avrdude/avrdude/config_gram.y

1480 lines
33 KiB
Plaintext

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2000-2004 Brian S. Dean <bsd@bsdhome.com>
* Copyright (C) 2006 Joerg Wunsch <j@uriah.heep.sax.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* $Id$ */
%{
#include "ac_cfg.h"
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "avrdude.h"
#include "config.h"
#include "lists.h"
#include "par.h"
#include "serbb.h"
#include "pindefs.h"
#include "ppi.h"
#include "pgm.h"
#include "pgm_type.h"
#include "avr.h"
#if defined(WIN32NATIVE)
#define strtok_r( _s, _sep, _lasts ) \
( *(_lasts) = strtok( (_s), (_sep) ) )
#endif
int yylex(void);
int yyerror(char * errmsg);
static int assign_pin(int pinno, TOKEN * v, int invert);
static int which_opcode(TOKEN * opcode);
static int parse_cmdbits(OPCODE * op);
static int pin_name;
%}
%token K_READ
%token K_WRITE
%token K_READ_LO
%token K_READ_HI
%token K_WRITE_LO
%token K_WRITE_HI
%token K_LOADPAGE_LO
%token K_LOADPAGE_HI
%token K_LOAD_EXT_ADDR
%token K_WRITEPAGE
%token K_CHIP_ERASE
%token K_PGM_ENABLE
%token K_MEMORY
%token K_PAGE_SIZE
%token K_PAGED
%token K_BAUDRATE
%token K_BS2
%token K_BUFF
%token K_CHIP_ERASE_DELAY
%token K_CONNTYPE
%token K_DEDICATED
%token K_DEFAULT_PARALLEL
%token K_DEFAULT_PROGRAMMER
%token K_DEFAULT_SERIAL
%token K_DEFAULT_BITCLOCK
%token K_DESC
%token K_DEVICECODE
%token K_STK500_DEVCODE
%token K_AVR910_DEVCODE
%token K_EEPROM
%token K_ERRLED
%token K_FLASH
%token K_ID
%token K_IO
%token K_LOADPAGE
%token K_MAX_WRITE_DELAY
%token K_MIN_WRITE_DELAY
%token K_MISO
%token K_MOSI
%token K_NUM_PAGES
%token K_NVM_BASE
%token K_OFFSET
%token K_PAGEL
%token K_PARALLEL
%token K_PARENT
%token K_PART
%token K_PGMLED
%token K_PROGRAMMER
%token K_PSEUDO
%token K_PWROFF_AFTER_WRITE
%token K_RDYLED
%token K_READBACK_P1
%token K_READBACK_P2
%token K_READMEM
%token K_RESET
%token K_RETRY_PULSE
%token K_SERIAL
%token K_SCK
%token K_SIGNATURE
%token K_SIZE
%token K_USB
%token K_USBDEV
%token K_USBSN
%token K_USBPID
%token K_USBPRODUCT
%token K_USBVENDOR
%token K_USBVID
%token K_TYPE
%token K_VCC
%token K_VFYLED
%token K_NO
%token K_YES
/* stk500 v2 xml file parameters */
/* ISP */
%token K_TIMEOUT
%token K_STABDELAY
%token K_CMDEXEDELAY
%token K_HVSPCMDEXEDELAY
%token K_SYNCHLOOPS
%token K_BYTEDELAY
%token K_POLLVALUE
%token K_POLLINDEX
%token K_PREDELAY
%token K_POSTDELAY
%token K_POLLMETHOD
%token K_MODE
%token K_DELAY
%token K_BLOCKSIZE
%token K_READSIZE
/* HV mode */
%token K_HVENTERSTABDELAY
%token K_PROGMODEDELAY
%token K_LATCHCYCLES
%token K_TOGGLEVTG
%token K_POWEROFFDELAY
%token K_RESETDELAYMS
%token K_RESETDELAYUS
%token K_HVLEAVESTABDELAY
%token K_RESETDELAY
%token K_SYNCHCYCLES
%token K_HVCMDEXEDELAY
%token K_CHIPERASEPULSEWIDTH
%token K_CHIPERASEPOLLTIMEOUT
%token K_CHIPERASETIME
%token K_PROGRAMFUSEPULSEWIDTH
%token K_PROGRAMFUSEPOLLTIMEOUT
%token K_PROGRAMLOCKPULSEWIDTH
%token K_PROGRAMLOCKPOLLTIMEOUT
%token K_PP_CONTROLSTACK
%token K_HVSP_CONTROLSTACK
/* JTAG ICE mkII specific parameters */
%token K_ALLOWFULLPAGEBITSTREAM /*
* Internal parameter for the JTAG
* ICE; describes the internal JTAG
* streaming behaviour inside the MCU.
* 1 for all older chips, 0 for newer
* MCUs.
*/
%token K_ENABLEPAGEPROGRAMMING /* ? yes for mega256*, mega406 */
%token K_HAS_JTAG /* MCU has JTAG i/f. */
%token K_HAS_DW /* MCU has debugWire i/f. */
%token K_HAS_PDI /* MCU has PDI i/f rather than ISP (ATxmega). */
%token K_HAS_TPI /* MCU has TPI i/f rather than ISP (ATtiny4/5/9/10). */
%token K_IDR /* address of OCD register in IO space */
%token K_IS_AT90S1200 /* chip is an AT90S1200 (needs special treatment) */
%token K_IS_AVR32 /* chip is in the avr32 family */
%token K_RAMPZ /* address of RAMPZ reg. in IO space */
%token K_SPMCR /* address of SPMC[S]R in memory space */
%token K_EECR /* address of EECR in memory space */
%token K_FLASH_INSTR /* flash instructions */
%token K_EEPROM_INSTR /* EEPROM instructions */
%token TKN_COMMA
%token TKN_EQUAL
%token TKN_SEMI
%token TKN_TILDE
%token TKN_NUMBER
%token TKN_STRING
%start configuration
%%
configuration :
/* empty */ | config
;
config :
def |
config def
;
def :
prog_def TKN_SEMI |
part_def TKN_SEMI |
K_DEFAULT_PROGRAMMER TKN_EQUAL TKN_STRING TKN_SEMI {
strncpy(default_programmer, $3->value.string, MAX_STR_CONST);
default_programmer[MAX_STR_CONST-1] = 0;
free_token($3);
} |
K_DEFAULT_PARALLEL TKN_EQUAL TKN_STRING TKN_SEMI {
strncpy(default_parallel, $3->value.string, PATH_MAX);
default_parallel[PATH_MAX-1] = 0;
free_token($3);
} |
K_DEFAULT_SERIAL TKN_EQUAL TKN_STRING TKN_SEMI {
strncpy(default_serial, $3->value.string, PATH_MAX);
default_serial[PATH_MAX-1] = 0;
free_token($3);
} |
K_DEFAULT_BITCLOCK TKN_EQUAL TKN_NUMBER TKN_SEMI {
default_bitclock = $3->value.number;
free_token($3);
}
;
prog_def :
prog_decl prog_parms
{
PROGRAMMER * existing_prog;
char * id;
if (lsize(current_prog->id) == 0) {
fprintf(stderr,
"%s: error at %s:%d: required parameter id not specified\n",
progname, infile, lineno);
exit(1);
}
if (current_prog->initpgm == NULL) {
fprintf(stderr, "%s: error at %s:%d: programmer type not specified\n",
progname, infile, lineno);
exit(1);
}
id = ldata(lfirst(current_prog->id));
existing_prog = locate_programmer(programmers, id);
if (existing_prog) {
fprintf(stderr, "%s: warning at %s:%d: programmer %s overwrites "
"previous definition %s:%d.\n",
progname, infile, current_prog->lineno,
id, existing_prog->config_file, existing_prog->lineno);
lrmv_d(programmers, existing_prog);
pgm_free(existing_prog);
}
PUSH(programmers, current_prog);
current_prog = NULL;
}
;
prog_decl :
K_PROGRAMMER
{ current_prog = pgm_new();
strcpy(current_prog->config_file, infile);
current_prog->lineno = lineno;
}
|
K_PROGRAMMER K_PARENT TKN_STRING
{
struct programmer_t * pgm = locate_programmer(programmers, $3->value.string);
if (pgm == NULL) {
fprintf(stderr,
"%s: error at %s:%d: parent programmer %s not found\n",
progname, infile, lineno, $3->value.string);
exit(1);
}
current_prog = pgm_dup(pgm);
strcpy(current_prog->config_file, infile);
current_prog->lineno = lineno;
free_token($3);
}
;
part_def :
part_decl part_parms
{
LNODEID ln;
AVRMEM * m;
AVRPART * existing_part;
if (current_part->id[0] == 0) {
fprintf(stderr,
"%s: error at %s:%d: required parameter id not specified\n",
progname, infile, lineno);
exit(1);
}
/*
* perform some sanity checking, and compute the number of bits
* to shift a page for constructing the page address for
* page-addressed memories.
*/
for (ln=lfirst(current_part->mem); ln; ln=lnext(ln)) {
m = ldata(ln);
if (m->paged) {
if (m->page_size == 0) {
fprintf(stderr,
"%s: error at %s:%d: must specify page_size for paged "
"memory\n",
progname, infile, lineno);
exit(1);
}
if (m->num_pages == 0) {
fprintf(stderr,
"%s: error at %s:%d: must specify num_pages for paged "
"memory\n",
progname, infile, lineno);
exit(1);
}
if (m->size != m->page_size * m->num_pages) {
fprintf(stderr,
"%s: error at %s:%d: page size (%u) * num_pages (%u) = "
"%u does not match memory size (%u)\n",
progname, infile, lineno,
m->page_size,
m->num_pages,
m->page_size * m->num_pages,
m->size);
exit(1);
}
}
}
existing_part = locate_part(part_list, current_part->id);
if (existing_part) {
fprintf(stderr, "%s: warning at %s:%d: part %s overwrites "
"previous definition %s:%d.\n",
progname, infile, current_part->lineno, current_part->id,
existing_part->config_file, existing_part->lineno);
lrmv_d(part_list, existing_part);
avr_free_part(existing_part);
}
PUSH(part_list, current_part);
current_part = NULL;
}
;
part_decl :
K_PART
{
current_part = avr_new_part();
strcpy(current_part->config_file, infile);
current_part->lineno = lineno;
} |
K_PART K_PARENT TKN_STRING
{
AVRPART * parent_part = locate_part(part_list, $3->value.string);
if (parent_part == NULL) {
fprintf(stderr,
"%s: error at %s:%d: can't find parent part",
progname, infile, lineno);
exit(1);
}
current_part = avr_dup_part(parent_part);
strcpy(current_part->config_file, infile);
current_part->lineno = lineno;
free_token($3);
}
;
string_list :
TKN_STRING { ladd(string_list, $1); } |
string_list TKN_COMMA TKN_STRING { ladd(string_list, $3); }
;
num_list :
TKN_NUMBER { ladd(number_list, $1); } |
num_list TKN_COMMA TKN_NUMBER { ladd(number_list, $3); }
;
prog_parms :
prog_parm TKN_SEMI |
prog_parms prog_parm TKN_SEMI
;
prog_parm :
K_ID TKN_EQUAL string_list {
{
TOKEN * t;
while (lsize(string_list)) {
t = lrmv_n(string_list, 1);
ladd(current_prog->id, dup_string(t->value.string));
free_token(t);
}
}
} |
prog_parm_type
|
prog_parm_pins
|
prog_parm_usb
|
prog_parm_conntype
|
K_DESC TKN_EQUAL TKN_STRING {
strncpy(current_prog->desc, $3->value.string, PGM_DESCLEN);
current_prog->desc[PGM_DESCLEN-1] = 0;
free_token($3);
} |
K_BAUDRATE TKN_EQUAL TKN_NUMBER {
{
current_prog->baudrate = $3->value.number;
free_token($3);
}
}
;
prog_parm_type:
K_TYPE TKN_EQUAL prog_parm_type_id
;
prog_parm_type_id:
TKN_STRING {
const struct programmer_type_t * pgm_type = locate_programmer_type($1->value.string);
if (pgm_type == NULL) {
fprintf(stderr,
"%s: error at %s:%d: programmer type %s not found\n",
progname, infile, lineno, $1->value.string);
exit(1);
}
current_prog->initpgm = pgm_type->initpgm;
free_token($1);
}
| error
{
fprintf(stderr,
"%s: error at %s:%d: programmer type must be written as \"id_type\"\n",
progname, infile, lineno);
exit(1);
}
;
prog_parm_conntype:
K_CONNTYPE TKN_EQUAL prog_parm_conntype_id
;
prog_parm_conntype_id:
K_PARALLEL { current_prog->conntype = CONNTYPE_PARALLEL; } |
K_SERIAL { current_prog->conntype = CONNTYPE_SERIAL; } |
K_USB { current_prog->conntype = CONNTYPE_USB; }
;
prog_parm_usb:
K_USBDEV TKN_EQUAL TKN_STRING {
{
strncpy(current_prog->usbdev, $3->value.string, PGM_USBSTRINGLEN);
current_prog->usbdev[PGM_USBSTRINGLEN-1] = 0;
free_token($3);
}
} |
K_USBVID TKN_EQUAL TKN_NUMBER {
{
current_prog->usbvid = $3->value.number;
free_token($3);
}
} |
K_USBPID TKN_EQUAL TKN_NUMBER {
{
current_prog->usbpid = $3->value.number;
free_token($3);
}
} |
K_USBSN TKN_EQUAL TKN_STRING {
{
strncpy(current_prog->usbsn, $3->value.string, PGM_USBSTRINGLEN);
current_prog->usbsn[PGM_USBSTRINGLEN-1] = 0;
free_token($3);
}
} |
K_USBVENDOR TKN_EQUAL TKN_STRING {
{
strncpy(current_prog->usbvendor, $3->value.string, PGM_USBSTRINGLEN);
current_prog->usbvendor[PGM_USBSTRINGLEN-1] = 0;
free_token($3);
}
} |
K_USBPRODUCT TKN_EQUAL TKN_STRING {
{
strncpy(current_prog->usbproduct, $3->value.string, PGM_USBSTRINGLEN);
current_prog->usbproduct[PGM_USBSTRINGLEN-1] = 0;
free_token($3);
}
}
;
pin_number:
TKN_NUMBER { assign_pin(pin_name, $1, 0); }
|
TKN_TILDE TKN_NUMBER { assign_pin(pin_name, $2, 1); }
|
/* empty */ { current_prog->pinno[pin_name] = 0; }
;
pin_list:
num_list {
{
TOKEN * t;
int pin;
current_prog->pinno[pin_name] = 0;
while (lsize(number_list)) {
t = lrmv_n(number_list, 1);
pin = t->value.number;
current_prog->pinno[pin_name] |= (1 << pin);
free_token(t);
}
}
}
|
/* empty */ {
current_prog->pinno[pin_name] = 0;
}
;
prog_parm_pins:
K_VCC TKN_EQUAL {pin_name = PPI_AVR_VCC; } pin_list |
K_BUFF TKN_EQUAL {pin_name = PPI_AVR_BUFF; } pin_list |
K_RESET TKN_EQUAL {pin_name = PIN_AVR_RESET;} pin_number { free_token($1); } |
K_SCK TKN_EQUAL {pin_name = PIN_AVR_SCK; } pin_number { free_token($1); } |
K_MOSI TKN_EQUAL {pin_name = PIN_AVR_MOSI; } pin_number |
K_MISO TKN_EQUAL {pin_name = PIN_AVR_MISO; } pin_number |
K_ERRLED TKN_EQUAL {pin_name = PIN_LED_ERR; } pin_number |
K_RDYLED TKN_EQUAL {pin_name = PIN_LED_RDY; } pin_number |
K_PGMLED TKN_EQUAL {pin_name = PIN_LED_PGM; } pin_number |
K_VFYLED TKN_EQUAL {pin_name = PIN_LED_VFY; } pin_number
;
opcode :
K_READ |
K_WRITE |
K_READ_LO |
K_READ_HI |
K_WRITE_LO |
K_WRITE_HI |
K_LOADPAGE_LO |
K_LOADPAGE_HI |
K_LOAD_EXT_ADDR |
K_WRITEPAGE |
K_CHIP_ERASE |
K_PGM_ENABLE
;
part_parms :
part_parm TKN_SEMI |
part_parms part_parm TKN_SEMI
;
reset_disposition :
K_DEDICATED | K_IO
;
parallel_modes :
yesno | K_PSEUDO
;
retry_lines :
K_RESET | K_SCK
;
part_parm :
K_ID TKN_EQUAL TKN_STRING
{
strncpy(current_part->id, $3->value.string, AVR_IDLEN);
current_part->id[AVR_IDLEN-1] = 0;
free_token($3);
} |
K_DESC TKN_EQUAL TKN_STRING
{
strncpy(current_part->desc, $3->value.string, AVR_DESCLEN);
current_part->desc[AVR_DESCLEN-1] = 0;
free_token($3);
} |
K_DEVICECODE TKN_EQUAL TKN_NUMBER {
{
fprintf(stderr,
"%s: error at %s:%d: devicecode is deprecated, use "
"stk500_devcode instead\n",
progname, infile, lineno);
exit(1);
}
} |
K_STK500_DEVCODE TKN_EQUAL TKN_NUMBER {
{
current_part->stk500_devcode = $3->value.number;
free_token($3);
}
} |
K_AVR910_DEVCODE TKN_EQUAL TKN_NUMBER {
{
current_part->avr910_devcode = $3->value.number;
free_token($3);
}
} |
K_SIGNATURE TKN_EQUAL TKN_NUMBER TKN_NUMBER TKN_NUMBER {
{
current_part->signature[0] = $3->value.number;
current_part->signature[1] = $4->value.number;
current_part->signature[2] = $5->value.number;
free_token($3);
free_token($4);
free_token($5);
}
} |
K_PP_CONTROLSTACK TKN_EQUAL num_list {
{
TOKEN * t;
unsigned nbytes;
int ok;
current_part->ctl_stack_type = CTL_STACK_PP;
nbytes = 0;
ok = 1;
memset(current_part->controlstack, 0, CTL_STACK_SIZE);
while (lsize(number_list)) {
t = lrmv_n(number_list, 1);
if (nbytes < CTL_STACK_SIZE)
{
current_part->controlstack[nbytes] = t->value.number;
nbytes++;
}
else
{
ok = 0;
}
free_token(t);
}
if (!ok)
{
fprintf(stderr,
"%s: Warning: line %d of %s: "
"too many bytes in control stack\n",
progname, lineno, infile);
}
}
} |
K_HVSP_CONTROLSTACK TKN_EQUAL num_list {
{
TOKEN * t;
unsigned nbytes;
int ok;
current_part->ctl_stack_type = CTL_STACK_HVSP;
nbytes = 0;
ok = 1;
memset(current_part->controlstack, 0, CTL_STACK_SIZE);
while (lsize(number_list)) {
t = lrmv_n(number_list, 1);
if (nbytes < CTL_STACK_SIZE)
{
current_part->controlstack[nbytes] = t->value.number;
nbytes++;
}
else
{
ok = 0;
}
free_token(t);
}
if (!ok)
{
fprintf(stderr,
"%s: Warning: line %d of %s: "
"too many bytes in control stack\n",
progname, lineno, infile);
}
}
} |
K_FLASH_INSTR TKN_EQUAL num_list {
{
TOKEN * t;
unsigned nbytes;
int ok;
nbytes = 0;
ok = 1;
memset(current_part->flash_instr, 0, FLASH_INSTR_SIZE);
while (lsize(number_list)) {
t = lrmv_n(number_list, 1);
if (nbytes < FLASH_INSTR_SIZE)
{
current_part->flash_instr[nbytes] = t->value.number;
nbytes++;
}
else
{
ok = 0;
}
free_token(t);
}
if (!ok)
{
fprintf(stderr,
"%s: Warning: line %d of %s: "
"too many bytes in flash instructions\n",
progname, lineno, infile);
}
}
} |
K_EEPROM_INSTR TKN_EQUAL num_list {
{
TOKEN * t;
unsigned nbytes;
int ok;
nbytes = 0;
ok = 1;
memset(current_part->eeprom_instr, 0, EEPROM_INSTR_SIZE);
while (lsize(number_list)) {
t = lrmv_n(number_list, 1);
if (nbytes < EEPROM_INSTR_SIZE)
{
current_part->eeprom_instr[nbytes] = t->value.number;
nbytes++;
}
else
{
ok = 0;
}
free_token(t);
}
if (!ok)
{
fprintf(stderr,
"%s: Warning: line %d of %s: "
"too many bytes in EEPROM instructions\n",
progname, lineno, infile);
}
}
} |
K_CHIP_ERASE_DELAY TKN_EQUAL TKN_NUMBER
{
current_part->chip_erase_delay = $3->value.number;
free_token($3);
} |
K_PAGEL TKN_EQUAL TKN_NUMBER
{
current_part->pagel = $3->value.number;
free_token($3);
} |
K_BS2 TKN_EQUAL TKN_NUMBER
{
current_part->bs2 = $3->value.number;
free_token($3);
} |
K_RESET TKN_EQUAL reset_disposition
{
if ($3->primary == K_DEDICATED)
current_part->reset_disposition = RESET_DEDICATED;
else if ($3->primary == K_IO)
current_part->reset_disposition = RESET_IO;
free_tokens(2, $1, $3);
} |
K_TIMEOUT TKN_EQUAL TKN_NUMBER
{
current_part->timeout = $3->value.number;
free_token($3);
} |
K_STABDELAY TKN_EQUAL TKN_NUMBER
{
current_part->stabdelay = $3->value.number;
free_token($3);
} |
K_CMDEXEDELAY TKN_EQUAL TKN_NUMBER
{
current_part->cmdexedelay = $3->value.number;
free_token($3);
} |
K_HVSPCMDEXEDELAY TKN_EQUAL TKN_NUMBER
{
current_part->hvspcmdexedelay = $3->value.number;
free_token($3);
} |
K_SYNCHLOOPS TKN_EQUAL TKN_NUMBER
{
current_part->synchloops = $3->value.number;
free_token($3);
} |
K_BYTEDELAY TKN_EQUAL TKN_NUMBER
{
current_part->bytedelay = $3->value.number;
free_token($3);
} |
K_POLLVALUE TKN_EQUAL TKN_NUMBER
{
current_part->pollvalue = $3->value.number;
free_token($3);
} |
K_POLLINDEX TKN_EQUAL TKN_NUMBER
{
current_part->pollindex = $3->value.number;
free_token($3);
} |
K_PREDELAY TKN_EQUAL TKN_NUMBER
{
current_part->predelay = $3->value.number;
free_token($3);
} |
K_POSTDELAY TKN_EQUAL TKN_NUMBER
{
current_part->postdelay = $3->value.number;
free_token($3);
} |
K_POLLMETHOD TKN_EQUAL TKN_NUMBER
{
current_part->pollmethod = $3->value.number;
free_token($3);
} |
K_HVENTERSTABDELAY TKN_EQUAL TKN_NUMBER
{
current_part->hventerstabdelay = $3->value.number;
free_token($3);
} |
K_PROGMODEDELAY TKN_EQUAL TKN_NUMBER
{
current_part->progmodedelay = $3->value.number;
free_token($3);
} |
K_LATCHCYCLES TKN_EQUAL TKN_NUMBER
{
current_part->latchcycles = $3->value.number;
free_token($3);
} |
K_TOGGLEVTG TKN_EQUAL TKN_NUMBER
{
current_part->togglevtg = $3->value.number;
free_token($3);
} |
K_POWEROFFDELAY TKN_EQUAL TKN_NUMBER
{
current_part->poweroffdelay = $3->value.number;
free_token($3);
} |
K_RESETDELAYMS TKN_EQUAL TKN_NUMBER
{
current_part->resetdelayms = $3->value.number;
free_token($3);
} |
K_RESETDELAYUS TKN_EQUAL TKN_NUMBER
{
current_part->resetdelayus = $3->value.number;
free_token($3);
} |
K_HVLEAVESTABDELAY TKN_EQUAL TKN_NUMBER
{
current_part->hvleavestabdelay = $3->value.number;
free_token($3);
} |
K_RESETDELAY TKN_EQUAL TKN_NUMBER
{
current_part->resetdelay = $3->value.number;
free_token($3);
} |
K_CHIPERASEPULSEWIDTH TKN_EQUAL TKN_NUMBER
{
current_part->chiperasepulsewidth = $3->value.number;
free_token($3);
} |
K_CHIPERASEPOLLTIMEOUT TKN_EQUAL TKN_NUMBER
{
current_part->chiperasepolltimeout = $3->value.number;
free_token($3);
} |
K_CHIPERASETIME TKN_EQUAL TKN_NUMBER
{
current_part->chiperasetime = $3->value.number;
free_token($3);
} |
K_PROGRAMFUSEPULSEWIDTH TKN_EQUAL TKN_NUMBER
{
current_part->programfusepulsewidth = $3->value.number;
free_token($3);
} |
K_PROGRAMFUSEPOLLTIMEOUT TKN_EQUAL TKN_NUMBER
{
current_part->programfusepolltimeout = $3->value.number;
free_token($3);
} |
K_PROGRAMLOCKPULSEWIDTH TKN_EQUAL TKN_NUMBER
{
current_part->programlockpulsewidth = $3->value.number;
free_token($3);
} |
K_PROGRAMLOCKPOLLTIMEOUT TKN_EQUAL TKN_NUMBER
{
current_part->programlockpolltimeout = $3->value.number;
free_token($3);
} |
K_SYNCHCYCLES TKN_EQUAL TKN_NUMBER
{
current_part->synchcycles = $3->value.number;
free_token($3);
} |
K_HAS_JTAG TKN_EQUAL yesno
{
if ($3->primary == K_YES)
current_part->flags |= AVRPART_HAS_JTAG;
else if ($3->primary == K_NO)
current_part->flags &= ~AVRPART_HAS_JTAG;
free_token($3);
} |
K_HAS_DW TKN_EQUAL yesno
{
if ($3->primary == K_YES)
current_part->flags |= AVRPART_HAS_DW;
else if ($3->primary == K_NO)
current_part->flags &= ~AVRPART_HAS_DW;
free_token($3);
} |
K_HAS_PDI TKN_EQUAL yesno
{
if ($3->primary == K_YES)
current_part->flags |= AVRPART_HAS_PDI;
else if ($3->primary == K_NO)
current_part->flags &= ~AVRPART_HAS_PDI;
free_token($3);
} |
K_HAS_TPI TKN_EQUAL yesno
{
if ($3->primary == K_YES)
current_part->flags |= AVRPART_HAS_TPI;
else if ($3->primary == K_NO)
current_part->flags &= ~AVRPART_HAS_TPI;
free_token($3);
} |
K_IS_AT90S1200 TKN_EQUAL yesno
{
if ($3->primary == K_YES)
current_part->flags |= AVRPART_IS_AT90S1200;
else if ($3->primary == K_NO)
current_part->flags &= ~AVRPART_IS_AT90S1200;
free_token($3);
} |
K_IS_AVR32 TKN_EQUAL yesno
{
if ($3->primary == K_YES)
current_part->flags |= AVRPART_AVR32;
else if ($3->primary == K_NO)
current_part->flags &= ~AVRPART_AVR32;
free_token($3);
} |
K_ALLOWFULLPAGEBITSTREAM TKN_EQUAL yesno
{
if ($3->primary == K_YES)
current_part->flags |= AVRPART_ALLOWFULLPAGEBITSTREAM;
else if ($3->primary == K_NO)
current_part->flags &= ~AVRPART_ALLOWFULLPAGEBITSTREAM;
free_token($3);
} |
K_ENABLEPAGEPROGRAMMING TKN_EQUAL yesno
{
if ($3->primary == K_YES)
current_part->flags |= AVRPART_ENABLEPAGEPROGRAMMING;
else if ($3->primary == K_NO)
current_part->flags &= ~AVRPART_ENABLEPAGEPROGRAMMING;
free_token($3);
} |
K_IDR TKN_EQUAL TKN_NUMBER
{
current_part->idr = $3->value.number;
free_token($3);
} |
K_RAMPZ TKN_EQUAL TKN_NUMBER
{
current_part->rampz = $3->value.number;
free_token($3);
} |
K_SPMCR TKN_EQUAL TKN_NUMBER
{
current_part->spmcr = $3->value.number;
free_token($3);
} |
K_EECR TKN_EQUAL TKN_NUMBER
{
current_part->eecr = $3->value.number;
free_token($3);
} |
K_NVM_BASE TKN_EQUAL TKN_NUMBER
{
current_part->nvm_base = $3->value.number;
free_token($3);
} |
K_SERIAL TKN_EQUAL yesno
{
if ($3->primary == K_YES)
current_part->flags |= AVRPART_SERIALOK;
else if ($3->primary == K_NO)
current_part->flags &= ~AVRPART_SERIALOK;
free_token($3);
} |
K_PARALLEL TKN_EQUAL parallel_modes
{
if ($3->primary == K_YES) {
current_part->flags |= AVRPART_PARALLELOK;
current_part->flags &= ~AVRPART_PSEUDOPARALLEL;
}
else if ($3->primary == K_NO) {
current_part->flags &= ~AVRPART_PARALLELOK;
current_part->flags &= ~AVRPART_PSEUDOPARALLEL;
}
else if ($3->primary == K_PSEUDO) {
current_part->flags |= AVRPART_PARALLELOK;
current_part->flags |= AVRPART_PSEUDOPARALLEL;
}
free_token($3);
} |
K_RETRY_PULSE TKN_EQUAL retry_lines
{
switch ($3->primary) {
case K_RESET :
current_part->retry_pulse = PIN_AVR_RESET;
break;
case K_SCK :
current_part->retry_pulse = PIN_AVR_SCK;
break;
}
free_token($1);
} |
/*
K_EEPROM { current_mem = AVR_M_EEPROM; }
mem_specs |
K_FLASH { current_mem = AVR_M_FLASH; }
mem_specs |
*/
K_MEMORY TKN_STRING
{
current_mem = avr_new_memtype();
strncpy(current_mem->desc, $2->value.string, AVR_MEMDESCLEN);
current_mem->desc[AVR_MEMDESCLEN-1] = 0;
free_token($2);
}
mem_specs
{
AVRMEM * existing_mem;
existing_mem = avr_locate_mem(current_part, current_mem->desc);
if (existing_mem != NULL) {
lrmv_d(current_part->mem, existing_mem);
avr_free_mem(existing_mem);
}
ladd(current_part->mem, current_mem);
current_mem = NULL;
} |
opcode TKN_EQUAL string_list {
{
int opnum;
OPCODE * op;
opnum = which_opcode($1);
op = avr_new_opcode();
parse_cmdbits(op);
if (current_part->op[opnum] != NULL) {
/*fprintf(stderr,
"%s: warning at %s:%d: operation redefined\n",
progname, infile, lineno);*/
avr_free_opcode(current_part->op[opnum]);
}
current_part->op[opnum] = op;
free_token($1);
}
}
;
yesno :
K_YES | K_NO
;
mem_specs :
mem_spec TKN_SEMI |
mem_specs mem_spec TKN_SEMI
;
mem_spec :
K_PAGED TKN_EQUAL yesno
{
current_mem->paged = $3->primary == K_YES ? 1 : 0;
free_token($3);
} |
K_SIZE TKN_EQUAL TKN_NUMBER
{
current_mem->size = $3->value.number;
free_token($3);
} |
K_PAGE_SIZE TKN_EQUAL TKN_NUMBER
{
current_mem->page_size = $3->value.number;
free_token($3);
} |
K_NUM_PAGES TKN_EQUAL TKN_NUMBER
{
current_mem->num_pages = $3->value.number;
free_token($3);
} |
K_OFFSET TKN_EQUAL TKN_NUMBER
{
current_mem->offset = $3->value.number;
free_token($3);
} |
K_MIN_WRITE_DELAY TKN_EQUAL TKN_NUMBER
{
current_mem->min_write_delay = $3->value.number;
free_token($3);
} |
K_MAX_WRITE_DELAY TKN_EQUAL TKN_NUMBER
{
current_mem->max_write_delay = $3->value.number;
free_token($3);
} |
K_PWROFF_AFTER_WRITE TKN_EQUAL yesno
{
current_mem->pwroff_after_write = $3->primary == K_YES ? 1 : 0;
free_token($3);
} |
K_READBACK_P1 TKN_EQUAL TKN_NUMBER
{
current_mem->readback[0] = $3->value.number;
free_token($3);
} |
K_READBACK_P2 TKN_EQUAL TKN_NUMBER
{
current_mem->readback[1] = $3->value.number;
free_token($3);
} |
K_MODE TKN_EQUAL TKN_NUMBER
{
current_mem->mode = $3->value.number;
free_token($3);
} |
K_DELAY TKN_EQUAL TKN_NUMBER
{
current_mem->delay = $3->value.number;
free_token($3);
} |
K_BLOCKSIZE TKN_EQUAL TKN_NUMBER
{
current_mem->blocksize = $3->value.number;
free_token($3);
} |
K_READSIZE TKN_EQUAL TKN_NUMBER
{
current_mem->readsize = $3->value.number;
free_token($3);
} |
K_POLLINDEX TKN_EQUAL TKN_NUMBER
{
current_mem->pollindex = $3->value.number;
free_token($3);
} |
opcode TKN_EQUAL string_list {
{
int opnum;
OPCODE * op;
opnum = which_opcode($1);
op = avr_new_opcode();
parse_cmdbits(op);
if (current_mem->op[opnum] != NULL) {
/*fprintf(stderr,
"%s: warning at %s:%d: operation redefined\n",
progname, infile, lineno);*/
avr_free_opcode(current_mem->op[opnum]);
}
current_mem->op[opnum] = op;
free_token($1);
}
}
;
%%
#if 0
static char * vtypestr(int type)
{
switch (type) {
case V_NUM : return "NUMERIC";
case V_STR : return "STRING";
default:
return "<UNKNOWN>";
}
}
#endif
static int assign_pin(int pinno, TOKEN * v, int invert)
{
int value;
value = v->value.number;
free_token(v);
if ((value <= 0) || (value >= 18)) {
fprintf(stderr,
"%s: error at line %d of %s: pin must be in the "
"range 1-17\n",
progname, lineno, infile);
exit(1);
}
if (invert)
value |= PIN_INVERSE;
current_prog->pinno[pinno] = value;
return 0;
}
static int which_opcode(TOKEN * opcode)
{
switch (opcode->primary) {
case K_READ : return AVR_OP_READ; break;
case K_WRITE : return AVR_OP_WRITE; break;
case K_READ_LO : return AVR_OP_READ_LO; break;
case K_READ_HI : return AVR_OP_READ_HI; break;
case K_WRITE_LO : return AVR_OP_WRITE_LO; break;
case K_WRITE_HI : return AVR_OP_WRITE_HI; break;
case K_LOADPAGE_LO : return AVR_OP_LOADPAGE_LO; break;
case K_LOADPAGE_HI : return AVR_OP_LOADPAGE_HI; break;
case K_LOAD_EXT_ADDR : return AVR_OP_LOAD_EXT_ADDR; break;
case K_WRITEPAGE : return AVR_OP_WRITEPAGE; break;
case K_CHIP_ERASE : return AVR_OP_CHIP_ERASE; break;
case K_PGM_ENABLE : return AVR_OP_PGM_ENABLE; break;
default :
fprintf(stderr,
"%s: error at %s:%d: invalid opcode\n",
progname, infile, lineno);
exit(1);
break;
}
}
static int parse_cmdbits(OPCODE * op)
{
TOKEN * t;
int bitno;
char ch;
char * e;
char * q;
int len;
char * s, *brkt = NULL;
bitno = 32;
while (lsize(string_list)) {
t = lrmv_n(string_list, 1);
s = strtok_r(t->value.string, " ", &brkt);
while (s != NULL) {
bitno--;
if (bitno < 0) {
fprintf(stderr,
"%s: error at %s:%d: too many opcode bits for instruction\n",
progname, infile, lineno);
exit(1);
}
len = strlen(s);
if (len == 0) {
fprintf(stderr,
"%s: error at %s:%d: invalid bit specifier \"\"\n",
progname, infile, lineno);
exit(1);
}
ch = s[0];
if (len == 1) {
switch (ch) {
case '1':
op->bit[bitno].type = AVR_CMDBIT_VALUE;
op->bit[bitno].value = 1;
op->bit[bitno].bitno = bitno % 8;
break;
case '0':
op->bit[bitno].type = AVR_CMDBIT_VALUE;
op->bit[bitno].value = 0;
op->bit[bitno].bitno = bitno % 8;
break;
case 'x':
op->bit[bitno].type = AVR_CMDBIT_IGNORE;
op->bit[bitno].value = 0;
op->bit[bitno].bitno = bitno % 8;
break;
case 'a':
op->bit[bitno].type = AVR_CMDBIT_ADDRESS;
op->bit[bitno].value = 0;
op->bit[bitno].bitno = 8*(bitno/8) + bitno % 8;
break;
case 'i':
op->bit[bitno].type = AVR_CMDBIT_INPUT;
op->bit[bitno].value = 0;
op->bit[bitno].bitno = bitno % 8;
break;
case 'o':
op->bit[bitno].type = AVR_CMDBIT_OUTPUT;
op->bit[bitno].value = 0;
op->bit[bitno].bitno = bitno % 8;
break;
default :
fprintf(stderr,
"%s: error at %s:%d: invalid bit specifier '%c'\n",
progname, infile, lineno, ch);
exit(1);
break;
}
}
else {
if (ch == 'a') {
q = &s[1];
op->bit[bitno].bitno = strtol(q, &e, 0);
if ((e == q)||(*e != 0)) {
fprintf(stderr,
"%s: error at %s:%d: can't parse bit number from \"%s\"\n",
progname, infile, lineno, q);
exit(1);
}
op->bit[bitno].type = AVR_CMDBIT_ADDRESS;
op->bit[bitno].value = 0;
}
else {
fprintf(stderr,
"%s: error at %s:%d: invalid bit specifier \"%s\"\n",
progname, infile, lineno, s);
exit(1);
}
}
s = strtok_r(NULL, " ", &brkt);
}
free_token(t);
} /* while */
return 0;
}