846 lines
16 KiB
C
846 lines
16 KiB
C
/*
|
|
* avrdude - A Uploader/Downloader for AVR device programmers
|
|
* Copyright (C) 2000, 2001, 2002, 2003 Brian S. Dean <bsd@bsdhome.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
/* $Id$ */
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <errno.h>
|
|
#include <dev/ppbus/ppi.h>
|
|
|
|
#include "avr.h"
|
|
#include "pindefs.h"
|
|
#include "pgm.h"
|
|
#include "ppi.h"
|
|
|
|
#define SLOW_TOGGLE 0
|
|
|
|
extern char * progname;
|
|
extern int do_cycles;
|
|
|
|
/*
|
|
* PPI registers
|
|
*/
|
|
enum {
|
|
PPIDATA,
|
|
PPICTRL,
|
|
PPISTATUS
|
|
};
|
|
|
|
struct ppipins_t {
|
|
int pin;
|
|
int reg;
|
|
int bit;
|
|
int inverted;
|
|
};
|
|
|
|
static struct ppipins_t pins[] = {
|
|
{ 1, PPICTRL, 0x01, 1 },
|
|
{ 2, PPIDATA, 0x01, 0 },
|
|
{ 3, PPIDATA, 0x02, 0 },
|
|
{ 4, PPIDATA, 0x04, 0 },
|
|
{ 5, PPIDATA, 0x08, 0 },
|
|
{ 6, PPIDATA, 0x10, 0 },
|
|
{ 7, PPIDATA, 0x20, 0 },
|
|
{ 8, PPIDATA, 0x40, 0 },
|
|
{ 9, PPIDATA, 0x80, 0 },
|
|
{ 10, PPISTATUS, 0x40, 0 },
|
|
{ 11, PPISTATUS, 0x80, 1 },
|
|
{ 12, PPISTATUS, 0x20, 0 },
|
|
{ 13, PPISTATUS, 0x10, 0 },
|
|
{ 14, PPICTRL, 0x02, 1 },
|
|
{ 15, PPISTATUS, 0x08, 0 },
|
|
{ 16, PPICTRL, 0x04, 0 },
|
|
{ 17, PPICTRL, 0x08, 1 }
|
|
};
|
|
|
|
#define NPINS (sizeof(pins)/sizeof(struct ppipins_t))
|
|
|
|
|
|
int ppi_getops (int reg, unsigned long * get, unsigned long * set);
|
|
|
|
int ppi_set (int fd, int reg, int bit);
|
|
|
|
int ppi_clr (int fd, int reg, int bit);
|
|
|
|
int ppi_get (int fd, int reg, int bit);
|
|
|
|
int ppi_toggle (int fd, int reg, int bit);
|
|
|
|
int ppi_getall (int fd, int reg);
|
|
|
|
int ppi_setall (int fd, int reg, int val);
|
|
|
|
int ppi_pulse (int fd, int reg, int bit);
|
|
|
|
int ppi_setpin (int fd, int pin, int value);
|
|
|
|
int ppi_getpin (int fd, int pin);
|
|
|
|
int ppi_pulsepin (int fd, int pin);
|
|
|
|
int ppi_getpinreg (int pin);
|
|
|
|
int ppi_sense (int fd);
|
|
|
|
|
|
int ppi_rdy_led (PROGRAMMER * pgm, int value);
|
|
|
|
int ppi_err_led (PROGRAMMER * pgm, int value);
|
|
|
|
int ppi_pgm_led (PROGRAMMER * pgm, int value);
|
|
|
|
int ppi_vfy_led (PROGRAMMER * pgm, int value);
|
|
|
|
int ppi_cmd (PROGRAMMER * pgm, unsigned char cmd[4],
|
|
unsigned char res[4]);
|
|
|
|
int ppi_chip_erase (PROGRAMMER * pgm, AVRPART * p);
|
|
|
|
int ppi_program_enable (PROGRAMMER * pgm, AVRPART * p);
|
|
|
|
void ppi_powerup (PROGRAMMER * pgm);
|
|
|
|
void ppi_powerdown (PROGRAMMER * pgm);
|
|
|
|
int ppi_initialize (PROGRAMMER * pgm, AVRPART * p);
|
|
|
|
int ppi_save (PROGRAMMER * pgm);
|
|
|
|
void ppi_restore (PROGRAMMER * pgm);
|
|
|
|
void ppi_disable (PROGRAMMER * pgm);
|
|
|
|
void ppi_enable (PROGRAMMER * pgm);
|
|
|
|
void ppi_open (PROGRAMMER * pgm, char * port);
|
|
|
|
void ppi_close (PROGRAMMER * pgm);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static char vccpins_buf[64];
|
|
char * vccpins_str(unsigned int pmask)
|
|
{
|
|
unsigned int mask;
|
|
int pin;
|
|
char b2[8];
|
|
char * b;
|
|
|
|
b = vccpins_buf;
|
|
|
|
b[0] = 0;
|
|
for (pin = 2, mask = 1; mask < 0x80; mask = mask << 1, pin++) {
|
|
if (pmask & mask) {
|
|
sprintf(b2, "%d", pin);
|
|
if (b[0] != 0)
|
|
strcat(b, ",");
|
|
strcat(b, b2);
|
|
}
|
|
}
|
|
|
|
return b;
|
|
}
|
|
|
|
|
|
/*
|
|
* set 'get' and 'set' appropriately for subsequent passage to ioctl()
|
|
* to get/set the specified PPI registers.
|
|
*/
|
|
int ppi_getops(int reg, unsigned long * get, unsigned long * set)
|
|
{
|
|
switch (reg) {
|
|
case PPIDATA:
|
|
*set = PPISDATA;
|
|
*get = PPIGDATA;
|
|
break;
|
|
case PPICTRL:
|
|
*set = PPISCTRL;
|
|
*get = PPIGCTRL;
|
|
break;
|
|
case PPISTATUS:
|
|
*set = PPISSTATUS;
|
|
*get = PPIGSTATUS;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "%s: avr_set(): invalid register=%d\n",
|
|
progname, reg);
|
|
return -1;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* set the indicated bit of the specified register.
|
|
*/
|
|
int ppi_set(int fd, int reg, int bit)
|
|
{
|
|
unsigned char v;
|
|
unsigned long get, set;
|
|
int rc;
|
|
|
|
rc = ppi_getops(reg, &get, &set);
|
|
if (rc)
|
|
return -1;
|
|
|
|
ioctl(fd, get, &v);
|
|
v |= bit;
|
|
ioctl(fd, set, &v);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* clear the indicated bit of the specified register.
|
|
*/
|
|
int ppi_clr(int fd, int reg, int bit)
|
|
{
|
|
unsigned char v;
|
|
unsigned long get, set;
|
|
int rc;
|
|
|
|
rc = ppi_getops(reg, &get, &set);
|
|
if (rc)
|
|
return -1;
|
|
|
|
ioctl(fd, get, &v);
|
|
v &= ~bit;
|
|
ioctl(fd, set, &v);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* get the indicated bit of the specified register.
|
|
*/
|
|
int ppi_get(int fd, int reg, int bit)
|
|
{
|
|
unsigned char v;
|
|
unsigned long get, set;
|
|
int rc;
|
|
|
|
rc = ppi_getops(reg, &get, &set);
|
|
if (rc)
|
|
return -1;
|
|
|
|
ioctl(fd, get, &v);
|
|
v &= bit;
|
|
|
|
return v; /* v == bit */
|
|
}
|
|
|
|
/*
|
|
* toggle the indicated bit of the specified register.
|
|
*/
|
|
int ppi_toggle(int fd, int reg, int bit)
|
|
{
|
|
unsigned char v;
|
|
unsigned long get, set;
|
|
int rc;
|
|
|
|
rc = ppi_getops(reg, &get, &set);
|
|
if (rc)
|
|
return -1;
|
|
|
|
ioctl(fd, get, &v);
|
|
v ^= bit;
|
|
ioctl(fd, set, &v);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* get all bits of the specified register.
|
|
*/
|
|
int ppi_getall(int fd, int reg)
|
|
{
|
|
unsigned char v;
|
|
unsigned long get, set;
|
|
int rc;
|
|
|
|
rc = ppi_getops(reg, &get, &set);
|
|
if (rc)
|
|
return -1;
|
|
|
|
ioctl(fd, get, &v);
|
|
|
|
return (int)v;
|
|
}
|
|
|
|
/*
|
|
* set all bits of the specified register to val.
|
|
*/
|
|
int ppi_setall(int fd, int reg, int val)
|
|
{
|
|
unsigned char v;
|
|
unsigned long get, set;
|
|
int rc;
|
|
|
|
rc = ppi_getops(reg, &get, &set);
|
|
if (rc)
|
|
return -1;
|
|
|
|
v = val;
|
|
ioctl(fd, set, &v);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* pulse the indicated bit of the specified register.
|
|
*/
|
|
int ppi_pulse(int fd, int reg, int bit)
|
|
{
|
|
ppi_toggle(fd, reg, bit);
|
|
|
|
#if SLOW_TOGGLE
|
|
usleep(1000);
|
|
#endif
|
|
|
|
ppi_toggle(fd, reg, bit);
|
|
|
|
#if SLOW_TOGGLE
|
|
usleep(1000);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int ppi_setpin(int fd, int pin, int value)
|
|
{
|
|
|
|
if (pin < 1 || pin > 17)
|
|
return -1;
|
|
|
|
pin--;
|
|
|
|
if (pins[pin].inverted)
|
|
value = !value;
|
|
|
|
if (value)
|
|
ppi_set(fd, pins[pin].reg, pins[pin].bit);
|
|
else
|
|
ppi_clr(fd, pins[pin].reg, pins[pin].bit);
|
|
|
|
#if SLOW_TOGGLE
|
|
usleep(1000);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int ppi_getpin(int fd, int pin)
|
|
{
|
|
int value;
|
|
|
|
if (pin < 1 || pin > 17)
|
|
return -1;
|
|
|
|
pin--;
|
|
|
|
value = ppi_get(fd, pins[pin].reg, pins[pin].bit);
|
|
|
|
if (value)
|
|
value = 1;
|
|
|
|
if (pins[pin].inverted)
|
|
value = !value;
|
|
|
|
return value;
|
|
}
|
|
|
|
|
|
int ppi_pulsepin(int fd, int pin)
|
|
{
|
|
|
|
if (pin < 1 || pin > 17)
|
|
return -1;
|
|
|
|
pin--;
|
|
|
|
ppi_toggle(fd, pins[pin].reg, pins[pin].bit);
|
|
|
|
#if SLOW_TOGGLE
|
|
usleep(1000);
|
|
#endif
|
|
|
|
ppi_toggle(fd, pins[pin].reg, pins[pin].bit);
|
|
|
|
#if SLOW_TOGGLE
|
|
usleep(1000);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int ppi_getpinmask(int pin)
|
|
{
|
|
if (pin < 1 || pin > 17)
|
|
return -1;
|
|
|
|
return pins[pin-1].bit;
|
|
}
|
|
|
|
|
|
int ppi_getpinreg(int pin)
|
|
{
|
|
if (pin < 1 || pin > 17)
|
|
return -1;
|
|
|
|
return pins[pin-1].reg;
|
|
}
|
|
|
|
|
|
/*
|
|
* infinite loop, sensing on the pin that we use to read data out of
|
|
* the device; this is a debugging aid, you can insert a call to this
|
|
* function in 'main()' and can use it to determine whether your sense
|
|
* pin is actually sensing.
|
|
*/
|
|
int ppi_sense(int fd)
|
|
{
|
|
unsigned int pr;
|
|
int count;
|
|
char buf[128];
|
|
int i;
|
|
|
|
count = 0;
|
|
|
|
fprintf(stderr,
|
|
"parallel port data:\n"
|
|
" 111111111\n"
|
|
"123456789012345678\n");
|
|
|
|
buf[17] = 0;
|
|
pr = 1;
|
|
do {
|
|
usleep(1); /* don't be too much of a cpu hog */
|
|
for (i=1; i<=17; i++) {
|
|
buf[i-1] = ppi_getpin(fd, i);
|
|
if (buf[i-1])
|
|
buf[i-1] = '|';
|
|
else
|
|
buf[i-1] = '.';
|
|
}
|
|
fprintf(stderr, "\r \r%s", buf);
|
|
|
|
} while(1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
* transmit and receive a byte of data to/from the AVR device
|
|
*/
|
|
unsigned char ppi_txrx(PROGRAMMER * pgm, unsigned char byte)
|
|
{
|
|
int i;
|
|
unsigned char r, b, rbyte;
|
|
|
|
rbyte = 0;
|
|
for (i=0; i<8; i++) {
|
|
b = (byte >> (7-i)) & 0x01;
|
|
|
|
/*
|
|
* read the result bit (it is either valid from a previous clock
|
|
* pulse or it is ignored in the current context)
|
|
*/
|
|
r = ppi_getpin(pgm->fd, pgm->pinno[PIN_AVR_MISO]);
|
|
|
|
/* set the data input line as desired */
|
|
ppi_setpin(pgm->fd, pgm->pinno[PIN_AVR_MOSI], b);
|
|
|
|
/*
|
|
* pulse the clock line, clocking in the MOSI data, and clocking out
|
|
* the next result bit
|
|
*/
|
|
ppi_pulsepin(pgm->fd, pgm->pinno[PIN_AVR_SCK]);
|
|
|
|
rbyte = rbyte | (r << (7-i));
|
|
}
|
|
|
|
return rbyte;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int ppi_rdy_led(PROGRAMMER * pgm, int value)
|
|
{
|
|
ppi_setpin(pgm->fd, pgm->pinno[PIN_LED_RDY], !value);
|
|
return 0;
|
|
}
|
|
|
|
int ppi_err_led(PROGRAMMER * pgm, int value)
|
|
{
|
|
ppi_setpin(pgm->fd, pgm->pinno[PIN_LED_ERR], !value);
|
|
return 0;
|
|
}
|
|
|
|
int ppi_pgm_led(PROGRAMMER * pgm, int value)
|
|
{
|
|
ppi_setpin(pgm->fd, pgm->pinno[PIN_LED_PGM], !value);
|
|
return 0;
|
|
}
|
|
|
|
int ppi_vfy_led(PROGRAMMER * pgm, int value)
|
|
{
|
|
ppi_setpin(pgm->fd, pgm->pinno[PIN_LED_VFY], !value);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* transmit an AVR device command and return the results; 'cmd' and
|
|
* 'res' must point to at least a 4 byte data buffer
|
|
*/
|
|
int ppi_cmd(PROGRAMMER * pgm, unsigned char cmd[4], unsigned char res[4])
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<4; i++) {
|
|
res[i] = ppi_txrx(pgm, cmd[i]);
|
|
}
|
|
|
|
#if 0
|
|
fprintf(stderr, "avr_cmd(): [ ");
|
|
for (i=0; i<4; i++)
|
|
fprintf(stderr, "%02x ", cmd[i]);
|
|
fprintf(stderr, "] [ ");
|
|
for (i=0; i<4; i++)
|
|
fprintf(stderr, "%02x ", res[i]);
|
|
fprintf(stderr, "]\n");
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* issue the 'chip erase' command to the AVR device
|
|
*/
|
|
int ppi_chip_erase(PROGRAMMER * pgm, AVRPART * p)
|
|
{
|
|
unsigned char cmd[4];
|
|
unsigned char res[4];
|
|
int cycles;
|
|
int rc;
|
|
|
|
if (p->op[AVR_OP_CHIP_ERASE] == NULL) {
|
|
fprintf(stderr, "chip erase instruction not defined for part \"%s\"\n",
|
|
p->desc);
|
|
return -1;
|
|
}
|
|
|
|
rc = avr_get_cycle_count(pgm, p, &cycles);
|
|
|
|
/*
|
|
* only print out the current cycle count if we aren't going to
|
|
* display it below
|
|
*/
|
|
if (!do_cycles && ((rc >= 0) && (cycles != 0xffffffff))) {
|
|
fprintf(stderr,
|
|
"%s: current erase-rewrite cycle count is %d%s\n",
|
|
progname, cycles,
|
|
do_cycles ? "" : " (if being tracked)");
|
|
}
|
|
|
|
pgm->pgm_led(pgm, ON);
|
|
|
|
memset(cmd, 0, sizeof(cmd));
|
|
|
|
avr_set_bits(p->op[AVR_OP_CHIP_ERASE], cmd);
|
|
pgm->cmd(pgm, cmd, res);
|
|
usleep(p->chip_erase_delay);
|
|
pgm->initialize(pgm, p);
|
|
|
|
pgm->pgm_led(pgm, OFF);
|
|
|
|
if (do_cycles && (cycles != -1)) {
|
|
if (cycles == 0x00ffff) {
|
|
cycles = 0;
|
|
}
|
|
cycles++;
|
|
fprintf(stderr, "%s: erase-rewrite cycle count is now %d\n",
|
|
progname, cycles);
|
|
avr_put_cycle_count(pgm, p, cycles);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* issue the 'program enable' command to the AVR device
|
|
*/
|
|
int ppi_program_enable(PROGRAMMER * pgm, AVRPART * p)
|
|
{
|
|
unsigned char cmd[4];
|
|
unsigned char res[4];
|
|
|
|
if (p->op[AVR_OP_PGM_ENABLE] == NULL) {
|
|
fprintf(stderr, "program enable instruction not defined for part \"%s\"\n",
|
|
p->desc);
|
|
return -1;
|
|
}
|
|
|
|
memset(cmd, 0, sizeof(cmd));
|
|
avr_set_bits(p->op[AVR_OP_PGM_ENABLE], cmd);
|
|
pgm->cmd(pgm, cmd, res);
|
|
|
|
if (res[2] != cmd[1])
|
|
return -2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* apply power to the AVR processor
|
|
*/
|
|
void ppi_powerup(PROGRAMMER * pgm)
|
|
{
|
|
ppi_set(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_VCC]); /* power up */
|
|
usleep(100000);
|
|
}
|
|
|
|
|
|
/*
|
|
* remove power from the AVR processor
|
|
*/
|
|
void ppi_powerdown(PROGRAMMER * pgm)
|
|
{
|
|
ppi_clr(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_VCC]); /* power down */
|
|
}
|
|
|
|
|
|
/*
|
|
* initialize the AVR device and prepare it to accept commands
|
|
*/
|
|
int ppi_initialize(PROGRAMMER * pgm, AVRPART * p)
|
|
{
|
|
int rc;
|
|
int tries;
|
|
|
|
pgm->powerup(pgm);
|
|
usleep(20000);
|
|
|
|
ppi_setpin(pgm->fd, pgm->pinno[PIN_AVR_SCK], 0);
|
|
ppi_setpin(pgm->fd, pgm->pinno[PIN_AVR_RESET], 0);
|
|
usleep(20000);
|
|
|
|
ppi_pulsepin(pgm->fd, pgm->pinno[PIN_AVR_RESET]);
|
|
|
|
usleep(20000); /* 20 ms XXX should be a per-chip parameter */
|
|
|
|
/*
|
|
* Enable programming mode. If we are programming an AT90S1200, we
|
|
* can only issue the command and hope it worked. If we are using
|
|
* one of the other chips, the chip will echo 0x53 when issuing the
|
|
* third byte of the command. In this case, try up to 32 times in
|
|
* order to possibly get back into sync with the chip if we are out
|
|
* of sync.
|
|
*/
|
|
if (strcmp(p->desc, "AT90S1200")==0) {
|
|
pgm->program_enable(pgm, p);
|
|
}
|
|
else {
|
|
tries = 0;
|
|
do {
|
|
rc = pgm->program_enable(pgm, p);
|
|
if ((rc == 0)||(rc == -1))
|
|
break;
|
|
ppi_pulsepin(pgm->fd, pgm->pinno[PIN_AVR_SCK]);
|
|
tries++;
|
|
} while (tries < 65);
|
|
|
|
/*
|
|
* can't sync with the device, maybe it's not attached?
|
|
*/
|
|
if (rc) {
|
|
fprintf(stderr, "%s: AVR device not responding\n", progname);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int ppi_save(PROGRAMMER * pgm)
|
|
{
|
|
int rc;
|
|
|
|
rc = ppi_getall(pgm->fd, PPIDATA);
|
|
if (rc < 0) {
|
|
fprintf(stderr, "%s: error reading status of ppi data port\n", progname);
|
|
return -1;
|
|
}
|
|
|
|
pgm->ppidata = rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ppi_restore(PROGRAMMER * pgm)
|
|
{
|
|
ppi_setall(pgm->fd, PPIDATA, pgm->ppidata);
|
|
}
|
|
|
|
void ppi_disable(PROGRAMMER * pgm)
|
|
{
|
|
ppi_set(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_BUFF]);
|
|
}
|
|
|
|
void ppi_enable(PROGRAMMER * pgm)
|
|
{
|
|
/*
|
|
* Prepare to start talking to the connected device - pull reset low
|
|
* first, delay a few milliseconds, then enable the buffer. This
|
|
* sequence allows the AVR to be reset before the buffer is enabled
|
|
* to avoid a short period of time where the AVR may be driving the
|
|
* programming lines at the same time the programmer tries to. Of
|
|
* course, if a buffer is being used, then the /RESET line from the
|
|
* programmer needs to be directly connected to the AVR /RESET line
|
|
* and not via the buffer chip.
|
|
*/
|
|
|
|
ppi_setpin(pgm->fd, pgm->pinno[PIN_AVR_RESET], 0);
|
|
usleep(1);
|
|
|
|
/*
|
|
* enable the 74367 buffer, if connected; this signal is active low
|
|
*/
|
|
ppi_clr(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_BUFF]);
|
|
}
|
|
|
|
|
|
void ppi_open(PROGRAMMER * pgm, char * port)
|
|
{
|
|
pgm->fd = open(port, O_RDWR);
|
|
if (pgm->fd < 0) {
|
|
fprintf(stderr, "%s: can't open device \"%s\": %s\n\n",
|
|
progname, port, strerror(errno));
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
|
|
void ppi_close(PROGRAMMER * pgm)
|
|
{
|
|
close(pgm->fd);
|
|
pgm->fd = -1;
|
|
}
|
|
|
|
|
|
void ppi_display(PROGRAMMER * pgm, char * p)
|
|
{
|
|
char vccpins[64];
|
|
char buffpins[64];
|
|
|
|
if (pgm->pinno[PPI_AVR_VCC]) {
|
|
snprintf(vccpins, sizeof(vccpins), " = pins %s",
|
|
vccpins_str(pgm->pinno[PPI_AVR_VCC]));
|
|
}
|
|
else {
|
|
strcpy(vccpins, " (not used)");
|
|
}
|
|
|
|
if (pgm->pinno[PPI_AVR_BUFF]) {
|
|
snprintf(buffpins, sizeof(buffpins), " = pins %s",
|
|
vccpins_str(pgm->pinno[PPI_AVR_BUFF]));
|
|
}
|
|
else {
|
|
strcpy(buffpins, " (not used)");
|
|
}
|
|
|
|
|
|
fprintf(stderr, "%sProgrammer Pin Configuration: %s (%s)\n", p,
|
|
(char *)ldata(lfirst(pgm->id)), pgm->desc);
|
|
|
|
fprintf(stderr,
|
|
"%s VCC = 0x%02x%s\n"
|
|
"%s BUFF = 0x%02x%s\n"
|
|
"%s RESET = %d\n"
|
|
"%s SCK = %d\n"
|
|
"%s MOSI = %d\n"
|
|
"%s MISO = %d\n"
|
|
"%s ERR LED = %d\n"
|
|
"%s RDY LED = %d\n"
|
|
"%s PGM LED = %d\n"
|
|
"%s VFY LED = %d\n",
|
|
|
|
p, pgm->pinno[PPI_AVR_VCC], vccpins,
|
|
p, pgm->pinno[PPI_AVR_BUFF], buffpins,
|
|
p, pgm->pinno[PIN_AVR_RESET],
|
|
p, pgm->pinno[PIN_AVR_SCK],
|
|
p, pgm->pinno[PIN_AVR_MOSI],
|
|
p, pgm->pinno[PIN_AVR_MISO],
|
|
p, pgm->pinno[PIN_LED_ERR],
|
|
p, pgm->pinno[PIN_LED_RDY],
|
|
p, pgm->pinno[PIN_LED_PGM],
|
|
p, pgm->pinno[PIN_LED_VFY]);
|
|
}
|
|
|
|
|
|
void ppi_initpgm(PROGRAMMER * pgm)
|
|
{
|
|
strcpy(pgm->type, "PPI");
|
|
|
|
pgm->rdy_led = ppi_rdy_led;
|
|
pgm->err_led = ppi_err_led;
|
|
pgm->pgm_led = ppi_pgm_led;
|
|
pgm->vfy_led = ppi_vfy_led;
|
|
pgm->initialize = ppi_initialize;
|
|
pgm->display = ppi_display;
|
|
pgm->save = ppi_save;
|
|
pgm->restore = ppi_restore;
|
|
pgm->enable = ppi_enable;
|
|
pgm->disable = ppi_disable;
|
|
pgm->powerup = ppi_powerup;
|
|
pgm->powerdown = ppi_powerdown;
|
|
pgm->program_enable = ppi_program_enable;
|
|
pgm->chip_erase = ppi_chip_erase;
|
|
pgm->cmd = ppi_cmd;
|
|
pgm->open = ppi_open;
|
|
pgm->close = ppi_close;
|
|
}
|
|
|
|
|