)jtag_clock[0];
|
|
}
|
|
|
|
fprintf(stderr, "%sVtarget : %.1f V\n", p,
|
|
b2_to_u16(vtarget) / 1000.0);
|
|
fprintf(stderr, "%sJTAG clock : %s (%.1f us)\n", p, clkbuf,
|
|
1.0e6 / clk);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
static void jtagmkII_print_parms(PROGRAMMER * pgm)
|
|
{
|
|
jtagmkII_print_parms1(pgm, "");
|
|
}
|
|
|
|
|
|
void jtagmkII_initpgm(PROGRAMMER * pgm)
|
|
{
|
|
strcpy(pgm->type, "JTAGMKII");
|
|
|
|
/*
|
|
* mandatory functions
|
|
*/
|
|
pgm->initialize = jtagmkII_initialize;
|
|
pgm->display = jtagmkII_display;
|
|
pgm->enable = jtagmkII_enable;
|
|
pgm->disable = jtagmkII_disable;
|
|
pgm->program_enable = jtagmkII_program_enable_dummy;
|
|
pgm->chip_erase = jtagmkII_chip_erase;
|
|
pgm->cmd = jtagmkII_cmd;
|
|
pgm->open = jtagmkII_open;
|
|
pgm->close = jtagmkII_close;
|
|
|
|
/*
|
|
* optional functions
|
|
*/
|
|
pgm->paged_write = jtagmkII_paged_write;
|
|
pgm->paged_load = jtagmkII_paged_load;
|
|
pgm->read_byte = jtagmkII_read_byte;
|
|
pgm->write_byte = jtagmkII_write_byte;
|
|
pgm->print_parms = jtagmkII_print_parms;
|
|
pgm->set_sck_period = jtagmkII_set_sck_period;
|
|
pgm->page_size = 256;
|
|
}
|
|
|
|
|
|
void jtagmkII_dragon_initpgm(PROGRAMMER * pgm)
|
|
{
|
|
strcpy(pgm->type, "DRAGON_JTAG");
|
|
|
|
/*
|
|
* mandatory functions
|
|
*/
|
|
pgm->initialize = jtagmkII_initialize;
|
|
pgm->display = jtagmkII_display;
|
|
pgm->enable = jtagmkII_enable;
|
|
pgm->disable = jtagmkII_disable;
|
|
pgm->program_enable = jtagmkII_program_enable_dummy;
|
|
pgm->chip_erase = jtagmkII_chip_erase;
|
|
pgm->cmd = jtagmkII_cmd;
|
|
pgm->open = jtagmkII_dragon_open;
|
|
pgm->close = jtagmkII_close;
|
|
|
|
/*
|
|
* optional functions
|
|
*/
|
|
pgm->paged_write = jtagmkII_paged_write;
|
|
pgm->paged_load = jtagmkII_paged_load;
|
|
pgm->read_byte = jtagmkII_read_byte;
|
|
pgm->write_byte = jtagmkII_write_byte;
|
|
pgm->print_parms = jtagmkII_print_parms;
|
|
pgm->set_sck_period = jtagmkII_set_sck_period;
|
|
pgm->page_size = 256;
|
|
}
|