avrdude/src/teensy.c

620 lines
17 KiB
C

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2020 Marius Greuel
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Notes:
// This file adds support for the HalfKay bootloader,
// so you do no longer need the Teensy loader utility.
//
// This HalfKay bootloader is used on various PJRC Teensy boards,
// such as Teensy 2.0 (ATmega32U4), Teensy++ 2.0 (AT90USB1286),
// and the respective clones.
// By default, it bootloader uses the VID/PID 16C0:0478 (VOTI).
//
// As the Teensy bootloader is optimized for size, it implements
// writing to flash memory only. Since it does not support reading,
// use the -V option to prevent avrdude from verifing the flash memory.
// To have avrdude wait for the device to be connected, use the
// extended option '-x wait'.
//
// Example:
// avrdude -c teensy -p m32u4 -x wait -V -U flash:w:main.hex:i
#include "ac_cfg.h"
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <time.h>
#include "avrdude.h"
#include "teensy.h"
#include "usbdevs.h"
#if defined(HAVE_LIBHIDAPI)
#include <hidapi/hidapi.h>
//-----------------------------------------------------------------------------
#define TEENSY_VID 0x16C0
#define TEENSY_PID 0x0478
#define TEENSY_CONNECT_WAIT 100
#define PDATA(pgm) ((pdata_t*)(pgm->cookie))
//-----------------------------------------------------------------------------
typedef struct pdata
{
hid_device* hid_handle;
uint16_t hid_usage;
// Extended parameters
bool wait_until_device_present;
int wait_timout; // in seconds
// Bootloader info (from hid_usage)
const char* board;
uint32_t flash_size;
uint16_t page_size;
uint8_t sig_bytes[3];
// State
bool erase_flash;
bool reboot;
} pdata_t;
//-----------------------------------------------------------------------------
static void delay_ms(uint32_t duration)
{
usleep(duration * 1000);
}
static int teensy_get_bootloader_info(pdata_t* pdata, const AVRPART* p) {
switch (pdata->hid_usage)
{
case 0x19:
pdata->board = "Teensy 1.0 (AT90USB162)";
pdata->flash_size = 0x4000 - 0x200;
pdata->page_size = 128;
pdata->sig_bytes[0] = 0x1E;
pdata->sig_bytes[1] = 0x94;
pdata->sig_bytes[2] = 0x82;
break;
case 0x1A:
pdata->board = "Teensy++ 1.0 (AT90USB646)";
pdata->flash_size = 0x10000 - 0x400;
pdata->page_size = 256;
pdata->sig_bytes[0] = 0x1E;
pdata->sig_bytes[1] = 0x96;
pdata->sig_bytes[2] = 0x82;
break;
case 0x1B:
pdata->board = "Teensy 2.0 (ATmega32U4)";
pdata->flash_size = 0x8000 - 0x200;
pdata->page_size = 128;
pdata->sig_bytes[0] = 0x1E;
pdata->sig_bytes[1] = 0x95;
pdata->sig_bytes[2] = 0x87;
break;
case 0x1C:
pdata->board = "Teensy++ 2.0 (AT90USB1286)";
pdata->flash_size = 0x20000 - 0x400;
pdata->page_size = 256;
pdata->sig_bytes[0] = 0x1E;
pdata->sig_bytes[1] = 0x97;
pdata->sig_bytes[2] = 0x82;
break;
default:
if (pdata->hid_usage == 0)
{
// On Linux, libhidapi does not seem to return the HID usage from the report descriptor.
// We try to infer the board from the part information, until somebody fixes libhidapi.
// To use this workaround, the -F option is required.
pmsg_error("cannot detect board type (HID usage is 0)\n");
AVRMEM* mem = avr_locate_mem(p, "flash");
if (mem == NULL)
{
pmsg_error("no flash memory defined for part %s\n", p->desc);
return -1;
}
pdata->board = "Unknown Board";
pdata->flash_size = mem->size - (mem->size < 0x10000 ? 0x200 : 0x400);
pdata->page_size = mem->page_size;
// Pass an invalid signature to require -F option.
pdata->sig_bytes[0] = 0x1E;
pdata->sig_bytes[1] = 0x00;
pdata->sig_bytes[2] = 0x00;
}
else
{
pmsg_error("Teensy board not supported (HID usage 0x%02X)\n", pdata->hid_usage);
return -1;
}
}
return 0;
}
static void teensy_dump_device_info(pdata_t* pdata)
{
pmsg_notice("HID usage: 0x%02X\n", pdata->hid_usage);
pmsg_notice("Board: %s\n", pdata->board);
pmsg_notice("Available flash size: %u\n", pdata->flash_size);
pmsg_notice("Page size: %u\n", pdata->page_size);
pmsg_notice("Signature: 0x%02X%02X%02X\n",
pdata->sig_bytes[0], pdata->sig_bytes[1], pdata->sig_bytes[2]);
}
static int teensy_write_page(pdata_t* pdata, uint32_t address, const uint8_t* buffer, uint32_t size, bool suppress_warning)
{
pmsg_debug("teensy_write_page(address=0x%06X, size=%d)\n", address, size);
if (size > pdata->page_size)
{
pmsg_error("invalid page size: %u\n", pdata->page_size);
return -1;
}
size_t report_size = 1 + 2 + (size_t)pdata->page_size;
uint8_t* report = (uint8_t*)malloc(report_size);
if (report == NULL)
{
pmsg_error("unable to allocate memory\n");
return -1;
}
report[0] = 0; // report number
if (pdata->page_size <= 256 && pdata->flash_size < 0x10000)
{
report[1] = (uint8_t)(address >> 0);
report[2] = (uint8_t)(address >> 8);
}
else
{
report[1] = (uint8_t)(address >> 8);
report[2] = (uint8_t)(address >> 16);
}
if (size > 0)
{
memcpy(report + 1 + 2, buffer, size);
}
memset(report + 1 + 2 + size, 0xFF, report_size - (1 + 2 + size));
int result = hid_write(pdata->hid_handle, report, report_size);
free(report);
if (result < 0)
{
if (!suppress_warning)
pmsg_error("unable to write page: %ls\n", hid_error(pdata->hid_handle));
return result;
}
return 0;
}
static int teensy_erase_flash(pdata_t* pdata)
{
pmsg_debug("teensy_erase_flash()\n");
// Write a dummy page at address 0 to explicitly erase the flash.
return teensy_write_page(pdata, 0, NULL, 0, false);
}
static int teensy_reboot(pdata_t* pdata)
{
pmsg_debug("teensy_reboot()\n");
// Write a dummy page at address -1 to reboot the Teensy.
return teensy_write_page(pdata, 0xFFFFFFFF, NULL, 0, true);
}
//-----------------------------------------------------------------------------
static void teensy_setup(PROGRAMMER* pgm)
{
pmsg_debug("teensy_setup()\n");
if ((pgm->cookie = malloc(sizeof(pdata_t))) == NULL)
{
pmsg_error("unable to allocate memory\n");
exit(1);
}
memset(pgm->cookie, 0, sizeof(pdata_t));
}
static void teensy_teardown(PROGRAMMER* pgm)
{
pmsg_debug("teensy_teardown()\n");
free(pgm->cookie);
}
static int teensy_initialize(const PROGRAMMER *pgm, const AVRPART *p) {
pmsg_debug("teensy_initialize()\n");
pdata_t* pdata = PDATA(pgm);
int result = teensy_get_bootloader_info(pdata, p);
if (result < 0)
return result;
teensy_dump_device_info(pdata);
return 0;
}
static void teensy_display(const PROGRAMMER *pgm, const char *prefix) {
pmsg_debug("teensy_display()\n");
}
static void teensy_powerup(const PROGRAMMER *pgm) {
pmsg_debug("teensy_powerup()\n");
}
static void teensy_powerdown(const PROGRAMMER *pgm) {
pmsg_debug("teensy_powerdown()\n");
pdata_t* pdata = PDATA(pgm);
if (pdata->erase_flash)
{
teensy_erase_flash(pdata);
pdata->erase_flash = false;
}
if (pdata->reboot)
{
teensy_reboot(pdata);
pdata->reboot = false;
}
}
static void teensy_enable(PROGRAMMER* pgm, const AVRPART *p) {
pmsg_debug("teensy_enable()\n");
}
static void teensy_disable(const PROGRAMMER *pgm) {
pmsg_debug("teensy_disable()\n");
}
static int teensy_program_enable(const PROGRAMMER *pgm, const AVRPART *p) {
pmsg_debug("teensy_program_enable()\n");
return 0;
}
static int teensy_read_sig_bytes(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem) {
pmsg_debug("teensy_read_sig_bytes()\n");
if (mem->size < 3)
{
pmsg_error("memory size too small for read_sig_bytes\n");
return -1;
}
pdata_t* pdata = PDATA(pgm);
memcpy(mem->buf, pdata->sig_bytes, sizeof(pdata->sig_bytes));
return 0;
}
static int teensy_chip_erase(const PROGRAMMER *pgm, const AVRPART *p) {
pmsg_debug("teensy_chip_erase()\n");
pdata_t* pdata = PDATA(pgm);
// Schedule a chip erase, either at first write or on powerdown.
pdata->erase_flash = true;
return 0;
}
static int teensy_open(PROGRAMMER *pgm, const char *port) {
pmsg_debug("teensy_open(\"%s\")\n", port);
pdata_t* pdata = PDATA(pgm);
const char *bus_name = NULL;
char* dev_name = NULL;
// if no -P was given or '-P usb' was given
if (strcmp(port, "usb") == 0)
{
port = NULL;
}
else
{
// calculate bus and device names from -P option
if (strncmp(port, "usb", 3) == 0 && ':' == port[3])
{
bus_name = port + 4;
dev_name = strchr(bus_name, ':');
if (dev_name != NULL)
{
*dev_name = '\0';
dev_name++;
}
}
}
if (port != NULL && dev_name == NULL)
{
pmsg_error("invalid -P value: '%s'\n", port);
imsg_error("Use -P usb:bus:device\n");
return -1;
}
// Determine VID/PID
int vid = pgm->usbvid ? pgm->usbvid : TEENSY_VID;
int pid = TEENSY_PID;
LNODEID usbpid = lfirst(pgm->usbpid);
if (usbpid != NULL)
{
pid = *(int*)(ldata(usbpid));
if (lnext(usbpid))
{
pmsg_error("using PID 0x%04x, ignoring remaining PIDs in list\n", pid);
}
}
bool show_retry_message = true;
time_t start_time = time(NULL);
for (;;)
{
// Search for device
struct hid_device_info* devices = hid_enumerate(vid, pid);
struct hid_device_info* device = devices;
while (device)
{
if (device->vendor_id == vid && device->product_id == pid)
{
pdata->hid_handle = hid_open_path(device->path);
if (pdata->hid_handle == NULL)
{
pmsg_error("found HID device, but hid_open_path() failed\n");
}
else
{
pdata->hid_usage = device->usage;
break;
}
}
device = device->next;
}
hid_free_enumeration(devices);
if (pdata->hid_handle == NULL && pdata->wait_until_device_present)
{
if (show_retry_message)
{
if (pdata->wait_timout < 0)
{
pmsg_error("no device found, waiting for device to be plugged in ...\n");
}
else
{
pmsg_error("no device found, waiting %d seconds for device to be plugged in ...\n",
pdata->wait_timout);
}
pmsg_error("press CTRL-C to terminate\n");
show_retry_message = false;
}
if (pdata->wait_timout < 0 || (time(NULL) - start_time) < pdata->wait_timout)
{
delay_ms(TEENSY_CONNECT_WAIT);
continue;
}
}
break;
}
if (!pdata->hid_handle)
{
pmsg_error("cannot find device with Teensy bootloader (%04X:%04X)\n", vid, pid);
return -1;
}
return 0;
}
static void teensy_close(PROGRAMMER* pgm)
{
pmsg_debug("teensy_close()\n");
pdata_t* pdata = PDATA(pgm);
if (pdata->hid_handle != NULL)
{
hid_close(pdata->hid_handle);
pdata->hid_handle = NULL;
}
}
static int teensy_read_byte(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned long addr, unsigned char* value)
{
pmsg_debug("teensy_read_byte(desc=%s, addr=0x%04lX)\n", mem->desc, addr);
if (strcmp(mem->desc, "lfuse") == 0 ||
strcmp(mem->desc, "hfuse") == 0 ||
strcmp(mem->desc, "efuse") == 0 ||
strcmp(mem->desc, "lock") == 0)
{
*value = 0xFF;
return 0;
}
else
{
pmsg_error("unsupported memory type: %s\n", mem->desc);
return -1;
}
}
static int teensy_write_byte(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned long addr, unsigned char value)
{
pmsg_debug("teensy_write_byte(desc=%s, addr=0x%04lX)\n", mem->desc, addr);
return -1;
}
static int teensy_paged_load(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
pmsg_debug("teensy_paged_load(page_size=0x%X, addr=0x%X, n_bytes=0x%X)\n", page_size, addr, n_bytes);
return -1;
}
static int teensy_paged_write(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
pmsg_debug("teensy_paged_write(page_size=0x%X, addr=0x%X, n_bytes=0x%X)\n", page_size, addr, n_bytes);
if (strcmp(mem->desc, "flash") == 0)
{
pdata_t* pdata = PDATA(pgm);
if (n_bytes > page_size)
{
pmsg_error("buffer size %u exceeds page size %u\n", n_bytes, page_size);
return -1;
}
if (addr + n_bytes > pdata->flash_size)
{
pmsg_error("program size %u exceeds flash size %u\n", addr + n_bytes, pdata->flash_size);
return -1;
}
if (pdata->erase_flash)
{
// Writing page 0 will automatically erase the flash.
// If mem does not contain a page at address 0, write a dummy page at address 0.
if (addr != 0)
{
int result = teensy_erase_flash(pdata);
if (result < 0)
{
return result;
}
}
pdata->erase_flash = false;
}
int result = teensy_write_page(pdata, addr, mem->buf + addr, n_bytes, false);
if (result < 0)
{
return result;
}
// Schedule a reboot.
pdata->reboot = true;
return result;
}
else
{
pmsg_error("unsupported memory type: %s\n", mem->desc);
return -1;
}
}
static int teensy_parseextparams(const PROGRAMMER *pgm, const LISTID xparams) {
pmsg_debug("teensy_parseextparams()\n");
pdata_t* pdata = PDATA(pgm);
for (LNODEID node = lfirst(xparams); node != NULL; node = lnext(node))
{
const char* param = ldata(node);
if (strcmp(param, "wait") == 0)
{
pdata->wait_until_device_present = true;
pdata->wait_timout = -1;
}
else if (strncmp(param, "wait=", 5) == 0)
{
pdata->wait_until_device_present = true;
pdata->wait_timout = atoi(param + 5);
}
else
{
pmsg_error("invalid extended parameter '%s'\n", param);
return -1;
}
}
return 0;
}
void teensy_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "teensy");
pgm->setup = teensy_setup;
pgm->teardown = teensy_teardown;
pgm->initialize = teensy_initialize;
pgm->display = teensy_display;
pgm->powerup = teensy_powerup;
pgm->powerdown = teensy_powerdown;
pgm->enable = teensy_enable;
pgm->disable = teensy_disable;
pgm->program_enable = teensy_program_enable;
pgm->read_sig_bytes = teensy_read_sig_bytes;
pgm->chip_erase = teensy_chip_erase;
pgm->cmd = NULL;
pgm->open = teensy_open;
pgm->close = teensy_close;
pgm->read_byte = teensy_read_byte;
pgm->write_byte = teensy_write_byte;
pgm->paged_load = teensy_paged_load;
pgm->paged_write = teensy_paged_write;
pgm->parseextparams = teensy_parseextparams;
}
#else /* !HAVE_LIBHIDAPI */
// Give a proper error if we were not compiled with libhidapi
static int teensy_nousb_open(PROGRAMMER *pgm, const char *name) {
pmsg_error("no HID support; please compile again with libhidapi installed\n");
return -1;
}
void teensy_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "teensy");
pgm->open = teensy_nousb_open;
}
#endif /* HAVE_LIBHIDAPI */
const char teensy_desc[] = "Teensy Bootloader";