avrdude/src/xbee.c

1679 lines
50 KiB
C

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2015-2020 David Sainty
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* $Id$ */
/*
* avrdude interface for AVR devices Over-The-Air programmable via an
* XBee Series 2 device.
*
* The XBee programmer is STK500v1 (optiboot) encapsulated in the XBee
* API protocol. The bootloader supporting this protocol is available at:
*
* https://github.com/davidsainty/xbeeboot
*/
#include "ac_cfg.h"
#include <sys/time.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "avrdude.h"
#include "libavrdude.h"
#include "stk500_private.h"
#include "stk500.h"
#include "xbee.h"
/*
* After eight seconds the AVR bootloader watchdog will kick in. But
* to allow for the possibility of eight seconds upstream and another
* eight seconds downstream, allow for 16 retries (of roughly one
* second each).
*/
#ifndef XBEE_MAX_RETRIES
#define XBEE_MAX_RETRIES 16
#endif
/*
* Maximum chunk size, which is the maximum encapsulated payload to be
* delivered to the remote CPU.
*
* There is an additional overhead of 3 bytes encapsulation, one
* "REQUEST" byte, one sequence number byte, and one
* "FIRMWARE_DELIVER" request type.
*
* The ZigBee maximum (unfragmented) payload is 84 bytes. Source
* routing decreases that by two bytes overhead, plus two bytes per
* hop. Maximum hop support is for 11 or 25 hops depending on
* firmware.
*
* Network layer encryption decreases the maximum payload by 18 bytes.
* APS end-to-end encryption decreases the maximum payload by 9 bytes.
* Both these layers are available in concert, as seen in the section
* "Network and APS layer encryption", decreasing our maximum payload
* by both 18 bytes and 9 bytes.
*
* Our maximum payload size should therefore ideally be 84 - 18 - 9 =
* 57 bytes, and therefore a chunk size of 54 bytes for zero hops.
*
* Source: XBee X2C manual: "Maximum RF payload size" section for most
* details; "Network layer encryption and decryption" section for the
* reference to 18 bytes of overhead; and "Enable APS encryption" for
* the reference to 9 bytes of overhead.
*/
#ifndef XBEEBOOT_MAX_CHUNK
#define XBEEBOOT_MAX_CHUNK 54
#endif
/*
* Maximum source route intermediate hops. This is described in the
* documentation variously as 40 hops (routing table); OR 25 hops
* (firmware 4x58 or later); OR 11 hops (firmware earlier than 4x58).
*
* What isn't described is how to know if a given source route length
* is actually supported by the mesh for our target device.
*/
#ifndef XBEE_MAX_INTERMEDIATE_HOPS
#define XBEE_MAX_INTERMEDIATE_HOPS 40
#endif
/* Protocol */
#define XBEEBOOT_PACKET_TYPE_ACK 0
#define XBEEBOOT_PACKET_TYPE_REQUEST 1
/*
* Read signature bytes - Direct copy of the Arduino behaviour to
* satisfy Optiboot.
*/
static int xbee_read_sig_bytes(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m) {
unsigned char buf[32];
/* Signature byte reads are always 3 bytes. */
if (m->size < 3) {
pmsg_error("memsize too small for sig byte read\n");
return -1;
}
buf[0] = Cmnd_STK_READ_SIGN;
buf[1] = Sync_CRC_EOP;
serial_send(&pgm->fd, buf, 2);
if (serial_recv(&pgm->fd, buf, 5) < 0)
return -1;
if (buf[0] == Resp_STK_NOSYNC) {
pmsg_error("programmer is out of sync\n");
return -1;
} else if (buf[0] != Resp_STK_INSYNC) {
msg_error("\n");
pmsg_error("protocol expects sync byte 0x%02x but got 0x%02x\n", Resp_STK_INSYNC, buf[0]);
return -2;
}
if (buf[4] != Resp_STK_OK) {
msg_error("\n");
pmsg_error("protocol expects OK byte 0x%02x but got 0x%02x\n", Resp_STK_OK, buf[4]);
return -3;
}
m->buf[0] = buf[1];
m->buf[1] = buf[2];
m->buf[2] = buf[3];
return 3;
}
struct XBeeSequenceStatistics {
struct timeval sendTime;
};
struct XBeeStaticticsSummary {
struct timeval minimum;
struct timeval maximum;
struct timeval sum;
unsigned long samples;
};
#define XBEE_STATS_GROUPS 4
#define XBEE_STATS_FRAME_LOCAL 0
#define XBEE_STATS_FRAME_REMOTE 1
#define XBEE_STATS_TRANSMIT 2
#define XBEE_STATS_RECEIVE 3
static const char* groupNames[] =
{
"FRAME_LOCAL",
"FRAME_REMOTE",
"TRANSMIT",
"RECEIVE"
};
struct XBeeBootSession {
struct serial_device *serialDevice;
union filedescriptor serialDescriptor;
unsigned char xbee_address[10];
int directMode;
unsigned char outSequence;
unsigned char inSequence;
/*
* XBee API frame sequence number.
*/
unsigned char txSequence;
/*
* Set to non-zero if the transport is broken to the point it is
* considered unusable.
*/
int transportUnusable;
int xbeeResetPin;
size_t inInIndex;
size_t inOutIndex;
unsigned char inBuffer[256];
int sourceRouteHops; /* -1 if unset */
int sourceRouteChanged;
/*
* The source route is an array of intermediate 16 bit addresses,
* starting with the address nearest to the target address, and
* finishing with the address closest to our local device.
*/
unsigned char sourceRoute[2 * XBEE_MAX_INTERMEDIATE_HOPS];
struct XBeeSequenceStatistics sequenceStatistics[256 * XBEE_STATS_GROUPS];
struct XBeeStaticticsSummary groupSummary[XBEE_STATS_GROUPS];
};
static void xbeeStatsReset(struct XBeeStaticticsSummary *summary)
{
summary->minimum.tv_sec = 0;
summary->minimum.tv_usec = 0;
summary->maximum.tv_sec = 0;
summary->maximum.tv_usec = 0;
summary->sum.tv_sec = 0;
summary->sum.tv_usec = 0;
summary->samples = 0;
}
static void xbeeStatsAdd(struct XBeeStaticticsSummary *summary,
struct timeval const *sample)
{
summary->sum.tv_usec += sample->tv_usec;
if (summary->sum.tv_usec > 1000000) {
summary->sum.tv_usec -= 1000000;
summary->sum.tv_sec++;
}
summary->sum.tv_sec += sample->tv_sec;
if (summary->samples == 0 ||
summary->minimum.tv_sec > sample->tv_sec ||
(summary->minimum.tv_sec == sample->tv_sec &&
summary->minimum.tv_usec > sample->tv_usec)) {
summary->minimum = *sample;
}
if (summary->maximum.tv_sec < sample->tv_sec ||
(summary->maximum.tv_sec == sample->tv_sec &&
summary->maximum.tv_usec < sample->tv_usec)) {
summary->maximum = *sample;
}
summary->samples++;
}
static void xbeeStatsSummarise(struct XBeeStaticticsSummary const *summary)
{
pmsg_notice(" Minimum response time: %lu.%06lu\n", summary->minimum.tv_sec, summary->minimum.tv_usec);
pmsg_notice(" Maximum response time: %lu.%06lu\n", summary->maximum.tv_sec, summary->maximum.tv_usec);
struct timeval average;
const unsigned long samples = summary->samples;
average.tv_sec = summary->sum.tv_sec / samples;
unsigned long long usecs = summary->sum.tv_usec;
usecs += (summary->sum.tv_sec % samples) * 1000000;
usecs = usecs / samples;
average.tv_sec += usecs / 1000000;
average.tv_usec = usecs % 1000000;
pmsg_notice(" Average response time: %lu.%06lu\n", average.tv_sec, average.tv_usec);
}
static void XBeeBootSessionInit(struct XBeeBootSession *xbs) {
xbs->serialDevice = &serial_serdev;
xbs->directMode = 1;
xbs->xbeeResetPin = XBEE_DEFAULT_RESET_PIN;
xbs->outSequence = 0;
xbs->inSequence = 0;
xbs->txSequence = 0;
xbs->transportUnusable = 0;
xbs->inInIndex = 0;
xbs->inOutIndex = 0;
xbs->sourceRouteHops = -1;
xbs->sourceRouteChanged = 0;
int group;
for (group = 0; group < 3; group++) {
int index;
for (index = 0; index < 256; index++)
xbs->sequenceStatistics[group * 256 + index].sendTime.tv_sec = (time_t)0;
xbeeStatsReset(&xbs->groupSummary[group]);
}
}
#define xbeebootsession(fdp) (struct XBeeBootSession*)((fdp)->pfd)
static void xbeedev_setresetpin(const union filedescriptor *fdp, int xbeeResetPin)
{
struct XBeeBootSession *xbs = xbeebootsession(fdp);
xbs->xbeeResetPin = xbeeResetPin;
}
enum xbee_stat_is_retry_enum {XBEE_STATS_NOT_RETRY, XBEE_STATS_IS_RETRY};
typedef enum xbee_stat_is_retry_enum xbee_stat_is_retry;
static void xbeedev_stats_send(struct XBeeBootSession *xbs,
char const *detail,
int detailSequence,
unsigned int group, unsigned char sequence,
xbee_stat_is_retry retry,
struct timeval const *sendTime)
{
struct XBeeSequenceStatistics *stats =
&xbs->sequenceStatistics[group * 256 + sequence];
if (retry == XBEE_STATS_NOT_RETRY)
stats->sendTime = *sendTime;
if (detailSequence >= 0) {
pmsg_notice2("stats: send Group %s Sequence %u : "
"Send %lu.%06lu %s Sequence %d\n",
groupNames[group],
(unsigned int) sequence,
(unsigned long) sendTime->tv_sec,
(unsigned long) sendTime->tv_usec,
detail, detailSequence);
} else {
pmsg_notice2("stats: send Group %s Sequence %u : "
"Send %lu.%06lu %s\n",
groupNames[group],
(unsigned int) sequence,
(unsigned long) sendTime->tv_sec,
(unsigned long) sendTime->tv_usec,
detail);
}
}
static void xbeedev_stats_receive(struct XBeeBootSession *xbs,
char const *detail,
unsigned int group, unsigned char sequence,
struct timeval const *receiveTime)
{
struct XBeeSequenceStatistics *stats =
&xbs->sequenceStatistics[group * 256 + sequence];
struct timeval delay;
time_t secs;
long usecs;
secs = receiveTime->tv_sec - stats->sendTime.tv_sec;
usecs = receiveTime->tv_usec - stats->sendTime.tv_usec;
if (usecs < 0) {
usecs += 1000000;
secs--;
}
delay.tv_sec = secs;
delay.tv_usec = usecs;
pmsg_notice2("stats: receive Group %s Sequence %u : "
"Send %lu.%06lu Receive %lu.%06lu Delay %lu.%06lu %s\n",
groupNames[group],
(unsigned int) sequence,
(unsigned long) stats->sendTime.tv_sec,
(unsigned long) stats->sendTime.tv_usec,
(unsigned long) receiveTime->tv_sec,
(unsigned long) receiveTime->tv_usec,
(unsigned long) secs,
(unsigned long) usecs,
detail);
xbeeStatsAdd(&xbs->groupSummary[group], &delay);
}
static int sendAPIRequest(struct XBeeBootSession *xbs,
unsigned char apiType,
int txSequence,
int apiOption,
int prePayload1,
int prePayload2,
int packetType,
int sequence,
int appType,
char const *detail,
int detailSequence,
unsigned int frameGroup,
xbee_stat_is_retry retry,
unsigned int dataLength,
const unsigned char *data)
{
unsigned char frame[256];
unsigned char *fp = &frame[5];
unsigned char *dataStart = fp;
unsigned char checksum = 0xff;
unsigned char length = 0;
struct timeval time;
gettimeofday(&time, NULL);
pmsg_notice2("sendAPIRequest(): %lu.%06lu %d, %d, %d, %d %s\n",
(unsigned long) time.tv_sec,
(unsigned long) time.tv_usec,
(int) packetType, (int)sequence, appType,
data == NULL ? -1 : (int)*data, detail);
#define fpput(x) \
do { \
const unsigned char v = (x); \
if (v == 0x7d || v == 0x7e || v == 0x11 || v == 0x13) { \
*fp++ = 0x7d; \
*fp++ = v ^ 0x20; \
} else { \
*fp++ = v; \
} \
checksum -= v; \
length++; \
} while (0)
fpput(apiType); /* ZigBee Receive Packet or ZigBee Transmit Request */
if (apiOption >= 0)
fpput(apiOption); /* Receive options (RX) */
if (txSequence >= 0) {
fpput(txSequence); /* Delivery sequence (TX/AT) */
/*
* Record the frame send time. Note that frame sequences are
* never retries.
*/
xbeedev_stats_send(xbs, detail, detailSequence,
frameGroup, txSequence, 0, &time);
}
if (apiType != 0x08) {
/* Automatically inhibit addressing for local AT command requests. */
size_t index;
for (index = 0; index < 10; index++) {
const unsigned char val = xbs->xbee_address[index];
fpput(val);
}
/*
* If this is an API call with remote address, but is not a Create
* Source Route request, consider prefixing it with source routing
* instructions.
*/
if (apiType != 0x21 && xbs->sourceRouteChanged) {
pmsg_notice2("sendAPIRequest(): issuing Create Source Route request with %d hops\n", xbs->sourceRouteHops);
int rc = sendAPIRequest(xbs, 0x21, /* Create Source Route */
0, -1, 0, xbs->sourceRouteHops,
-1, -1, -1,
"Create Source Route for FRAME_REMOTE",
txSequence,
XBEE_STATS_FRAME_LOCAL, /* Local, no response */
0, /* Not a retry */
xbs->sourceRouteHops * 2,
xbs->sourceRoute);
if (rc != 0)
return rc;
xbs->sourceRouteChanged = 0;
}
}
if (prePayload1 >= 0)
fpput(prePayload1); /* Transmit broadcast radius */
if (prePayload2 >= 0)
fpput(prePayload2); /* Transmit options */
if (packetType >= 0)
fpput(packetType); /* XBEEBOOT_PACKET_TYPE_{ACK,REQUEST} */
if (sequence >= 0) {
fpput(sequence);
/* Record the send time */
if (packetType == XBEEBOOT_PACKET_TYPE_REQUEST)
xbeedev_stats_send(xbs, detail, sequence, XBEE_STATS_TRANSMIT,
sequence, retry, &time);
}
if (appType >= 0)
fpput(appType); /* FIRMWARE_DELIVER */
{
size_t index;
for (index = 0; index < dataLength; index++)
fpput(data[index]);
}
/* Length BEFORE checksum byte */
const unsigned char unescapedLength = length;
fpput(checksum);
/* Length AFTER checksum byte */
const unsigned int finalLength = fp - dataStart;
frame[0] = 0x7e;
fp = &frame[1];
fpput(0);
fpput(unescapedLength);
const unsigned int prefixLength = fp - frame;
unsigned char *frameStart = dataStart - prefixLength;
memmove(frameStart, frame, prefixLength);
return xbs->serialDevice->send(&xbs->serialDescriptor,
frameStart, finalLength + prefixLength);
}
static int sendPacket(struct XBeeBootSession *xbs,
const char *detail,
unsigned char packetType,
unsigned char sequence,
xbee_stat_is_retry retry,
int appType,
unsigned int dataLength,
const unsigned char *data)
{
unsigned char apiType;
int prePayload1;
int prePayload2;
if (xbs->directMode) {
/*
* In direct mode we are pretending to be an XBee device
* forwarding on data received from the transmitting XBee. We
* therefore format the data as a remote XBee would, encapsulated
* in a 0x90 packet.
*/
apiType = 0x90; /* ZigBee Receive Packet */
prePayload1 = -1;
prePayload2 = -1;
} else {
/*
* In normal mode we are requesting a payload delivery,
* encapsulated in a 0x10 packet.
*/
apiType = 0x10; /* ZigBee Transmit Request */
prePayload1 = 0;
prePayload2 = 0;
}
while ((++xbs->txSequence & 0xff) == 0);
return sendAPIRequest(xbs, apiType, xbs->txSequence, -1,
prePayload1, prePayload2, packetType,
sequence, appType,
detail, sequence,
XBEE_STATS_FRAME_REMOTE, retry,
dataLength, data);
}
#define XBEE_LENGTH_LEN 2
#define XBEE_CHECKSUM_LEN 1
#define XBEE_APITYPE_LEN 1
#define XBEE_APISEQUENCE_LEN 1
#define XBEE_ADDRESS_64BIT_LEN 8
#define XBEE_ADDRESS_16BIT_LEN 2
#define XBEE_RADIUS_LEN 1
#define XBEE_TXOPTIONS_LEN 1
#define XBEE_RXOPTIONS_LEN 1
static void xbeedev_record16Bit(struct XBeeBootSession *xbs,
const unsigned char *rx16Bit)
{
/*
* We don't start out knowing what the 16-bit device address is, but
* we should receive it on the return packets, and re-use it from
* that point on.
*/
unsigned char * const tx16Bit =
&xbs->xbee_address[XBEE_ADDRESS_64BIT_LEN];
if (memcmp(rx16Bit, tx16Bit, XBEE_ADDRESS_16BIT_LEN) != 0) {
pmsg_notice2("xbeedev_record16Bit(): new 16-bit address: %02x%02x\n",
(unsigned int)rx16Bit[0],
(unsigned int)rx16Bit[1]);
memcpy(tx16Bit, rx16Bit, XBEE_ADDRESS_16BIT_LEN);
}
}
/*
* Return 0 on success.
* Return -1 on generic error (normally serial timeout).
* Return -512 + XBee AT Response code
*/
#define XBEE_AT_RETURN_CODE(x) (((x) >= -512 && (x) <= -256) ? (x) + 512 : -1)
static int xbeedev_poll(struct XBeeBootSession *xbs,
unsigned char **buf, size_t *buflen,
int waitForAck,
int waitForSequence)
{
for (;;) {
unsigned char byte;
unsigned char frame[256];
unsigned int frameSize;
before_frame:
do {
const int rc = xbs->serialDevice->recv(&xbs->serialDescriptor, &byte, 1);
if (rc < 0)
return rc;
} while (byte != 0x7e);
start_of_frame:
{
size_t index = 0;
int escaped = 0;
frameSize = XBEE_LENGTH_LEN;
do {
const int rc = xbs->serialDevice->recv(&xbs->serialDescriptor,
&byte, 1);
if (rc < 0)
return rc;
if (byte == 0x7e)
/*
* No matter when we receive a frame start byte, we should
* abort parsing and start a fresh frame.
*/
goto start_of_frame;
if (escaped) {
byte ^= 0x20;
escaped = 0;
} else if (byte == 0x7d) {
escaped = 1;
continue;
}
if (index >= sizeof(frame))
goto before_frame;
frame[index++] = byte;
if (index == XBEE_LENGTH_LEN) {
/* Length plus the two length bytes, plus the checksum byte */
frameSize = (frame[0] << 8 | frame[1]) +
XBEE_LENGTH_LEN + XBEE_CHECKSUM_LEN;
if (frameSize >= sizeof(frame))
/* Too long - immediately give up on this frame */
goto before_frame;
}
} while (index < frameSize);
/* End of frame */
unsigned char checksum = 1;
size_t cIndex;
for (cIndex = 2; cIndex < index; cIndex++) {
checksum += frame[cIndex];
}
if (checksum) {
/* Checksum didn't match */
pmsg_notice2("xbeedev_poll(): bad checksum %d\n", (int) checksum);
continue;
}
}
const unsigned char frameType = frame[2];
struct timeval receiveTime;
gettimeofday(&receiveTime, NULL);
pmsg_notice2("xbeedev_poll(): %lu.%06lu Received frame type %x\n",
(unsigned long) receiveTime.tv_sec,
(unsigned long) receiveTime.tv_usec,
(unsigned int) frameType);
if (frameType == 0x97 && frameSize > 16) {
/* Remote command response */
unsigned char txSequence = frame[3];
unsigned char resultCode = frame[16];
xbeedev_stats_receive(xbs, "Remote AT command response",
XBEE_STATS_FRAME_REMOTE, txSequence, &receiveTime);
pmsg_notice("xbeedev_poll(): remote command %d result code %d\n",
(int) txSequence, (int) resultCode);
if (waitForSequence >= 0 && waitForSequence == frame[3])
/* Received result for our sequence numbered request */
return -512 + resultCode;
} else if (frameType == 0x88 && frameSize > 6) {
/* Local command response */
unsigned char txSequence = frame[3];
xbeedev_stats_receive(xbs, "Local AT command response",
XBEE_STATS_FRAME_LOCAL, txSequence, &receiveTime);
pmsg_notice("xbeedev_poll(): local command %c%c result code %d\n",
frame[4], frame[5], (int)frame[6]);
if (waitForSequence >= 0 && waitForSequence == txSequence)
/* Received result for our sequence numbered request */
return 0;
} else if (frameType == 0x8b && frameSize > 7) {
/* Transmit status */
unsigned char txSequence = frame[3];
xbeedev_stats_receive(xbs, "Transmit status", XBEE_STATS_FRAME_REMOTE,
txSequence, &receiveTime);
pmsg_notice2("xbeedev_poll(): transmit status %d result code %d\n",
(int) frame[3], (int) frame[7]);
} else if (frameType == 0xa1 &&
frameSize >= XBEE_LENGTH_LEN + XBEE_APITYPE_LEN +
XBEE_ADDRESS_64BIT_LEN +
XBEE_ADDRESS_16BIT_LEN + 2 + XBEE_CHECKSUM_LEN) {
/* Route Record Indicator */
if (memcmp(&frame[XBEE_LENGTH_LEN + XBEE_APITYPE_LEN],
xbs->xbee_address, XBEE_ADDRESS_64BIT_LEN) != 0) {
/* Not from our target device */
pmsg_notice2("xbeedev_poll(): route Record Indicator from other XBee\n");
continue;
}
/*
* We don't start out knowing what the 16-bit device address is,
* but we should receive it on the return packets, and re-use it
* from that point on.
*/
{
const unsigned char *rx16Bit =
&frame[XBEE_LENGTH_LEN + XBEE_APITYPE_LEN +
XBEE_ADDRESS_64BIT_LEN];
xbeedev_record16Bit(xbs, rx16Bit);
}
const unsigned int header = XBEE_LENGTH_LEN + XBEE_APITYPE_LEN +
XBEE_ADDRESS_64BIT_LEN +
XBEE_ADDRESS_16BIT_LEN;
const unsigned char receiveOptions = frame[header];
const unsigned char hops = frame[header + 1];
pmsg_notice2("xbeedev_poll(): "
"Route Record Indicator from target XBee: "
"hops=%d options=%d\n", (int)hops, (int)receiveOptions);
if (frameSize < header + 2 + hops * 2 + XBEE_CHECKSUM_LEN)
/* Bounds check: Frame is too small */
continue;
const unsigned int tableOffset = header + 2;
unsigned char index;
for (index = 0; index < hops; index++) {
pmsg_notice2("xbeedev_poll(): "
"Route Intermediate Hop %d : %02x%02x\n", (int)index,
(int)frame[tableOffset + index * 2],
(int)frame[tableOffset + index * 2 + 1]);
}
if (hops <= XBEE_MAX_INTERMEDIATE_HOPS) {
if (xbs->sourceRouteHops != (int)hops ||
memcmp(&frame[tableOffset], xbs->sourceRoute, hops * 2) != 0) {
memcpy(xbs->sourceRoute, &frame[tableOffset], hops * 2);
xbs->sourceRouteHops = hops;
xbs->sourceRouteChanged = 1;
pmsg_notice2("xbeedev_poll(): route has changed\n");
}
}
} else if (frameType == 0x10 || frameType == 0x90) {
unsigned char *dataStart;
unsigned int dataLength;
if (frameType == 0x10) {
/* Direct mode frame */
const unsigned int header = XBEE_LENGTH_LEN +
XBEE_APITYPE_LEN + XBEE_APISEQUENCE_LEN +
XBEE_ADDRESS_64BIT_LEN + XBEE_ADDRESS_16BIT_LEN +
XBEE_RADIUS_LEN + XBEE_TXOPTIONS_LEN;
if (frameSize <= header + XBEE_CHECKSUM_LEN)
/* Bounds check: Frame is too small */
continue;
dataLength = frameSize - header - XBEE_CHECKSUM_LEN;
dataStart = &frame[header];
} else {
/* Remote reply frame */
const unsigned int header = XBEE_LENGTH_LEN +
XBEE_APITYPE_LEN + XBEE_ADDRESS_64BIT_LEN + XBEE_ADDRESS_16BIT_LEN +
XBEE_RXOPTIONS_LEN;
if (frameSize <= header + XBEE_CHECKSUM_LEN)
/* Bounds check: Frame is too small */
continue;
dataLength = frameSize - header - XBEE_CHECKSUM_LEN;
dataStart = &frame[header];
if (memcmp(&frame[XBEE_LENGTH_LEN + XBEE_APITYPE_LEN],
xbs->xbee_address, XBEE_ADDRESS_64BIT_LEN) != 0) {
/*
* This packet is not from our target device. Unlikely
* to ever happen, but if it does we have to ignore
* it.
*/
continue;
}
/*
* We don't start out knowing what the 16-bit device address
* is, but we should receive it on the return packets, and
* re-use it from that point on.
*/
{
const unsigned char *rx16Bit =
&frame[XBEE_LENGTH_LEN + XBEE_APITYPE_LEN +
XBEE_ADDRESS_64BIT_LEN];
xbeedev_record16Bit(xbs, rx16Bit);
}
}
if (dataLength >= 2) {
const unsigned char protocolType = dataStart[0];
const unsigned char sequence = dataStart[1];
pmsg_notice2("xbeedev_poll(): "
"%lu.%06lu Packet %d #%d\n", (unsigned long)receiveTime.tv_sec,
(unsigned long)receiveTime.tv_usec,
(int)protocolType, (int)sequence);
if (protocolType == XBEEBOOT_PACKET_TYPE_ACK) {
/* ACK */
xbeedev_stats_receive(xbs, "XBeeBoot ACK",
XBEE_STATS_TRANSMIT, sequence,
&receiveTime);
/*
* We can't update outSequence here, we already do that
* somewhere else.
*/
if (waitForAck >= 0 && waitForAck == sequence)
return 0;
} else if (protocolType == XBEEBOOT_PACKET_TYPE_REQUEST &&
dataLength >= 4 && dataStart[2] == 24) {
/* REQUEST FRAME_REPLY */
xbeedev_stats_receive(xbs, "XBeeBoot Receive", XBEE_STATS_RECEIVE,
sequence, &receiveTime);
unsigned char nextSequence = xbs->inSequence;
while ((++nextSequence & 0xff) == 0);
if (sequence == nextSequence) {
xbs->inSequence = nextSequence;
const size_t textLength = dataLength - 3;
size_t index;
for (index = 0; index < textLength; index++) {
const unsigned char data = dataStart[3 + index];
if (buflen != NULL && *buflen > 0) {
/* If we are receiving right now, and have a buffer ... */
*(*buf)++ = data;
(*buflen)--;
} else {
xbs->inBuffer[xbs->inInIndex++] = data;
if (xbs->inInIndex == sizeof(xbs->inBuffer))
xbs->inInIndex = 0;
if (xbs->inInIndex == xbs->inOutIndex) {
/* Should be impossible */
pmsg_error("buffer overrun\n");
xbs->transportUnusable = 1;
return -1;
}
}
}
/*msg_error("ACK %x\n", (unsigned int)sequence);*/
sendPacket(xbs, "Transmit Request ACK for RECEIVE",
XBEEBOOT_PACKET_TYPE_ACK, sequence,
XBEE_STATS_NOT_RETRY,
-1, 0, NULL);
if (buf != NULL && *buflen == 0)
/* Input buffer has been filled */
return 0;
/*
* Input buffer has NOT been filled, we are still in a
* receive. Not a retry, this is the first point we know
* for sure for this sequence number.
*/
while ((++nextSequence & 0xff) == 0);
xbeedev_stats_send(xbs, "poll() implies pending RECEIVE",
nextSequence,
XBEE_STATS_RECEIVE,
nextSequence, XBEE_STATS_NOT_RETRY,
&receiveTime);
}
}
}
}
}
}
/*
* @return
* 0 on success, a negative value on failure, or a positive
* value indicating the sequence number associated with the
* request.
*/
static int localAsyncAT(struct XBeeBootSession *xbs, char const *detail,
unsigned char at1, unsigned char at2, int value)
{
if (xbs->directMode)
/*
* Remote XBee AT commands make no sense in direct mode - there is
* no XBee device to communicate with.
*
* Return success, no sequence number.
*/
return 0;
while ((++xbs->txSequence & 0xff) == 0);
const unsigned char sequence = xbs->txSequence;
unsigned char buf[3];
size_t length = 0;
buf[length++] = at1;
buf[length++] = at2;
if (value >= 0)
buf[length++] = (unsigned char)value;
pmsg_notice("local AT command: %c%c\n", at1, at2);
/* Local AT command 0x08 */
int rc = sendAPIRequest(xbs, 0x08, sequence, -1, -1, -1, -1, -1, -1,
detail, -1, XBEE_STATS_FRAME_LOCAL,
XBEE_STATS_NOT_RETRY,
length, buf);
if (rc < 0)
/* Failed */
return rc;
/* Success, positive sequence number */
return (int)sequence;
}
static int localAT(struct XBeeBootSession *xbs, char const *detail,
unsigned char at1, unsigned char at2, int value)
{
int result = localAsyncAT(xbs, detail, at1, at2, value);
if (result <= 0)
/* Failure, or success without a sequence number */
return result;
unsigned char sequence = (unsigned char)result;
int retries;
for (retries = 0; retries < 5; retries++) {
const int rc = xbeedev_poll(xbs, NULL, NULL, -1, sequence);
if (rc == 0)
return 0;
}
return -1;
}
/*
* Return 0 on success.
* Return -1 on generic error (normally serial timeout).
* Return -512 + XBee AT Response code
*/
static int sendAT(struct XBeeBootSession *xbs, char const *detail,
unsigned char at1, unsigned char at2, int value)
{
if (xbs->directMode)
/*
* Remote XBee AT commands make no sense in direct mode - there is
* no XBee device to communicate with.
*/
return 0;
while ((++xbs->txSequence & 0xff) == 0);
const unsigned char sequence = xbs->txSequence;
unsigned char buf[3];
size_t length = 0;
buf[length++] = at1;
buf[length++] = at2;
if (value >= 0)
buf[length++] = (unsigned char)value;
pmsg_notice("remote AT command: %c%c\n", at1, at2);
/* Remote AT command 0x17 with Apply Changes 0x02 */
sendAPIRequest(xbs, 0x17, sequence, -1,
-1, -1, -1,
0x02, -1,
detail, -1, XBEE_STATS_FRAME_REMOTE,
XBEE_STATS_NOT_RETRY,
length, buf);
int retries;
for (retries = 0; retries < 30; retries++) {
const int rc = xbeedev_poll(xbs, NULL, NULL, -1, sequence);
const int xbeeRc = XBEE_AT_RETURN_CODE(rc);
if (xbeeRc == 0)
/* Translate to normal success code */
return 0;
if (rc != -1)
return rc;
}
return -1;
}
/*
* Return 0 on no error recognised, 1 if error was detected and reported
*/
static int xbeeATError(int rc) {
const int xbeeRc = XBEE_AT_RETURN_CODE(rc);
if (xbeeRc < 0)
return 0;
if (xbeeRc == 1) {
pmsg_error("unable to communicate with remote XBee\n");
} else if (xbeeRc == 2) {
pmsg_error("remote XBee: invalid command\n");
} else if (xbeeRc == 3) {
pmsg_error("remote XBee: invalid command parameter\n");
} else if (xbeeRc == 4) {
pmsg_error("remote XBee: transmission failure\n");
} else {
pmsg_error("unrecognised remote XBee error code %d\n", xbeeRc);
}
return 1;
}
static void xbeedev_free(struct XBeeBootSession *xbs)
{
xbs->serialDevice->close(&xbs->serialDescriptor);
free(xbs);
}
static void xbeedev_close(union filedescriptor *fdp)
{
struct XBeeBootSession *xbs = xbeebootsession(fdp);
xbeedev_free(xbs);
}
static int xbeedev_open(const char *port, union pinfo pinfo,
union filedescriptor *fdp)
{
/*
* The syntax for XBee devices is defined as:
*
* -P <XBeeAddress>@[serialdevice]
*
* ... or ...
*
* -P @[serialdevice]
*
* ... for a direct connection.
*/
char *ttySeparator = strchr(port, '@');
if (ttySeparator == NULL) {
pmsg_error("XBee: bad port syntax, require <xbee-address>@<serial-device>\n");
return -1;
}
struct XBeeBootSession *xbs = malloc(sizeof(struct XBeeBootSession));
if (xbs == NULL) {
pmsg_error("out of memory\n");
return -1;
}
XBeeBootSessionInit(xbs);
char *tty = &ttySeparator[1];
if (ttySeparator == port) {
/* Direct connection */
memset(xbs->xbee_address, 0, 8);
xbs->directMode = 1;
} else {
size_t addrIndex = 0;
int nybble = -1;
char const *address = port;
while (address != ttySeparator) {
char hex = *address++;
unsigned int val;
if (hex >= '0' && hex <= '9') {
val = hex - '0';
} else if (hex >= 'A' && hex <= 'F') {
val = hex - 'A' + 10;
} else if (hex >= 'a' && hex <= 'f') {
val = hex - 'a' + 10;
} else {
break;
}
if (nybble == -1) {
nybble = val;
} else {
xbs->xbee_address[addrIndex++] = (nybble * 16) | val;
nybble = -1;
if (addrIndex == 8)
break;
}
}
if (addrIndex != 8 || address != ttySeparator || nybble != -1) {
pmsg_error("XBee: bad XBee address, require 16-character hexadecimal address\n");
free(xbs);
return -1;
}
xbs->directMode = 0;
}
/* Unknown 16 bit address */
xbs->xbee_address[8] = 0xff;
xbs->xbee_address[9] = 0xfe;
pmsg_trace("XBee address: %02x%02x%02x%02x%02x%02x%02x%02x\n",
(unsigned int) xbs->xbee_address[0],
(unsigned int) xbs->xbee_address[1],
(unsigned int) xbs->xbee_address[2],
(unsigned int) xbs->xbee_address[3],
(unsigned int) xbs->xbee_address[4],
(unsigned int) xbs->xbee_address[5],
(unsigned int) xbs->xbee_address[6],
(unsigned int) xbs->xbee_address[7]);
if (pinfo.serialinfo.baud) {
/*
* User supplied the correct baud rate.
*/
} else if (xbs->directMode) {
/*
* In direct mode, default to 19200.
*
* Why?
*
* In this mode, we are NOT talking to an XBee, we are talking
* directly to an AVR device that thinks it is talking to an XBee
* itself.
*
* Because, an XBee is a 3.3V device defaulting to 9600baud, and
* the Atmel328P is only rated at a maximum clock rate of 8MHz
* with a 3.3V supply, so there's a high likelihood a remote
* Atmel328P will be clocked at 8MHz.
*
* With a direct connection, there's a good chance we're talking
* to an Arduino clocked at 16MHz with an XBee-enabled chip
* plugged in. The doubled clock rate means a doubled serial
* rate. Double 9600 baud == 19200 baud.
*/
pinfo.serialinfo.baud = 19200;
} else {
/*
* In normal mode, default to 9600.
*
* Why?
*
* XBee devices default to 9600 baud. In this mode we are talking
* to the XBee device, not the far-end device, so it's the local
* XBee baud rate we should select. The baud rate of the AVR
* device is irrelevant.
*/
pinfo.serialinfo.baud = 9600;
}
pinfo.serialinfo.cflags = SERIAL_8N1;
pmsg_notice("baud %ld\n", (long)pinfo.serialinfo.baud);
{
const int rc = xbs->serialDevice->open(tty, pinfo,
&xbs->serialDescriptor);
if (rc < 0) {
free(xbs);
return rc;
}
}
if (!xbs->directMode) {
/* Attempt to ensure the local XBee is in API mode 2 */
{
const int rc = localAT(xbs, "AT AP=2", 'A', 'P', 2);
if (rc < 0) {
pmsg_error("local XBee is not responding\n");
xbeedev_free(xbs);
return rc;
}
}
/*
* At this point we want to set the remote XBee parameters as
* required for talking to XBeeBoot. Ideally we would start with
* an "FR" full reset, but because that causes the XBee to
* disappear off the mesh for a significant period and become
* unresponsive, we don't do that.
*/
/*
* Issue an "Aggregate Routing Notification" to enable many-to-one
* routing to this device. This has two effects:
*
* - Establishes a route from the remote XBee attached to the CPU
* being programmed back to the local XBee.
*
* - Enables the 0xa1 Route frames so that we can make use of
* Source Routing to deliver packets directly to the remote
* XBee.
*
* Under "RF packet routing" subsection "Many-to-One routing", the
* XBee S2C manual states "Applications that require multiple data
* collectors can also use many-to-one routing. If more than one
* data collector device sends a many-to-one broadcast, devices
* create one reverse routing table entry for each collector."
*
* Under "RF packet routing" subsection "Source routing", the XBee
* S2C manual states "To use source routing, a device must use the
* API mode, and it must send periodic many-to-one route request
* broadcasts (AR command) to create a many-to-one route to it on
* all devices".
*/
{
const int rc = localAT(xbs, "AT AR=0", 'A', 'R', 0);
if (rc < 0) {
pmsg_error("local XBee is not responding\n");
xbeedev_free(xbs);
return rc;
}
}
/*
* Disable RTS input on the remote XBee, just in case it is
* enabled by default. XBeeBoot doesn't attempt to support flow
* control, and so it may not correctly drive this pin if RTS mode
* is the default configuration.
*
* XBee IO port 6 is the only pin that supports RTS mode, so there
* is no need to support any alternative pin.
*/
const int rc = sendAT(xbs, "AT D6=0", 'D', '6', 0);
if (rc < 0) {
xbeedev_free(xbs);
if (xbeeATError(rc))
return -1;
pmsg_error("remote XBee is not responding\n");
return rc;
}
}
fdp->pfd = xbs;
return 0;
}
static int xbeedev_send(const union filedescriptor *fdp,
const unsigned char *buf, size_t buflen)
{
struct XBeeBootSession *xbs = xbeebootsession(fdp);
if (xbs->transportUnusable)
/* Don't attempt to continue on an unusable transport layer */
return -1;
while (buflen > 0) {
unsigned char sequence = xbs->outSequence;
while ((++sequence & 0xff) == 0);
xbs->outSequence = sequence;
/*
* We are about to send some data, and that might lead potentially
* to received data before we see the ACK for this transmission.
* As this might be the trigger seen before the next "recv"
* operation, record that we have delivered this potential
* trigger.
*/
{
unsigned char nextSequence = xbs->inSequence;
while ((++nextSequence & 0xff) == 0);
struct timeval sendTime;
gettimeofday(&sendTime, NULL);
/*
* Optimistic records should never be treated as retries,
* because they might simply be guessing too optimistically.
*/
xbeedev_stats_send(xbs, "send() hints possible triggered RECEIVE",
nextSequence,
XBEE_STATS_RECEIVE,
nextSequence, 0, &sendTime);
}
/*
* Chunk the data into chunks of up to XBEEBOOT_MAX_CHUNK bytes.
*/
unsigned char maximum_chunk = XBEEBOOT_MAX_CHUNK;
/*
* Source routing incurs a two byte fixed overhead, plus a two
* byte additional cost per intermediate hop.
*
* We are attempting to avoid fragmentation here, so resize our
* maximum size to anticipate the overhead of the current number
* of hops. If our maximum chunk would be less than one, just
* give up and hope fragmentation will somehow save us.
*/
const int hops = xbs->sourceRouteHops;
if (hops > 0 && (hops * 2 + 2) < XBEEBOOT_MAX_CHUNK)
maximum_chunk -= hops * 2 + 2;
const unsigned char blockLength =
(buflen > maximum_chunk) ? maximum_chunk : buflen;
int pollRc = 0;
/* Repeatedly send whilst timing out waiting for ACK responses. */
int retries;
for (retries = 0; retries < XBEE_MAX_RETRIES; retries++) {
int sendRc =
sendPacket(xbs,
"Transmit Request Data, expect ACK for TRANSMIT",
XBEEBOOT_PACKET_TYPE_REQUEST, sequence,
retries > 0 ? XBEE_STATS_IS_RETRY : XBEE_STATS_NOT_RETRY,
23 /* FIRMWARE_DELIVER */,
blockLength, buf);
if (sendRc < 0) {
/* There is no way to recover from a failure mid-send */
xbs->transportUnusable = 1;
return sendRc;
}
pollRc = xbeedev_poll(xbs, NULL, NULL, sequence, -1);
if (pollRc == 0) {
/* Send was ACK'd */
buflen -= blockLength;
buf += blockLength;
break;
}
/*
* Test the connection to the local XBee by repeatedly
* requesting local configuration details. This functionally
* has no effect, but will allow us to measure any reliability
* issues on this link.
*/
localAsyncAT(xbs, "Local XBee ping [send]", 'A', 'P', -1);
/*
* If we don't receive an ACK it might be because the chip
* missed an ACK from us. Resend that too after a timeout,
* unless it's zero which is an illegal sequence number.
*/
if (xbs->inSequence != 0) {
int ackRc = sendPacket(xbs,
"Transmit Request ACK [Retry in send] "
"for RECEIVE",
XBEEBOOT_PACKET_TYPE_ACK,
xbs->inSequence,
XBEE_STATS_IS_RETRY,
-1, 0, NULL);
if (ackRc < 0) {
/* There is no way to recover from a failure mid-send */
xbs->transportUnusable = 1;
return ackRc;
}
}
}
if (pollRc < 0) {
/* There is no way to recover from a failure mid-send */
xbs->transportUnusable = 1;
return pollRc;
}
}
return 0;
}
static int xbeedev_recv(const union filedescriptor *fdp,
unsigned char *buf, size_t buflen)
{
struct XBeeBootSession *xbs = xbeebootsession(fdp);
/*
* First de-buffer anything previously received in a chunk that
* couldn't be immediately delievered.
*/
while (xbs->inInIndex != xbs->inOutIndex) {
*buf++ = xbs->inBuffer[xbs->inOutIndex++];
if (xbs->inOutIndex == sizeof(xbs->inBuffer))
xbs->inOutIndex = 0;
if (--buflen == 0)
return 0;
}
if (xbs->transportUnusable)
/* Don't attempt to continue on an unusable transport layer */
return -1;
/*
* When we expect to receive data, that is the time to start the
* clock.
*/
{
unsigned char nextSequence = xbs->inSequence;
while ((++nextSequence & 0xff) == 0);
struct timeval sendTime;
gettimeofday(&sendTime, NULL);
/*
* Not a retry - in fact this is the first stage we know for sure
* a RECEIVE is due.
*/
xbeedev_stats_send(xbs, "recv() implies pending RECEIVE",
nextSequence,
XBEE_STATS_RECEIVE,
nextSequence,
XBEE_STATS_NOT_RETRY,
&sendTime);
}
int retries;
for (retries = 0; retries < XBEE_MAX_RETRIES; retries++) {
const int rc = xbeedev_poll(xbs, &buf, &buflen, -1, -1);
if (rc == 0)
return 0;
if (xbs->transportUnusable)
/* Don't attempt to continue on an unusable transport layer */
return -1;
/*
* Test the connection to the local XBee by repeatedly
* requesting local configuration details. This functionally
* has no effect, but will allow us to measure any reliability
* issues on this link.
*/
localAsyncAT(xbs, "Local XBee ping [recv]", 'A', 'P', -1);
/*
* The chip may have missed an ACK from us. Resend after a
* timeout.
*/
if (xbs->inSequence != 0)
sendPacket(xbs, "Transmit Request ACK [Retry in recv] for RECEIVE",
XBEEBOOT_PACKET_TYPE_ACK, xbs->inSequence,
XBEE_STATS_IS_RETRY,
-1, 0, NULL);
}
return -1;
}
static int xbeedev_drain(const union filedescriptor *fdp, int display)
{
struct XBeeBootSession *xbs = xbeebootsession(fdp);
if (xbs->transportUnusable)
/* Don't attempt to continue on an unusable transport layer */
return -1;
/*
* Flushing the local serial buffer is unhelpful under this protocol
*/
do {
xbs->inOutIndex = xbs->inInIndex = 0;
} while (xbeedev_poll(xbs, NULL, NULL, -1, -1) == 0);
return 0;
}
static int xbeedev_set_dtr_rts(const union filedescriptor *fdp, int is_on)
{
struct XBeeBootSession *xbs = xbeebootsession(fdp);
if (xbs->directMode)
/* Correct for direct mode */
return xbs->serialDevice->set_dtr_rts(&xbs->serialDescriptor, is_on);
/*
* For non-direct mode (Over-The-Air) we need to issue XBee commands
* to the remote XBee in order to reset the AVR CPU and initiate the
* XBeeBoot bootloader.
*/
const int rc = sendAT(xbs, is_on ? "AT [DTR]=low" : "AT [DTR]=high",
'D', '0' + xbs->xbeeResetPin, is_on ? 5 : 4);
if (rc < 0) {
if (xbeeATError(rc))
return -1;
pmsg_error("remote XBee is not responding\n");
return rc;
}
return 0;
}
/*
* Device descriptor for XBee framing.
*/
static struct serial_device xbee_serdev_frame = {
.open = xbeedev_open,
.close = xbeedev_close,
.send = xbeedev_send,
.recv = xbeedev_recv,
.drain = xbeedev_drain,
.set_dtr_rts = xbeedev_set_dtr_rts,
.flags = SERDEV_FL_NONE,
};
static int xbee_getsync(const PROGRAMMER *pgm) {
unsigned char buf[2], resp[2];
/*
* Issue sync request as per STK500. Unlike stk500_getsync(), don't
* retry here - the underlying protocol will deal with retries for
* us in xbeedev_send() and should be reliable.
*/
buf[0] = Cmnd_STK_GET_SYNC;
buf[1] = Sync_CRC_EOP;
int sendRc = serial_send(&pgm->fd, buf, 2);
if (sendRc < 0) {
pmsg_error("unable to deliver STK_GET_SYNC to the remote XBeeBoot bootloader\n");
return sendRc;
}
/*
* The same is true of the receive - it will retry on timeouts until
* the response buffer is full.
*/
int recvRc = serial_recv(&pgm->fd, resp, 2);
if (recvRc < 0) {
pmsg_error("no response to STK_GET_SYNC from the remote XBeeBoot bootloader\n");
return recvRc;
}
if (resp[0] != Resp_STK_INSYNC) {
pmsg_error("not in sync, resp=0x%02x\n", (unsigned int) resp[0]);
return -1;
}
if (resp[1] != Resp_STK_OK) {
pmsg_error("in sync, not OK, resp=0x%02x\n", (unsigned int) resp[1]);
return -1;
}
return 0;
}
static int xbee_open(PROGRAMMER *pgm, const char *port) {
union pinfo pinfo;
strcpy(pgm->port, port);
pinfo.serialinfo.baud = pgm->baudrate;
pinfo.serialinfo.cflags = SERIAL_8N1;
/* Wireless is lossier than normal serial */
serial_recv_timeout = 1000;
serdev = &xbee_serdev_frame;
if (serial_open(port, pinfo, &pgm->fd) == -1) {
return -1;
}
xbeedev_setresetpin(&pgm->fd, PDATA(pgm)->xbeeResetPin);
/* Clear DTR and RTS */
serial_set_dtr_rts(&pgm->fd, 0);
usleep(250*1000);
/* Set DTR and RTS back to high */
serial_set_dtr_rts(&pgm->fd, 1);
usleep(50*1000);
/*
* At this point stk500_drain() and stk500_getsync() calls would
* normally be made. But given that we have a transport layer over
* the serial command stream, the drain and repeated STK_GET_SYNC
* requests are not very helpful. Instead, skip the draining
* entirely, and issue the STK_GET_SYNC ourselves.
*/
if (xbee_getsync(pgm) < 0)
return -1;
return 0;
}
static void xbee_close(PROGRAMMER *pgm)
{
struct XBeeBootSession *xbs = xbeebootsession(&pgm->fd);
/*
* NB: This request is for the target device, not the locally
* connected serial device.
*/
serial_set_dtr_rts(&pgm->fd, 0);
/*
* We have tweaked a few settings on the XBee, including the RTS
* mode and the reset pin's configuration. Do a soft full reset,
* restoring the device to its normal power-on settings.
*
* Note that this DOES mean that the remote XBee will be
* uncontactable until it has restarted and re-established
* communications on the mesh.
*/
if (!xbs->directMode) {
const int rc = sendAT(xbs, "AT FR", 'F', 'R', -1);
xbeeATError(rc);
}
pmsg_notice("statistics for FRAME_LOCAL requests - %s->XBee(local)\n", progname);
xbeeStatsSummarise(&xbs->groupSummary[XBEE_STATS_FRAME_LOCAL]);
pmsg_notice("statistics for FRAME_REMOTE requests - %s->XBee(local)->XBee(target)\n", progname);
xbeeStatsSummarise(&xbs->groupSummary[XBEE_STATS_FRAME_REMOTE]);
pmsg_notice("statistics for TRANSMIT requests - %s->XBee(local)->XBee(target)->XBeeBoot\n", progname);
xbeeStatsSummarise(&xbs->groupSummary[XBEE_STATS_TRANSMIT]);
pmsg_notice("statistics for RECEIVE requests - XBeeBoot->XBee(target)->XBee(local)->%s\n", progname);
xbeeStatsSummarise(&xbs->groupSummary[XBEE_STATS_RECEIVE]);
xbeedev_free(xbs);
pgm->fd.pfd = NULL;
}
static int xbee_parseextparms(const PROGRAMMER *pgm, const LISTID extparms) {
LNODEID ln;
const char *extended_param;
int rc = 0;
for (ln = lfirst(extparms); ln; ln = lnext(ln)) {
extended_param = ldata(ln);
if (strncmp(extended_param,
"xbeeresetpin=", 13 /*strlen("xbeeresetpin=")*/) == 0) {
int resetpin;
if (sscanf(extended_param, "xbeeresetpin=%i", &resetpin) != 1 ||
resetpin <= 0 || resetpin > 7) {
pmsg_error("invalid xbeeresetpin '%s'\n", extended_param);
rc = -1;
continue;
}
PDATA(pgm)->xbeeResetPin = resetpin;
continue;
}
pmsg_error("invalid extended parameter '%s'\n", extended_param);
rc = -1;
}
return rc;
}
const char xbee_desc[] = "XBee Series 2 Over-The-Air (XBeeBoot)";
void xbee_initpgm(PROGRAMMER *pgm) {
/*
* This behaves like an Arduino, but with packet encapsulation of
* the serial streams, XBee device management, and XBee GPIO for the
* Auto-Reset feature. stk500.c sets PDATA(pgm)->xbeeResetPin
*/
stk500_initpgm(pgm);
strncpy(pgm->type, "XBee", sizeof(pgm->type));
pgm->read_sig_bytes = xbee_read_sig_bytes;
pgm->open = xbee_open;
pgm->close = xbee_close;
pgm->parseextparams = xbee_parseextparms;
}