avrdude/src/jtag3.c

3159 lines
89 KiB
C

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2012 Joerg Wunsch <j@uriah.heep.sax.de>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* $Id$ */
/*
* avrdude interface for Atmel JTAGICE3 programmer
*/
#include "ac_cfg.h"
#include <ctype.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <errno.h>
#include <unistd.h>
#include <sys/time.h>
#include <time.h>
#include "avrdude.h"
#include "libavrdude.h"
#include "crc16.h"
#include "jtag3.h"
#include "jtag3_private.h"
#include "usbdevs.h"
/*
* Private data for this programmer.
*/
struct pdata
{
unsigned short command_sequence; /* Next cmd seqno to issue. */
/*
* See jtag3_read_byte() for an explanation of the flash and
* EEPROM page caches.
*/
unsigned char *flash_pagecache;
unsigned long flash_pageaddr;
unsigned int flash_pagesize;
unsigned char *eeprom_pagecache;
unsigned long eeprom_pageaddr;
unsigned int eeprom_pagesize;
int prog_enabled; /* Cached value of PROGRAMMING status. */
/* JTAG chain stuff */
unsigned char jtagchain[4];
/* Start address of Xmega boot area */
unsigned long boot_start;
/* Flag for triggering HV UPDI */
bool use_hvupdi;
/* Function to set the appropriate clock parameter */
int (*set_sck)(const PROGRAMMER *, unsigned char *);
};
#define PDATA(pgm) ((struct pdata *)(pgm->cookie))
/*
* pgm->flag is marked as "for private use of the programmer".
* The following defines this programmer's use of that field.
*/
#define PGM_FL_IS_DW (0x0001)
#define PGM_FL_IS_PDI (0x0002)
#define PGM_FL_IS_JTAG (0x0004)
#define PGM_FL_IS_EDBG (0x0008)
#define PGM_FL_IS_UPDI (0x0010)
#define PGM_FL_IS_TPI (0x0020)
static int jtag3_open(PROGRAMMER *pgm, const char *port);
static int jtag3_edbg_prepare(const PROGRAMMER *pgm);
static int jtag3_edbg_signoff(const PROGRAMMER *pgm);
static int jtag3_edbg_send(const PROGRAMMER *pgm, unsigned char *data, size_t len);
static int jtag3_edbg_recv_frame(const PROGRAMMER *pgm, unsigned char **msg);
static int jtag3_initialize(const PROGRAMMER *pgm, const AVRPART *p);
static int jtag3_chip_erase(const PROGRAMMER *pgm, const AVRPART *p);
static int jtag3_read_byte(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned long addr, unsigned char * value);
static int jtag3_write_byte(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned long addr, unsigned char data);
static int jtag3_set_sck_period(const PROGRAMMER *pgm, double v);
void jtag3_display(const PROGRAMMER *pgm, const char *p);
void jtag3_print_parms1(const PROGRAMMER *pgm, const char *p, FILE *fp);
static int jtag3_paged_write(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes);
static unsigned char jtag3_memtype(const PROGRAMMER *pgm, const AVRPART *p, unsigned long addr);
static unsigned int jtag3_memaddr(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m, unsigned long addr);
void jtag3_setup(PROGRAMMER * pgm)
{
if ((pgm->cookie = malloc(sizeof(struct pdata))) == 0) {
pmsg_error("out of memory allocating private data\n");
exit(1);
}
memset(pgm->cookie, 0, sizeof(struct pdata));
}
void jtag3_teardown(PROGRAMMER * pgm)
{
free(pgm->cookie);
}
static unsigned long
b4_to_u32(unsigned char *b)
{
unsigned long l;
l = b[0];
l += (unsigned)b[1] << 8;
l += (unsigned)b[2] << 16;
l += (unsigned)b[3] << 24;
return l;
}
static void
u32_to_b4(unsigned char *b, unsigned long l)
{
b[0] = l & 0xff;
b[1] = (l >> 8) & 0xff;
b[2] = (l >> 16) & 0xff;
b[3] = (l >> 24) & 0xff;
}
static unsigned short
b2_to_u16(unsigned char *b)
{
unsigned short l;
l = b[0];
l += (unsigned)b[1] << 8;
return l;
}
static void
u16_to_b2(unsigned char *b, unsigned short l)
{
b[0] = l & 0xff;
b[1] = (l >> 8) & 0xff;
}
static void
u32_to_b4_big_endian(unsigned char *b, unsigned long l)
{
b[0] = (l >> 24) & 0xff;
b[1] = (l >> 16) & 0xff;
b[2] = (l >> 8) & 0xff;
b[3] = l & 0xff;
}
static void
u16_to_b2_big_endian(unsigned char *b, unsigned short l)
{
b[0] = (l >> 8) & 0xff;
b[1] = l & 0xff;
}
static bool matches(const char *s, const char *pat)
{
return strncmp(s, pat, strlen(pat)) == 0;
}
static void jtag3_print_data(unsigned char *b, size_t s)
{
size_t i;
if (s < 2)
return;
for (i = 0; i < s; i++) {
msg_info("0x%02x", b[i]);
if (i % 16 == 15)
msg_info("\n");
else
msg_info(" ");
}
if (i % 16 != 0)
msg_info("\n");
}
static void jtag3_prmsg(const PROGRAMMER *pgm, unsigned char *data, size_t len) {
if (verbose >= 4) {
size_t i;
msg_trace("Raw message:\n");
for (i = 0; i < len; i++) {
msg_trace("%02x ", data[i]);
if (i % 16 == 15)
msg_trace("\n");
else
msg_trace(" ");
}
if (i % 16 != 0)
msg_trace("\n");
}
switch (data[0]) {
case SCOPE_INFO:
msg_info("[info] ");
break;
case SCOPE_GENERAL:
msg_info("[general] ");
break;
case SCOPE_AVR_ISP:
msg_info("[AVRISP] ");
jtag3_print_data(data + 1, len - 1);
return;
case SCOPE_AVR:
msg_info("[AVR] ");
break;
default:
msg_info("[scope 0x%02x] ", data[0]);
break;
}
switch (data[1]) {
case RSP3_OK:
msg_info("OK\n");
break;
case RSP3_FAILED:
msg_info("FAILED");
if (len > 3)
{
char reason[50];
sprintf(reason, "0x%02x", data[3]);
switch (data[3]) {
case RSP3_FAIL_NO_ANSWER:
strcpy(reason, "target does not answer");
break;
case RSP3_FAIL_NO_TARGET_POWER:
strcpy(reason, "no target power");
break;
case RSP3_FAIL_NOT_UNDERSTOOD:
strcpy(reason, "command not understood");
break;
case RSP3_FAIL_WRONG_MODE:
strcpy(reason, "wrong (programming) mode");
break;
case RSP3_FAIL_PDI:
strcpy(reason, "PDI failure");
break;
case RSP3_FAIL_UNSUPP_MEMORY:
strcpy(reason, "unsupported memory type");
break;
case RSP3_FAIL_WRONG_LENGTH:
strcpy(reason, "wrong length in memory access");
break;
case RSP3_FAIL_DEBUGWIRE:
strcpy(reason, "debugWIRE communication failed");
break;
}
msg_info(", reason: %s\n", reason);
}
else {
msg_info(", unspecified reason\n");
}
break;
case RSP3_DATA:
msg_info("Data returned:\n");
jtag3_print_data(data + 2, len - 2);
break;
case RSP3_INFO:
msg_info("Info returned:\n");
for (size_t i = 2; i < len; i++) {
if (isprint(data[i]))
msg_info("%c", data[i]);
else
msg_info("\\%03o", data[i]);
}
msg_info("\n");
break;
case RSP3_PC:
if (len < 7) {
msg_info("PC reply too short\n");
}
else {
unsigned long pc = (data[6] << 24) | (data[5] << 16)
| (data[4] << 8) | data[3];
msg_info("PC 0x%0lx\n", pc);
}
break;
default:
msg_info("unknown message 0x%02x\n", data[1]);
}
}
static int jtag3_errcode(int reason)
{
if (reason == RSP3_FAIL_OCD_LOCKED ||
reason == RSP3_FAIL_CRC_FAILURE)
return LIBAVRDUDE_SOFTFAIL;
return LIBAVRDUDE_GENERAL_FAILURE;
}
static void jtag3_prevent(const PROGRAMMER *pgm, unsigned char *data, size_t len) {
if (verbose >= 4) {
size_t i;
msg_trace("Raw event:\n");
for (i = 0; i < len; i++) {
msg_trace("%02x ", data[i]);
if (i % 16 == 15)
msg_trace("\n");
else
msg_trace(" ");
}
if (i % 16 != 0)
msg_trace("\n");
}
msg_info("Event serial 0x%04x, ", (data[3] << 8) | data[2]);
switch (data[4]) {
case SCOPE_INFO:
msg_info("[info] ");
break;
case SCOPE_GENERAL:
msg_info("[general] ");
break;
case SCOPE_AVR:
msg_info("[AVR] ");
break;
default:
msg_info("[scope 0x%02x] ", data[0]);
break;
}
switch (data[5]) {
case EVT3_BREAK:
msg_info("BREAK");
if (len >= 11) {
msg_info(", PC = 0x%lx, reason ", b4_to_u32(data + 6));
switch (data[10]) {
case 0x00:
msg_info("unspecified");
break;
case 0x01:
msg_info("program break");
break;
case 0x02:
msg_info("data break PDSB");
break;
case 0x03:
msg_info("data break PDMSB");
break;
default:
msg_info("unknown: 0x%02x", data[10]);
}
/* There are two more bytes of data which always appear to be
* 0x01, 0x00. Purpose unknown. */
}
break;
case EVT3_SLEEP:
if (len >= 8 && data[7] == 0)
msg_info("sleeping");
else if (len >= 8 && data[7] == 1)
msg_info("wakeup");
else
msg_info("unknown SLEEP event");
break;
case EVT3_POWER:
if (len >= 8 && data[7] == 0)
msg_info("power-down");
else if (len >= 8 && data[7] == 1)
msg_info("power-up");
else
msg_info("unknown POWER event");
break;
default:
msg_info("UNKNOWN 0x%02x", data[5]);
break;
}
msg_info("\n");
}
int jtag3_send(const PROGRAMMER *pgm, unsigned char *data, size_t len) {
unsigned char *buf;
if (pgm->flag & PGM_FL_IS_EDBG)
return jtag3_edbg_send(pgm, data, len);
msg_debug("\n");
pmsg_debug("jtag3_send(): sending %lu bytes\n", (unsigned long) len);
if ((buf = malloc(len + 4)) == NULL) {
pmsg_error("out of memory");
return -1;
}
buf[0] = TOKEN;
buf[1] = 0; /* dummy */
u16_to_b2(buf + 2, PDATA(pgm)->command_sequence);
memcpy(buf + 4, data, len);
if (serial_send(&pgm->fd, buf, len + 4) != 0) {
pmsg_error("unable to send command to serial port\n");
free(buf);
return -1;
}
free(buf);
return 0;
}
static int jtag3_edbg_send(const PROGRAMMER *pgm, unsigned char *data, size_t len) {
unsigned char buf[USBDEV_MAX_XFER_3];
unsigned char status[USBDEV_MAX_XFER_3];
int rv;
if (verbose >= 4) {
memset(buf, 0, USBDEV_MAX_XFER_3);
memset(status, 0, USBDEV_MAX_XFER_3);
}
msg_debug("\n");
pmsg_debug("jtag3_edbg_send(): sending %lu bytes\n", (unsigned long) len);
/* 4 bytes overhead for CMD, fragment #, and length info */
int max_xfer = pgm->fd.usb.max_xfer;
int nfragments = (len + max_xfer - 1) / max_xfer;
if (nfragments > 1) {
pmsg_debug("jtag3_edbg_send(): fragmenting into %d packets\n", nfragments);
}
int frag;
for (frag = 0; frag < nfragments; frag++) {
int this_len;
/* All fragments have the (CMSIS-DAP layer) CMD, the fragment
* identifier, and the length field. */
buf[0] = EDBG_VENDOR_AVR_CMD;
buf[1] = ((frag + 1) << 4) | nfragments;
if (frag == 0) {
/* Only first fragment has TOKEN and seq#, thus four bytes
* less payload than subsequent fragments. */
this_len = (int) len < max_xfer - 8? (int) len: max_xfer - 8;
buf[2] = (this_len + 4) >> 8;
buf[3] = (this_len + 4) & 0xff;
buf[4] = TOKEN;
buf[5] = 0; /* dummy */
u16_to_b2(buf + 6, PDATA(pgm)->command_sequence);
if(this_len < 0) {
pmsg_error("unexpected this_len = %d\n", this_len);
return -1;
}
memcpy(buf + 8, data, this_len);
}
else {
this_len = (int) len < max_xfer - 4? (int) len: max_xfer - 4;
buf[2] = (this_len) >> 8;
buf[3] = (this_len) & 0xff;
if(this_len < 0) {
pmsg_error("unexpected this_len = %d\n", this_len);
return -1;
}
memcpy(buf + 4, data, this_len);
}
if (serial_send(&pgm->fd, buf, max_xfer) != 0) {
pmsg_notice("jtag3_edbg_send(): unable to send command to serial port\n");
return -1;
}
rv = serial_recv(&pgm->fd, status, max_xfer);
if (rv < 0) {
/* timeout in receive */
pmsg_notice2("jtag3_edbg_send(): timeout receiving packet\n");
return -1;
}
if (status[0] != EDBG_VENDOR_AVR_CMD ||
(frag == nfragments - 1 && status[1] != 0x01)) {
/* what to do in this case? */
pmsg_notice("jtag3_edbg_send(): unexpected response 0x%02x, 0x%02x\n", status[0], status[1]);
}
data += this_len;
len -= this_len;
}
return 0;
}
/*
* Send out all the CMSIS-DAP stuff needed to prepare the ICE.
*/
static int jtag3_edbg_prepare(const PROGRAMMER *pgm) {
unsigned char buf[USBDEV_MAX_XFER_3];
unsigned char status[USBDEV_MAX_XFER_3];
int rv;
msg_debug("\n");
pmsg_debug("jtag3_edbg_prepare()\n");
if (verbose >= 4)
memset(buf, 0, USBDEV_MAX_XFER_3);
buf[0] = CMSISDAP_CMD_CONNECT;
buf[1] = CMSISDAP_CONN_SWD;
if (serial_send(&pgm->fd, buf, pgm->fd.usb.max_xfer) != 0) {
pmsg_error("unable to send command to serial port\n");
return -1;
}
rv = serial_recv(&pgm->fd, status, pgm->fd.usb.max_xfer);
if (rv != pgm->fd.usb.max_xfer) {
pmsg_error("unable to read from serial port (%d)\n", rv);
return -1;
}
if (status[0] != CMSISDAP_CMD_CONNECT ||
status[1] == 0)
pmsg_error("unexpected response 0x%02x, 0x%02x\n", status[0], status[1]);
pmsg_notice2("jtag3_edbg_prepare(): connection status 0x%02x\n", status[1]);
buf[0] = CMSISDAP_CMD_LED;
buf[1] = CMSISDAP_LED_CONNECT;
buf[2] = 1;
if (serial_send(&pgm->fd, buf, pgm->fd.usb.max_xfer) != 0) {
pmsg_error("unable to send command to serial port\n");
return -1;
}
rv = serial_recv(&pgm->fd, status, pgm->fd.usb.max_xfer);
if (rv != pgm->fd.usb.max_xfer) {
pmsg_error("unable to read from serial port (%d)\n", rv);
return -1;
}
if (status[0] != CMSISDAP_CMD_LED ||
status[1] != 0)
pmsg_error("unexpected response 0x%02x, 0x%02x\n", status[0], status[1]);
return 0;
}
/*
* Send out all the CMSIS-DAP stuff when signing off.
*/
static int jtag3_edbg_signoff(const PROGRAMMER *pgm) {
unsigned char buf[USBDEV_MAX_XFER_3];
unsigned char status[USBDEV_MAX_XFER_3];
int rv;
msg_debug("\n");
pmsg_debug("jtag3_edbg_signoff()\n");
if (verbose >= 4)
memset(buf, 0, USBDEV_MAX_XFER_3);
buf[0] = CMSISDAP_CMD_LED;
buf[1] = CMSISDAP_LED_CONNECT;
buf[2] = 0;
if (serial_send(&pgm->fd, buf, pgm->fd.usb.max_xfer) != 0) {
pmsg_notice("jtag3_edbg_signoff(): unable to send command to serial port\n");
return -1;
}
rv = serial_recv(&pgm->fd, status, pgm->fd.usb.max_xfer);
if (rv != pgm->fd.usb.max_xfer) {
pmsg_notice("jtag3_edbg_signoff(): unable to read from serial port (%d)\n", rv);
return -1;
}
if (status[0] != CMSISDAP_CMD_LED ||
status[1] != 0)
pmsg_notice("jtag3_edbg_signoff(): unexpected response 0x%02x, 0x%02x\n", status[0], status[1]);
buf[0] = CMSISDAP_CMD_DISCONNECT;
if (serial_send(&pgm->fd, buf, pgm->fd.usb.max_xfer) != 0) {
pmsg_notice("jtag3_edbg_signoff(): unable to send command to serial port\n");
return -1;
}
rv = serial_recv(&pgm->fd, status, pgm->fd.usb.max_xfer);
if (rv != pgm->fd.usb.max_xfer) {
pmsg_notice("jtag3_edbg_signoff(): unable to read from serial port (%d)\n", rv);
return -1;
}
if (status[0] != CMSISDAP_CMD_DISCONNECT ||
status[1] != 0)
pmsg_notice("jtag3_edbg_signoff(): unexpected response 0x%02x, 0x%02x\n", status[0], status[1]);
return 0;
}
static int jtag3_drain(const PROGRAMMER *pgm, int display) {
return serial_drain(&pgm->fd, display);
}
/*
* Receive one frame, return it in *msg. Received sequence number is
* returned in seqno. Any valid frame will be returned, regardless
* whether it matches the expected sequence number, including event
* notification frames (seqno == 0xffff).
*
* Caller must eventually free the buffer.
*/
static int jtag3_recv_frame(const PROGRAMMER *pgm, unsigned char **msg) {
int rv;
unsigned char *buf = NULL;
if (pgm->flag & PGM_FL_IS_EDBG)
return jtag3_edbg_recv_frame(pgm, msg);
pmsg_trace("jtag3_recv_frame():\n");
if ((buf = malloc(pgm->fd.usb.max_xfer)) == NULL) {
pmsg_error("out of memory\n");
return -1;
}
if (verbose >= 4)
memset(buf, 0, pgm->fd.usb.max_xfer);
rv = serial_recv(&pgm->fd, buf, pgm->fd.usb.max_xfer);
if (rv < 0) {
/* timeout in receive */
pmsg_notice2("jtag3_recv_frame(): timeout receiving packet\n");
free(buf);
return -1;
}
*msg = buf;
return rv;
}
static int jtag3_edbg_recv_frame(const PROGRAMMER *pgm, unsigned char **msg) {
int rv, len = 0;
unsigned char *buf = NULL;
unsigned char *request;
pmsg_trace("jtag3_edbg_recv():\n");
if ((buf = malloc(USBDEV_MAX_XFER_3)) == NULL) {
pmsg_notice("jtag3_edbg_recv(): out of memory\n");
return -1;
}
if ((request = malloc(pgm->fd.usb.max_xfer)) == NULL) {
pmsg_notice("jtag3_edbg_recv(): out of memory\n");
free(buf);
return -1;
}
*msg = buf;
int nfrags = 0;
int thisfrag = 0;
do {
request[0] = EDBG_VENDOR_AVR_RSP;
if (serial_send(&pgm->fd, request, pgm->fd.usb.max_xfer) != 0) {
pmsg_notice("jtag3_edbg_recv(): unable to send CMSIS-DAP vendor command\n");
free(request);
free(*msg);
return -1;
}
rv = serial_recv(&pgm->fd, buf, pgm->fd.usb.max_xfer);
if (rv < 0) {
/* timeout in receive */
pmsg_notice2("jtag3_edbg_recv(): timeout receiving packet\n");
free(*msg);
free(request);
return -1;
}
if (buf[0] != EDBG_VENDOR_AVR_RSP) {
pmsg_notice("jtag3_edbg_recv(): unexpected response 0x%02x\n", buf[0]);
free(*msg);
free(request);
return -1;
}
if (buf[1] == 0) {
// Documentation says:
// "FragmentInfo 0x00 indicates that no response data is
// available, and the rest of the packet is ignored."
pmsg_notice("jtag3_edbg_recv(): no response available\n");
free(*msg);
free(request);
return -1;
}
/* calculate fragment information */
if (thisfrag == 0) {
/* first fragment */
nfrags = buf[1] & 0x0F;
thisfrag = 1;
} else {
if (nfrags != (buf[1] & 0x0F)) {
pmsg_notice("jtag3_edbg_recv(): "
"Inconsistent # of fragments; had %d, now %d\n",
nfrags, (buf[1] & 0x0F));
free(*msg);
free(request);
return -1;
}
}
if (thisfrag != ((buf[1] >> 4) & 0x0F)) {
pmsg_notice("jtag3_edbg_recv(): "
"inconsistent fragment number; expect %d, got %d\n",
thisfrag, ((buf[1] >> 4) & 0x0F));
free(*msg);
free(request);
return -1;
}
int thislen = (buf[2] << 8) | buf[3];
if (thislen > rv + 4) {
pmsg_notice("jtag3_edbg_recv(): unexpected length value (%d > %d)\n", thislen, rv + 4);
thislen = rv + 4;
}
if (len + thislen > USBDEV_MAX_XFER_3) {
pmsg_notice("jtag3_edbg_recv(): length exceeds max size (%d > %d)\n", len + thislen, USBDEV_MAX_XFER_3);
thislen = USBDEV_MAX_XFER_3 - len;
}
memmove(buf, buf + 4, thislen);
thisfrag++;
len += thislen;
buf += thislen;
} while (thisfrag <= nfrags);
free(request);
return len;
}
int jtag3_recv(const PROGRAMMER *pgm, unsigned char **msg) {
unsigned short r_seqno;
int rv;
for (;;) {
if ((rv = jtag3_recv_frame(pgm, msg)) <= 0)
return rv;
if ((rv & USB_RECV_FLAG_EVENT) != 0) {
if (verbose >= 3)
jtag3_prevent(pgm, *msg, rv & USB_RECV_LENGTH_MASK);
free(*msg);
continue;
}
rv &= USB_RECV_LENGTH_MASK;
r_seqno = ((*msg)[2] << 8) | (*msg)[1];
pmsg_debug("jtag3_recv(): "
"Got message seqno %d (command_sequence == %d)\n", r_seqno, PDATA(pgm)->command_sequence);
if (r_seqno == PDATA(pgm)->command_sequence) {
if (++(PDATA(pgm)->command_sequence) == 0xffff)
PDATA(pgm)->command_sequence = 0;
/*
* We move the payload to the beginning of the buffer, to make
* the job easier for the caller. We have to return the
* original pointer though, as the caller must free() it.
*/
rv -= 3;
if (rv < 0) {
pmsg_error("unexpected return value %d from jtag3_recv_frame()\n", rv);
free(*msg);
return -1;
}
memmove(*msg, *msg + 3, rv);
return rv;
}
pmsg_notice2("jtag3_recv(): "
"got wrong sequence number, %u != %u\n", r_seqno, PDATA(pgm)->command_sequence);
free(*msg);
}
}
int jtag3_command(const PROGRAMMER *pgm, unsigned char *cmd, unsigned int cmdlen,
unsigned char **resp, const char *descr) {
int status;
unsigned char c;
pmsg_notice2("sending %s command: ", descr);
jtag3_send(pgm, cmd, cmdlen);
status = jtag3_recv(pgm, resp);
if (status <= 0) {
msg_notice2("\n");
pmsg_notice2("%s command: timeout/error communicating with programmer (status %d)\n", descr, status);
if (status == 0)
free(*resp);
return LIBAVRDUDE_GENERAL_FAILURE;
} else if (verbose >= 3) {
msg_info("\n");
jtag3_prmsg(pgm, *resp, status);
} else {
msg_notice2("0x%02x (%d bytes msg)\n", (*resp)[1], status);
}
c = (*resp)[1] & RSP3_STATUS_MASK;
if (c != RSP3_OK) {
if ((c == RSP3_FAILED) &&
((*resp)[3] == RSP3_FAIL_OCD_LOCKED || (*resp)[3] == RSP3_FAIL_CRC_FAILURE)) {
pmsg_error("device is locked; chip erase required to unlock\n");
} else {
pmsg_notice("bad response to %s command: 0x%02x\n", descr, c);
}
status = (*resp)[3];
free(*resp);
resp = 0;
return jtag3_errcode(status);
}
return status;
}
int jtag3_getsync(const PROGRAMMER *pgm, int mode) {
unsigned char buf[3], *resp;
pmsg_debug("jtag3_getsync()\n");
/* XplainedMini boards do not need this, and early revisions had a
* firmware bug where they complained about it. */
if ((pgm->flag & PGM_FL_IS_EDBG) &&
!matches(ldata(lfirst(pgm->id)), "xplainedmini")) {
if (jtag3_edbg_prepare(pgm) < 0) {
return -1;
}
}
/* Get the sign-on information. */
buf[0] = SCOPE_GENERAL;
buf[1] = CMD3_SIGN_ON;
buf[2] = 0;
if (jtag3_command(pgm, buf, 3, &resp, "sign-on") < 0)
return -1;
free(resp);
return 0;
}
/*
* issue the 'chip erase' command to the AVR device
*/
static int jtag3_chip_erase(const PROGRAMMER *pgm, const AVRPART *p) {
unsigned char buf[8], *resp;
buf[0] = SCOPE_AVR;
buf[1] = CMD3_ERASE_MEMORY;
buf[2] = 0;
buf[3] = XMEGA_ERASE_CHIP;
buf[4] = buf[5] = buf[6] = buf[7] = 0; /* page address */
if (jtag3_command(pgm, buf, 8, &resp, "chip erase") < 0)
return -1;
free(resp);
return 0;
}
/*
* UPDI 'unlock' -> 'enter progmode' with chip erase key
*/
static int jtag3_unlock_erase_key(const PROGRAMMER *pgm, const AVRPART *p) {
unsigned char buf[8], *resp;
buf[0] = 1; /* Enable */
if (jtag3_setparm(pgm, SCOPE_AVR, SET_GET_CTXT_OPTIONS, PARM3_OPT_CHIP_ERASE_TO_ENTER, buf, 1) < 0)
return -1;
buf[0] = SCOPE_AVR;
buf[1] = CMD3_ENTER_PROGMODE;
buf[2] = 0;
if (jtag3_command(pgm, buf, 3, &resp, "enter progmode") < 0)
return -1;
PDATA(pgm)->prog_enabled = 1;
buf[0] = 0; /* Disable */
if (jtag3_setparm(pgm, SCOPE_AVR, SET_GET_CTXT_OPTIONS, PARM3_OPT_CHIP_ERASE_TO_ENTER, buf, 1) < 0)
return -1;
free(resp);
return 0;
}
/*
* There is no chip erase functionality in debugWire mode.
*/
static int jtag3_chip_erase_dw(const PROGRAMMER *pgm, const AVRPART *p) {
pmsg_error("chip erase not supported in debugWire mode\n");
return 0;
}
static int jtag3_program_enable_dummy(const PROGRAMMER *pgm, const AVRPART *p) {
return 0;
}
static int jtag3_program_enable(const PROGRAMMER *pgm) {
unsigned char buf[3], *resp;
int status;
if (PDATA(pgm)->prog_enabled)
return 0;
buf[0] = SCOPE_AVR;
buf[1] = CMD3_ENTER_PROGMODE;
buf[2] = 0;
if ((status = jtag3_command(pgm, buf, 3, &resp, "enter progmode")) >= 0) {
free(resp);
PDATA(pgm)->prog_enabled = 1;
return LIBAVRDUDE_SUCCESS;
}
return status;
}
static int jtag3_program_disable(const PROGRAMMER *pgm) {
unsigned char buf[3], *resp;
if (!PDATA(pgm)->prog_enabled)
return 0;
buf[0] = SCOPE_AVR;
buf[1] = CMD3_LEAVE_PROGMODE;
buf[2] = 0;
if (jtag3_command(pgm, buf, 3, &resp, "leave progmode") < 0)
return -1;
free(resp);
PDATA(pgm)->prog_enabled = 0;
return 0;
}
static int jtag3_set_sck_xmega_pdi(const PROGRAMMER *pgm, unsigned char *clk) {
return jtag3_setparm(pgm, SCOPE_AVR, 1, PARM3_CLK_XMEGA_PDI, clk, 2);
}
static int jtag3_set_sck_xmega_jtag(const PROGRAMMER *pgm, unsigned char *clk) {
return jtag3_setparm(pgm, SCOPE_AVR, 1, PARM3_CLK_XMEGA_JTAG, clk, 2);
}
static int jtag3_set_sck_mega_jtag(const PROGRAMMER *pgm, unsigned char *clk) {
return jtag3_setparm(pgm, SCOPE_AVR, 1, PARM3_CLK_MEGA_PROG, clk, 2);
}
/*
* initialize the AVR device and prepare it to accept commands
*/
static int jtag3_initialize(const PROGRAMMER *pgm, const AVRPART *p) {
unsigned char conn = 0, parm[4];
const char *ifname;
unsigned char cmd[4], *resp;
int status;
/*
* At least, as of firmware 2.12, the JTAGICE3 doesn't handle
* splitting packets correctly. On a large transfer, the first
* split packets are correct, but remaining packets contain just
* garbage.
*
* We move the check here so in case future firmware versions fix
* this, the check below can be made dependended on the actual
* firmware level. Retrieving the firmware version can always be
* accomplished with USB 1.1 (64 byte max) packets.
*
* Allow to override the check by -F (so users could try on newer
* firmware), but warn loudly.
*/
if (jtag3_getparm(pgm, SCOPE_GENERAL, 0, PARM3_FW_MAJOR, parm, 2) < 0)
return -1;
if (pgm->fd.usb.max_xfer < USBDEV_MAX_XFER_3 && (pgm->flag & PGM_FL_IS_EDBG) == 0) {
if (ovsigck) {
pmsg_warning("JTAGICE3's firmware %d.%d is broken on USB 1.1 connections\n", parm[0], parm[1]);
imsg_warning("forced to continue by option -F; THIS PUTS THE DEVICE'S DATA INTEGRITY AT RISK!\n");
} else {
pmsg_error("JTAGICE3's firmware %d.%d is broken on USB 1.1 connections\n", parm[0], parm[1]);
return -1;
}
}
if (pgm->flag & PGM_FL_IS_DW) {
ifname = "debugWire";
if (p->prog_modes & PM_debugWIRE)
conn = PARM3_CONN_DW;
} else if (pgm->flag & PGM_FL_IS_PDI) {
ifname = "PDI";
if (p->prog_modes & PM_PDI)
conn = PARM3_CONN_PDI;
} else if (pgm->flag & PGM_FL_IS_UPDI) {
ifname = "UPDI";
if (p->prog_modes & PM_UPDI)
conn = PARM3_CONN_UPDI;
} else {
ifname = "JTAG";
if (p->prog_modes & (PM_JTAG | PM_JTAGmkI | PM_XMEGAJTAG | PM_AVR32JTAG))
conn = PARM3_CONN_JTAG;
}
if (conn == 0) {
pmsg_error("part %s has no %s interface\n", p->desc, ifname);
return -1;
}
if (p->prog_modes & PM_PDI)
parm[0] = PARM3_ARCH_XMEGA;
else if (p->prog_modes & PM_UPDI)
parm[0] = PARM3_ARCH_UPDI;
else if (p->prog_modes & PM_debugWIRE)
parm[0] = PARM3_ARCH_TINY;
else
parm[0] = PARM3_ARCH_MEGA;
if (jtag3_setparm(pgm, SCOPE_AVR, 0, PARM3_ARCH, parm, 1) < 0)
return -1;
parm[0] = PARM3_SESS_PROGRAMMING;
if (jtag3_setparm(pgm, SCOPE_AVR, 0, PARM3_SESS_PURPOSE, parm, 1) < 0)
return -1;
parm[0] = conn;
if (jtag3_setparm(pgm, SCOPE_AVR, 1, PARM3_CONNECTION, parm, 1) < 0)
return -1;
if (conn == PARM3_CONN_PDI || conn == PARM3_CONN_UPDI)
PDATA(pgm)->set_sck = jtag3_set_sck_xmega_pdi;
else if (conn == PARM3_CONN_JTAG) {
if (p->prog_modes & PM_PDI)
PDATA(pgm)->set_sck = jtag3_set_sck_xmega_jtag;
else
PDATA(pgm)->set_sck = jtag3_set_sck_mega_jtag;
}
if (pgm->bitclock != 0.0 && PDATA(pgm)->set_sck != NULL) {
unsigned int clock = 1E-3 / pgm->bitclock; /* kHz */
pmsg_notice2("jtag3_initialize(): "
"trying to set JTAG clock to %u kHz\n", clock);
parm[0] = clock & 0xff;
parm[1] = (clock >> 8) & 0xff;
if (PDATA(pgm)->set_sck(pgm, parm) < 0)
return -1;
}
jtag3_print_parms1(pgm, progbuf, stderr);
if (conn == PARM3_CONN_JTAG) {
pmsg_notice2("jtag3_initialize(): "
"trying to set JTAG daisy-chain info to %d,%d,%d,%d\n",
PDATA(pgm)->jtagchain[0], PDATA(pgm)->jtagchain[1],
PDATA(pgm)->jtagchain[2], PDATA(pgm)->jtagchain[3]);
if (jtag3_setparm(pgm, SCOPE_AVR, 1, PARM3_JTAGCHAIN, PDATA(pgm)->jtagchain, 4) < 0)
return -1;
}
/* set device descriptor data */
if ((p->prog_modes & PM_PDI)) {
struct xmega_device_desc xd;
LNODEID ln;
AVRMEM * m;
u16_to_b2(xd.nvm_base_addr, p->nvm_base);
u16_to_b2(xd.mcu_base_addr, p->mcu_base);
for (ln = lfirst(p->mem); ln; ln = lnext(ln)) {
m = ldata(ln);
if (strcmp(m->desc, "flash") == 0) {
if (m->readsize != 0 && m->readsize < m->page_size)
PDATA(pgm)->flash_pagesize = m->readsize;
else
PDATA(pgm)->flash_pagesize = m->page_size;
u16_to_b2(xd.flash_page_size, m->page_size);
} else if (strcmp(m->desc, "eeprom") == 0) {
PDATA(pgm)->eeprom_pagesize = m->page_size;
xd.eeprom_page_size = m->page_size;
u16_to_b2(xd.eeprom_size, m->size);
u32_to_b4(xd.nvm_eeprom_offset, m->offset);
} else if (strcmp(m->desc, "application") == 0) {
u32_to_b4(xd.app_size, m->size);
u32_to_b4(xd.nvm_app_offset, m->offset);
} else if (strcmp(m->desc, "boot") == 0) {
u16_to_b2(xd.boot_size, m->size);
u32_to_b4(xd.nvm_boot_offset, m->offset);
} else if (strcmp(m->desc, "fuse1") == 0) {
u32_to_b4(xd.nvm_fuse_offset, m->offset & ~7);
} else if (matches(m->desc, "lock")) {
u32_to_b4(xd.nvm_lock_offset, m->offset);
} else if (strcmp(m->desc, "usersig") == 0 ||
strcmp(m->desc, "userrow") == 0) {
u32_to_b4(xd.nvm_user_sig_offset, m->offset);
} else if (strcmp(m->desc, "prodsig") == 0) {
u32_to_b4(xd.nvm_prod_sig_offset, m->offset);
} else if (strcmp(m->desc, "data") == 0) {
u32_to_b4(xd.nvm_data_offset, m->offset);
}
}
if (jtag3_setparm(pgm, SCOPE_AVR, 2, PARM3_DEVICEDESC, (unsigned char *)&xd, sizeof xd) < 0)
return -1;
}
else if ((p->prog_modes & PM_UPDI)) {
struct updi_device_desc xd;
LNODEID ln;
AVRMEM *m;
u16_to_b2(xd.nvm_base_addr, p->nvm_base);
u16_to_b2(xd.ocd_base_addr, p->ocd_base);
xd.hvupdi_variant = p->hvupdi_variant;
for (ln = lfirst(p->mem); ln; ln = lnext(ln)) {
m = ldata(ln);
if (strcmp(m->desc, "flash") == 0) {
u16_to_b2(xd.prog_base, m->offset&0xFFFF);
xd.prog_base_msb = m->offset>>16;
if (m->readsize != 0 && m->readsize < m->page_size)
PDATA(pgm)->flash_pagesize = m->readsize;
else
PDATA(pgm)->flash_pagesize = m->page_size;
xd.flash_page_size = m->page_size & 0xFF;
xd.flash_page_size_msb = (m->page_size)>>8;
u32_to_b4(xd.flash_bytes, m->size);
if (m->offset > 0xFFFF)
xd.address_mode = UPDI_ADDRESS_MODE_24BIT;
else
xd.address_mode = UPDI_ADDRESS_MODE_16BIT;
}
else if (strcmp(m->desc, "eeprom") == 0) {
PDATA(pgm)->eeprom_pagesize = m->page_size;
xd.eeprom_page_size = m->page_size;
u16_to_b2(xd.eeprom_bytes, m->size);
u16_to_b2(xd.eeprom_base, m->offset);
}
else if (strcmp(m->desc, "usersig") == 0 ||
strcmp(m->desc, "userrow") == 0) {
u16_to_b2(xd.user_sig_bytes, m->size);
u16_to_b2(xd.user_sig_base, m->offset);
}
else if (strcmp(m->desc, "signature") == 0) {
u16_to_b2(xd.signature_base, m->offset);
xd.device_id[0] = p->signature[1];
xd.device_id[1] = p->signature[2];
}
else if (strcmp(m->desc, "fuses") == 0) {
xd.fuses_bytes = m->size;
u16_to_b2(xd.fuses_base, m->offset);
}
else if (strcmp(m->desc, "lock") == 0) {
u16_to_b2(xd.lockbits_base, m->offset);
}
}
// Generate UPDI high-voltage pulse if user asks for it and hardware supports it
if (p->prog_modes & PM_UPDI &&
PDATA(pgm)->use_hvupdi == true &&
p->hvupdi_variant != HV_UPDI_VARIANT_1) {
parm[0] = PARM3_UPDI_HV_NONE;
for (LNODEID ln = lfirst(pgm->hvupdi_support); ln; ln = lnext(ln)) {
if(*(int *) ldata(ln) == p->hvupdi_variant) {
pmsg_notice("sending HV pulse to targets %s pin\n",
p->hvupdi_variant == HV_UPDI_VARIANT_0? "UPDI": "RESET");
parm[0] = PARM3_UPDI_HV_SIMPLE_PULSE;
break;
}
}
if (parm[0] == PARM3_UPDI_HV_NONE) {
pmsg_error("%s does not support sending HV pulse to target %s\n", pgm->desc, p->desc);
return -1;
}
if (jtag3_setparm(pgm, SCOPE_AVR, 3, PARM3_OPT_12V_UPDI_ENABLE, parm, 1) < 0)
return -1;
}
u16_to_b2(xd.default_min_div1_voltage, DEFAULT_MINIMUM_CHARACTERISED_DIV1_VOLTAGE_MV);
u16_to_b2(xd.default_min_div2_voltage, DEFAULT_MINIMUM_CHARACTERISED_DIV2_VOLTAGE_MV);
u16_to_b2(xd.default_min_div4_voltage, DEFAULT_MINIMUM_CHARACTERISED_DIV4_VOLTAGE_MV);
u16_to_b2(xd.default_min_div8_voltage, DEFAULT_MINIMUM_CHARACTERISED_DIV8_VOLTAGE_MV);
u16_to_b2(xd.pdi_pad_fmax, MAX_FREQUENCY_SHARED_UPDI_PIN);
xd.syscfg_offset = FUSES_SYSCFG0_OFFSET;
xd.syscfg_write_mask_and = 0xFF;
xd.syscfg_write_mask_or = 0x00;
xd.syscfg_erase_mask_and = 0xFF;
xd.syscfg_erase_mask_or = 0x00;
msg_notice2("UPDI SET: \n\t"
"xd->prog_base_msb=%x\n\t"
"xd->prog_base=%x %x\n\t"
"xd->flash_page_size_msb=%x\n\t"
"xd->flash_page_size=%x\n\t"
"xd->eeprom_page_size=%x\n\t"
"xd->nvmctrl=%x %x\n\t"
"xd->ocd=%x %x\n\t"
"xd->address_mode=%x\n",
xd.prog_base_msb,
xd.prog_base[0], xd.prog_base[1],
xd.flash_page_size_msb,
xd.flash_page_size,
xd.eeprom_page_size,
xd.nvm_base_addr[0], xd.nvm_base_addr[1],
xd.ocd_base_addr[0], xd.ocd_base_addr[1],
xd.address_mode);
if (jtag3_setparm(pgm, SCOPE_AVR, 2, PARM3_DEVICEDESC, (unsigned char *)&xd, sizeof xd) < 0)
return -1;
}
else {
struct mega_device_desc md;
LNODEID ln;
AVRMEM * m;
unsigned int flashsize = 0;
memset(&md, 0, sizeof md);
for (ln = lfirst(p->mem); ln; ln = lnext(ln)) {
m = ldata(ln);
if (strcmp(m->desc, "flash") == 0) {
if (m->readsize != 0 && m->readsize < m->page_size)
PDATA(pgm)->flash_pagesize = m->readsize;
else
PDATA(pgm)->flash_pagesize = m->page_size;
u16_to_b2(md.flash_page_size, m->page_size);
u32_to_b4(md.flash_size, (flashsize = m->size));
// do we need it? just a wild guess
u32_to_b4(md.boot_address, (m->size - m->page_size * 4) / 2);
} else if (strcmp(m->desc, "eeprom") == 0) {
PDATA(pgm)->eeprom_pagesize = m->page_size;
md.eeprom_page_size = m->page_size;
u16_to_b2(md.eeprom_size, m->size);
}
}
u16_to_b2(md.sram_offset, 0x100); // do we need it? YES, but it won't be used
if (p->ocdrev == -1) {
int ocdrev;
/* lacking a proper definition, guess the OCD revision */
if (p->prog_modes & PM_debugWIRE)
ocdrev = 1; /* exception: ATtiny13, 2313, 4313 */
else if (flashsize > 128 * 1024)
ocdrev = 4;
else
ocdrev = 3; /* many exceptions from that, actually */
pmsg_warning("part definition for %s lacks ocdrev; guessing %d\n", p->desc, ocdrev);
md.ocd_revision = ocdrev;
} else {
md.ocd_revision = p->ocdrev;
}
md.always_one = 1;
md.allow_full_page_bitstream = (p->flags & AVRPART_ALLOWFULLPAGEBITSTREAM) != 0;
md.idr_address = p->idr;
unsigned char eecr = p->eecr? p->eecr: 0x3f; // Use default 0x3f if not set
md.eearh_address = eecr - 0x20 + 3;
md.eearl_address = eecr - 0x20 + 2;
md.eecr_address = eecr - 0x20;
md.eedr_address = eecr - 0x20 + 1;
md.spmcr_address = p->spmcr;
//md.osccal_address = p->osccal; // do we need it at all?
if (jtag3_setparm(pgm, SCOPE_AVR, 2, PARM3_DEVICEDESC, (unsigned char *)&md, sizeof md) < 0)
return -1;
}
int use_ext_reset;
for (use_ext_reset = 0; use_ext_reset <= 1; use_ext_reset++) {
cmd[0] = SCOPE_AVR;
cmd[1] = CMD3_SIGN_ON;
cmd[2] = 0;
cmd[3] = use_ext_reset; /* external reset */
if ((status = jtag3_command(pgm, cmd, 4, &resp, "AVR sign-on")) >= 0)
break;
pmsg_notice("retrying with external reset applied\n");
}
if (use_ext_reset > 1) {
if(strcmp(pgm->type, "JTAGICE3") == 0 && (p->prog_modes & (PM_JTAG | PM_JTAGmkI | PM_XMEGAJTAG | PM_AVR32JTAG)))
pmsg_error("JTAGEN fuse disabled?\n");
return -1;
}
/*
* Depending on the target connection, there are three different
* possible replies of the ICE. For a JTAG connection, the reply
* format is RSP3_DATA, followed by 4 bytes of the JTAG ID read from
* the device (followed by a trailing 0).
* For a UPDI connection the reply format is RSP3_DATA, followed by
* 4 bytes of the SIB Family_ID read from the device (followed by a
* trailing 0).
* For all other connections
* (except ISP which is handled completely differently, but that
* doesn't apply here anyway), the response is just RSP_OK.
*/
if (resp[1] == RSP3_DATA && status >= 7) {
if (p->prog_modes & PM_UPDI) {
/* Partial Family_ID has been returned */
pmsg_notice("partial Family_ID returned: \"%c%c%c%c\"\n",
resp[3], resp[4], resp[5], resp[6]);
}
else
/* JTAG ID has been returned */
pmsg_notice("JTAG ID returned: 0x%02x 0x%02x 0x%02x 0x%02x\n",
resp[3], resp[4], resp[5], resp[6]);
}
free(resp);
PDATA(pgm)->boot_start = ULONG_MAX;
if (p->prog_modes & PM_PDI) {
// Find the border between application and boot area
AVRMEM *bootmem = avr_locate_mem(p, "boot");
AVRMEM *flashmem = avr_locate_mem(p, "flash");
if (bootmem == NULL || flashmem == NULL) {
pmsg_error("cannot locate flash or boot memories in description\n");
} else {
PDATA(pgm)->boot_start = bootmem->offset - flashmem->offset;
}
}
free(PDATA(pgm)->flash_pagecache);
free(PDATA(pgm)->eeprom_pagecache);
if ((PDATA(pgm)->flash_pagecache = malloc(PDATA(pgm)->flash_pagesize)) == NULL) {
pmsg_error("out of memory\n");
return -1;
}
if ((PDATA(pgm)->eeprom_pagecache = malloc(PDATA(pgm)->eeprom_pagesize)) == NULL) {
pmsg_error("out of memory\n");
free(PDATA(pgm)->flash_pagecache);
return -1;
}
PDATA(pgm)->flash_pageaddr = PDATA(pgm)->eeprom_pageaddr = (unsigned long)-1L;
return 0;
}
static void jtag3_disable(const PROGRAMMER *pgm) {
free(PDATA(pgm)->flash_pagecache);
PDATA(pgm)->flash_pagecache = NULL;
free(PDATA(pgm)->eeprom_pagecache);
PDATA(pgm)->eeprom_pagecache = NULL;
/*
* jtag3_program_disable() doesn't do anything if the
* device is currently not in programming mode, so just
* call it unconditionally here.
*/
(void)jtag3_program_disable(pgm);
}
static void jtag3_enable(PROGRAMMER *pgm, const AVRPART *p) {
return;
}
static int jtag3_parseextparms(const PROGRAMMER *pgm, const LISTID extparms) {
LNODEID ln;
const char *extended_param;
int rv = 0;
for (ln = lfirst(extparms); ln; ln = lnext(ln)) {
extended_param = ldata(ln);
if (matches(extended_param, "jtagchain=")) {
unsigned int ub, ua, bb, ba;
if (sscanf(extended_param, "jtagchain=%u,%u,%u,%u", &ub, &ua, &bb, &ba) != 4) {
pmsg_error("invalid JTAG chain '%s'\n", extended_param);
rv = -1;
continue;
}
pmsg_notice2("jtag3_parseextparms(): JTAG chain parsed as:\n");
imsg_notice2("%u units before, %u units after, %u bits before, %u bits after\n",
ub, ua, bb, ba);
PDATA(pgm)->jtagchain[0] = ub;
PDATA(pgm)->jtagchain[1] = ua;
PDATA(pgm)->jtagchain[2] = bb;
PDATA(pgm)->jtagchain[3] = ba;
continue;
}
else if ((strcmp(extended_param, "hvupdi") == 0) &&
(lsize(pgm->hvupdi_support) > 1)) {
PDATA(pgm)->use_hvupdi = true;
continue;
}
pmsg_error("invalid extended parameter '%s'\n", extended_param);
rv = -1;
}
return rv;
}
int jtag3_open_common(PROGRAMMER *pgm, const char *port) {
union pinfo pinfo;
LNODEID usbpid;
int rv = -1;
#if !defined(HAVE_LIBUSB) && !defined(HAVE_LIBHIDAPI)
pmsg_error("was compiled without USB or HIDAPI support\n");
return -1;
#endif
if (!matches(port, "usb")) {
pmsg_error("JTAGICE3/EDBG port names must start with usb\n");
return -1;
}
if (pgm->usbvid)
pinfo.usbinfo.vid = pgm->usbvid;
else
pinfo.usbinfo.vid = USB_VENDOR_ATMEL;
/* If the config entry did not specify a USB PID, insert the default one. */
if (lfirst(pgm->usbpid) == NULL)
ladd(pgm->usbpid, (void *)USB_DEVICE_JTAGICE3);
#if defined(HAVE_LIBHIDAPI)
/*
* Try HIDAPI first. LibUSB is more generic, but might then cause
* troubles for HID-class devices in some OSes (like Windows).
*/
serdev = &usbhid_serdev;
for (usbpid = lfirst(pgm->usbpid); rv < 0 && usbpid != NULL; usbpid = lnext(usbpid)) {
pinfo.usbinfo.flags = PINFO_FL_SILENT;
pinfo.usbinfo.pid = *(int *)(ldata(usbpid));
pgm->fd.usb.max_xfer = USBDEV_MAX_XFER_3;
pgm->fd.usb.rep = USBDEV_BULK_EP_READ_3;
pgm->fd.usb.wep = USBDEV_BULK_EP_WRITE_3;
pgm->fd.usb.eep = 0;
strcpy(pgm->port, port);
rv = serial_open(port, pinfo, &pgm->fd);
}
if (rv < 0) {
#endif /* HAVE_LIBHIDAPI */
#if defined(HAVE_LIBUSB)
serdev = &usb_serdev_frame;
for (usbpid = lfirst(pgm->usbpid); rv < 0 && usbpid != NULL; usbpid = lnext(usbpid)) {
pinfo.usbinfo.flags = PINFO_FL_SILENT;
pinfo.usbinfo.pid = *(int *)(ldata(usbpid));
pgm->fd.usb.max_xfer = USBDEV_MAX_XFER_3;
pgm->fd.usb.rep = USBDEV_BULK_EP_READ_3;
pgm->fd.usb.wep = USBDEV_BULK_EP_WRITE_3;
pgm->fd.usb.eep = USBDEV_EVT_EP_READ_3;
strcpy(pgm->port, port);
rv = serial_open(port, pinfo, &pgm->fd);
}
#endif /* HAVE_LIBUSB */
#if defined(HAVE_LIBHIDAPI)
}
#endif
if (rv < 0) {
// Check if SNAP or PICkit4 is in PIC mode
for(LNODEID ln=lfirst(pgm->id); ln; ln=lnext(ln)) {
if (matches(ldata(ln), "snap")) {
pinfo.usbinfo.vid = USB_VENDOR_MICROCHIP;
pinfo.usbinfo.pid = USB_DEVICE_SNAP_PIC_MODE;
int pic_mode = serial_open(port, pinfo, &pgm->fd);
if(pic_mode < 0) {
// Retry with alternative USB PID
pinfo.usbinfo.pid = USB_DEVICE_SNAP_PIC_MODE_ALT;
pic_mode = serial_open(port, pinfo, &pgm->fd);
}
if(pic_mode >= 0) {
msg_error("\n");
pmsg_error("MPLAB SNAP in PIC mode detected!\n");
imsg_error("Use MPLAB X or Microchip Studio to switch to AVR mode\n\n");
return -1;
}
} else if(matches(ldata(ln), "pickit4")) {
pinfo.usbinfo.vid = USB_VENDOR_MICROCHIP;
pinfo.usbinfo.pid = USB_DEVICE_PICKIT4_PIC_MODE;
int pic_mode = serial_open(port, pinfo, &pgm->fd);
if(pic_mode < 0) {
// Retry with alternative USB PID
pinfo.usbinfo.pid = USB_DEVICE_PICKIT4_PIC_MODE_ALT;
pic_mode = serial_open(port, pinfo, &pgm->fd);
}
if(pic_mode >= 0) {
msg_error("\n");
pmsg_error("PICkit4 in PIC mode detected!\n");
imsg_error("Use MPLAB X or Microchip Studio to switch to AVR mode\n\n");
return -1;
}
}
}
pmsg_error("no device found matching VID 0x%04x and PID list: ",
(unsigned) pinfo.usbinfo.vid);
int notfirst = 0;
for (usbpid = lfirst(pgm->usbpid); usbpid != NULL; usbpid = lnext(usbpid)) {
if (notfirst)
msg_error(", ");
msg_error("0x%04x", (unsigned int)(*(int *)(ldata(usbpid))));
notfirst = 1;
}
char *serno;
if ((serno = strchr(port, ':')))
msg_error(" with SN %s", ++serno);
msg_error("\n");
return -1;
}
if (pgm->fd.usb.eep == 0) {
/* The event EP has been deleted by usb_open(), so we are
running on a CMSIS-DAP device, using EDBG protocol */
pgm->flag |= PGM_FL_IS_EDBG;
pmsg_notice("found CMSIS-DAP compliant device, using EDBG protocol\n");
}
// Make USB serial number available to programmer
if (serdev && serdev->usbsn)
pgm->usbsn = serdev->usbsn;
/*
* drain any extraneous input
*/
jtag3_drain(pgm, 0);
return 0;
}
static int jtag3_open(PROGRAMMER *pgm, const char *port) {
pmsg_notice2("jtag3_open()\n");
if (jtag3_open_common(pgm, port) < 0)
return -1;
if (jtag3_getsync(pgm, PARM3_CONN_JTAG) < 0)
return -1;
return 0;
}
static int jtag3_open_dw(PROGRAMMER *pgm, const char *port) {
pmsg_notice2("jtag3_open_dw()\n");
if (jtag3_open_common(pgm, port) < 0)
return -1;
if (jtag3_getsync(pgm, PARM3_CONN_DW) < 0)
return -1;
return 0;
}
static int jtag3_open_pdi(PROGRAMMER *pgm, const char *port) {
pmsg_notice2("jtag3_open_pdi()\n");
if (jtag3_open_common(pgm, port) < 0)
return -1;
if (jtag3_getsync(pgm, PARM3_CONN_PDI) < 0)
return -1;
return 0;
}
static int jtag3_open_updi(PROGRAMMER *pgm, const char *port) {
pmsg_notice2("jtag3_open_updi()\n");
LNODEID ln;
pmsg_notice2("HV UPDI support:");
for (ln = lfirst(pgm->hvupdi_support); ln; ln = lnext(ln))
msg_notice2(" %d", *(int *) ldata(ln));
msg_notice2("\n");
if (jtag3_open_common(pgm, port) < 0)
return -1;
if (jtag3_getsync(pgm, PARM3_CONN_UPDI) < 0)
return -1;
return 0;
}
void jtag3_close(PROGRAMMER * pgm) {
unsigned char buf[4], *resp;
pmsg_notice2("jtag3_close()\n");
buf[0] = SCOPE_AVR;
buf[1] = CMD3_SIGN_OFF;
buf[2] = buf[3] = 0;
if (jtag3_command(pgm, buf, 3, &resp, "AVR sign-off") >= 0)
free(resp);
buf[0] = SCOPE_GENERAL;
buf[1] = CMD3_SIGN_OFF;
if (jtag3_command(pgm, buf, 4, &resp, "sign-off") >= 0)
free(resp);
/* XplainedMini boards do not need this, and early revisions had a
* firmware bug where they complained about it. */
if ((pgm->flag & PGM_FL_IS_EDBG) &&
!matches(ldata(lfirst(pgm->id)), "xplainedmini")) {
jtag3_edbg_signoff(pgm);
}
serial_close(&pgm->fd);
pgm->fd.ifd = -1;
}
static int jtag3_page_erase(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int addr) {
unsigned char cmd[8], *resp;
pmsg_notice2("jtag3_page_erase(.., %s, 0x%x)\n", m->desc, addr);
if (!(p->prog_modes & (PM_PDI | PM_UPDI))) {
pmsg_error("page erase not supported\n");
return -1;
}
if (jtag3_program_enable(pgm) < 0)
return -1;
cmd[0] = SCOPE_AVR;
cmd[1] = CMD3_ERASE_MEMORY;
cmd[2] = 0;
if (avr_mem_is_flash_type(m)) {
if (p->prog_modes & PM_UPDI || jtag3_memtype(pgm, p, addr) == MTYPE_FLASH)
cmd[3] = XMEGA_ERASE_APP_PAGE;
else
cmd[3] = XMEGA_ERASE_BOOT_PAGE;
} else if (strcmp(m->desc, "eeprom") == 0) {
cmd[3] = XMEGA_ERASE_EEPROM_PAGE;
} else if (strcmp(m->desc, "usersig") == 0 ||
strcmp(m->desc, "userrow") == 0) {
cmd[3] = XMEGA_ERASE_USERSIG;
} else {
cmd[3] = XMEGA_ERASE_APP_PAGE;
}
unsigned int addr_adj = addr;
if(p->prog_modes & PM_PDI)
addr_adj += m->offset;
else // PM_UPDI
addr_adj = jtag3_memaddr(pgm, p, m, addr);
u32_to_b4(cmd + 4, addr_adj);
if (jtag3_command(pgm, cmd, 8, &resp, "page erase") < 0)
return -1;
free(resp);
return 0;
}
static int jtag3_paged_write(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes) {
unsigned int block_size;
unsigned int maxaddr = addr + n_bytes;
unsigned char *cmd;
unsigned char *resp;
int status, dynamic_memtype = 0;
long otimeout = serial_recv_timeout;
pmsg_notice2("jtag3_paged_write(.., %s, %d, 0x%04x, %d)\n", m->desc, page_size, addr, n_bytes);
block_size = jtag3_memaddr(pgm, p, m, addr);
if(block_size != addr)
msg_notice2(" mapped to address: 0x%04x\n", block_size);
block_size = 0;
if (!(pgm->flag & PGM_FL_IS_DW) && jtag3_program_enable(pgm) < 0)
return -1;
if (page_size == 0)
page_size = 256;
if ((cmd = malloc(page_size + 13)) == NULL) {
pmsg_error("out of memory\n");
return -1;
}
cmd[0] = SCOPE_AVR;
cmd[1] = CMD3_WRITE_MEMORY;
cmd[2] = 0;
if (strcmp(m->desc, "flash") == 0) {
PDATA(pgm)->flash_pageaddr = (unsigned long)-1L;
cmd[3] = jtag3_memtype(pgm, p, addr);
if (p->prog_modes & PM_PDI)
/* dynamically decide between flash/boot memtype */
dynamic_memtype = 1;
} else if (strcmp(m->desc, "eeprom") == 0) {
if (pgm->flag & PGM_FL_IS_DW) {
/*
* jtag3_paged_write() to EEPROM attempted while in
* DW mode. Use jtag3_write_byte() instead.
*/
for (; addr < maxaddr; addr++) {
status = jtag3_write_byte(pgm, p, m, addr, m->buf[addr]);
if (status < 0) {
free(cmd);
return -1;
}
}
free(cmd);
return n_bytes;
}
cmd[3] = p->prog_modes & (PM_PDI | PM_UPDI)? MTYPE_EEPROM_XMEGA: MTYPE_EEPROM_PAGE;
PDATA(pgm)->eeprom_pageaddr = (unsigned long)-1L;
} else if (strcmp(m->desc, "usersig") == 0 ||
strcmp(m->desc, "userrow") == 0) {
cmd[3] = MTYPE_USERSIG;
} else if (strcmp(m->desc, "boot") == 0) {
cmd[3] = MTYPE_BOOT_FLASH;
} else if (p->prog_modes & (PM_PDI | PM_UPDI)) {
cmd[3] = MTYPE_FLASH;
} else {
cmd[3] = MTYPE_SPM;
}
serial_recv_timeout = 100;
for (; addr < maxaddr; addr += page_size) {
if ((maxaddr - addr) < page_size)
block_size = maxaddr - addr;
else
block_size = page_size;
pmsg_debug("jtag3_paged_write(): "
"block_size at addr %d is %d\n", addr, block_size);
if (dynamic_memtype)
cmd[3] = jtag3_memtype(pgm, p, addr);
u32_to_b4(cmd + 8, page_size);
u32_to_b4(cmd + 4, jtag3_memaddr(pgm, p, m, addr));
cmd[12] = 0;
/*
* The JTAG ICE will refuse to write anything but a full page, at
* least for the flash ROM. If a partial page has been requested,
* set the remainder to 0xff. (Maybe we should rather read back
* the existing contents instead before? Doesn't matter much, as
* bits cannot be written to 1 anyway.)
*/
memset(cmd + 13, 0xff, page_size);
memcpy(cmd + 13, m->buf + addr, block_size);
if ((status = jtag3_command(pgm, cmd, page_size + 13,
&resp, "write memory")) < 0) {
free(cmd);
serial_recv_timeout = otimeout;
return -1;
}
free(resp);
}
free(cmd);
serial_recv_timeout = otimeout;
return n_bytes;
}
static int jtag3_paged_load(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes) {
unsigned int block_size;
unsigned int maxaddr = addr + n_bytes;
unsigned char cmd[12];
unsigned char *resp;
int status, dynamic_memtype = 0;
long otimeout = serial_recv_timeout;
pmsg_notice2("jtag3_paged_load(.., %s, %d, 0x%04x, %d)\n",
m->desc, page_size, addr, n_bytes);
block_size = jtag3_memaddr(pgm, p, m, addr);
if(block_size != addr)
msg_notice2(" mapped to address: 0x%04x\n", block_size);
block_size = 0;
if (!(pgm->flag & PGM_FL_IS_DW) && jtag3_program_enable(pgm) < 0)
return -1;
page_size = m->readsize;
cmd[0] = SCOPE_AVR;
cmd[1] = CMD3_READ_MEMORY;
cmd[2] = 0;
if (strcmp(m->desc, "flash") == 0) {
cmd[3] = jtag3_memtype(pgm, p, addr);
if (p->prog_modes & PM_PDI)
/* dynamically decide between flash/boot memtype */
dynamic_memtype = 1;
} else if (strcmp(m->desc, "eeprom") == 0) {
cmd[3] = p->prog_modes & (PM_PDI | PM_UPDI)? MTYPE_EEPROM: MTYPE_EEPROM_PAGE;
if (pgm->flag & PGM_FL_IS_DW)
return -1;
} else if (strcmp(m->desc, "prodsig") == 0) {
cmd[3] = MTYPE_PRODSIG;
} else if (strcmp(m->desc, "usersig") == 0 ||
strcmp(m->desc, "userrow") == 0) {
cmd[3] = MTYPE_USERSIG;
} else if (strcmp(m->desc, "boot") == 0) {
cmd[3] = MTYPE_BOOT_FLASH;
} else if (p->prog_modes & PM_PDI) {
cmd[3] = MTYPE_FLASH;
} else if (p->prog_modes & PM_UPDI) {
cmd[3] = MTYPE_SRAM;
} else {
cmd[3] = MTYPE_SPM;
}
serial_recv_timeout = 100;
for (; addr < maxaddr; addr += page_size) {
if ((maxaddr - addr) < page_size)
block_size = maxaddr - addr;
else
block_size = page_size;
pmsg_debug("jtag3_paged_load(): "
"block_size at addr %d is %d\n", addr, block_size);
if (dynamic_memtype)
cmd[3] = jtag3_memtype(pgm, p, addr);
u32_to_b4(cmd + 8, block_size);
u32_to_b4(cmd + 4, jtag3_memaddr(pgm, p, m, addr));
if ((status = jtag3_command(pgm, cmd, 12, &resp, "read memory")) < 0)
return -1;
if (resp[1] != RSP3_DATA || status < (int) block_size + 4) {
pmsg_error("wrong/short reply to read memory command\n");
serial_recv_timeout = otimeout;
free(resp);
return -1;
}
if(status < 4) {
pmsg_error("unexpected response from read memory jtag3_command()\n");
free(resp);
return -1;
}
memcpy(m->buf + addr, resp + 3, status - 4);
free(resp);
}
serial_recv_timeout = otimeout;
return n_bytes;
}
static int jtag3_read_byte(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned long addr, unsigned char * value) {
unsigned char cmd[12];
unsigned char *resp, *cache_ptr = NULL;
int status, unsupp = 0;
unsigned long paddr = 0UL, *paddr_ptr = NULL;
unsigned int pagesize = 0;
pmsg_notice2("jtag3_read_byte(.., %s, 0x%lx, ...)\n", mem->desc, addr);
paddr = jtag3_memaddr(pgm, p, mem, addr);
if(paddr != addr)
msg_notice2(" mapped to address: 0x%lx\n", paddr);
paddr = 0;
if (!(pgm->flag & PGM_FL_IS_DW))
if ((status = jtag3_program_enable(pgm)) < 0)
return status;
cmd[0] = SCOPE_AVR;
cmd[1] = CMD3_READ_MEMORY;
cmd[2] = 0;
cmd[3] = p->prog_modes & (PM_PDI | PM_UPDI)? MTYPE_FLASH: MTYPE_FLASH_PAGE;
if (avr_mem_is_flash_type(mem)) {
addr += mem->offset & (512 * 1024 - 1); /* max 512 KiB flash */
pagesize = PDATA(pgm)->flash_pagesize;
paddr = addr & ~(pagesize - 1);
paddr_ptr = &PDATA(pgm)->flash_pageaddr;
cache_ptr = PDATA(pgm)->flash_pagecache;
} else if (avr_mem_is_eeprom_type(mem)) {
if ( (pgm->flag & PGM_FL_IS_DW) || (p->prog_modes & PM_PDI) || (p->prog_modes & PM_UPDI) ) {
cmd[3] = MTYPE_EEPROM;
} else {
cmd[3] = MTYPE_EEPROM_PAGE;
}
pagesize = mem->page_size;
paddr = addr & ~(pagesize - 1);
paddr_ptr = &PDATA(pgm)->eeprom_pageaddr;
cache_ptr = PDATA(pgm)->eeprom_pagecache;
} else if (strcmp(mem->desc, "lfuse") == 0) {
cmd[3] = MTYPE_FUSE_BITS;
addr = 0;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "hfuse") == 0) {
cmd[3] = MTYPE_FUSE_BITS;
addr = 1;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "efuse") == 0) {
cmd[3] = MTYPE_FUSE_BITS;
addr = 2;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (matches(mem->desc, "lock")) {
cmd[3] = MTYPE_LOCK_BITS;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (matches(mem->desc, "fuse")) {
cmd[3] = MTYPE_FUSE_BITS;
if (!(p->prog_modes & PM_UPDI))
addr = mem->offset & 7;
} else if (strcmp(mem->desc, "usersig") == 0 ||
strcmp(mem->desc, "userrow") == 0) {
cmd[3] = MTYPE_USERSIG;
} else if (strcmp(mem->desc, "prodsig") == 0) {
cmd[3] = MTYPE_PRODSIG;
} else if (strcmp(mem->desc, "sernum") == 0) {
cmd[3] = MTYPE_SIGN_JTAG;
} else if (strcmp(mem->desc, "osccal16") == 0) {
cmd[3] = MTYPE_SIGN_JTAG;
} else if (strcmp(mem->desc, "osccal20") == 0) {
cmd[3] = MTYPE_SIGN_JTAG;
} else if (strcmp(mem->desc, "tempsense") == 0) {
cmd[3] = MTYPE_SIGN_JTAG;
} else if (strcmp(mem->desc, "osc16err") == 0) {
cmd[3] = MTYPE_SIGN_JTAG;
} else if (strcmp(mem->desc, "osc20err") == 0) {
cmd[3] = MTYPE_SIGN_JTAG;
} else if (strcmp(mem->desc, "calibration") == 0) {
cmd[3] = MTYPE_OSCCAL_BYTE;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "signature") == 0) {
static unsigned char signature_cache[2];
cmd[3] = MTYPE_SIGN_JTAG;
/*
* dW can read out the signature on JTAGICE3, but only allows
* for a full three-byte read. We cache them in a local
* variable to avoid multiple reads. This optimization does not
* harm for other connection types either.
*/
u32_to_b4(cmd + 8, 3);
u32_to_b4(cmd + 4, jtag3_memaddr(pgm, p, mem, addr));
if (addr == 0) {
if ((status = jtag3_command(pgm, cmd, 12, &resp, "read memory")) < 0)
return status;
signature_cache[0] = resp[4];
signature_cache[1] = resp[5];
*value = resp[3];
free(resp);
return 0;
} else if (addr <= 2) {
*value = signature_cache[addr - 1];
return 0;
} else {
/* should not happen */
msg_error("address out of range for signature memory: %lu\n", addr);
return -1;
}
}
/*
* If the respective memory area is not supported under debugWire,
* leave here.
*/
if (unsupp) {
*value = 42;
return -1;
}
/*
* To improve the read speed, we used paged reads for flash and
* EEPROM, and cache the results in a page cache.
*
* Page cache validation is based on "{flash,eeprom}_pageaddr"
* (holding the base address of the most recent cache fill
* operation). This variable is set to (unsigned long)-1L when the
* cache needs to be invalidated.
*/
if (pagesize && paddr == *paddr_ptr) {
*value = cache_ptr[addr & (pagesize - 1)];
return 0;
}
if (pagesize) {
u32_to_b4(cmd + 8, pagesize);
u32_to_b4(cmd + 4, jtag3_memaddr(pgm, p, mem, paddr));
} else {
u32_to_b4(cmd + 8, 1);
u32_to_b4(cmd + 4, jtag3_memaddr(pgm, p, mem, addr));
}
if ((status = jtag3_command(pgm, cmd, 12, &resp, "read memory")) < 0)
return status;
if (resp[1] != RSP3_DATA ||
status < (int) (pagesize? pagesize: 1) + 4) {
pmsg_error("wrong/short reply to read memory command\n");
free(resp);
return -1;
}
if (pagesize) {
*paddr_ptr = paddr;
memcpy(cache_ptr, resp + 3, pagesize);
*value = cache_ptr[addr & (pagesize - 1)];
} else
*value = resp[3];
free(resp);
return 0;
}
static int jtag3_write_byte(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned long addr, unsigned char data) {
unsigned char cmd[14];
unsigned char *resp;
unsigned char *cache_ptr = 0;
int status, unsupp = 0;
unsigned int pagesize = 0;
unsigned long mapped_addr;
pmsg_notice2("jtag3_write_byte(.., %s, 0x%lx, ...)\n", mem->desc, addr);
mapped_addr = jtag3_memaddr(pgm, p, mem, addr);
if(mapped_addr != addr)
msg_notice2(" mapped to address: 0x%lx\n", mapped_addr);
cmd[0] = SCOPE_AVR;
cmd[1] = CMD3_WRITE_MEMORY;
cmd[2] = 0;
cmd[3] = p->prog_modes & (PM_PDI | PM_UPDI)? MTYPE_FLASH: MTYPE_SPM;
if (strcmp(mem->desc, "flash") == 0) {
cache_ptr = PDATA(pgm)->flash_pagecache;
pagesize = PDATA(pgm)->flash_pagesize;
PDATA(pgm)->flash_pageaddr = (unsigned long)-1L;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "eeprom") == 0) {
if (pgm->flag & PGM_FL_IS_DW) {
cmd[3] = MTYPE_EEPROM;
} else {
cache_ptr = PDATA(pgm)->eeprom_pagecache;
pagesize = PDATA(pgm)->eeprom_pagesize;
}
PDATA(pgm)->eeprom_pageaddr = (unsigned long)-1L;
} else if (strcmp(mem->desc, "lfuse") == 0) {
cmd[3] = MTYPE_FUSE_BITS;
addr = 0;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "hfuse") == 0) {
cmd[3] = MTYPE_FUSE_BITS;
addr = 1;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "efuse") == 0) {
cmd[3] = MTYPE_FUSE_BITS;
addr = 2;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (matches(mem->desc, "fuse")) {
cmd[3] = MTYPE_FUSE_BITS;
if (!(p->prog_modes & PM_UPDI))
addr = mem->offset & 7;
} else if (strcmp(mem->desc, "usersig") == 0 ||
strcmp(mem->desc, "userrow") == 0) {
cmd[3] = MTYPE_USERSIG;
} else if (strcmp(mem->desc, "prodsig") == 0) {
cmd[3] = MTYPE_PRODSIG;
} else if (matches(mem->desc, "lock")) {
cmd[3] = MTYPE_LOCK_BITS;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "calibration") == 0) {
cmd[3] = MTYPE_OSCCAL_BYTE;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "signature") == 0) {
cmd[3] = MTYPE_SIGN_JTAG;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
}
if (unsupp)
return -1;
if (pagesize != 0) {
/* flash or EEPROM write: use paged algorithm */
unsigned char dummy;
int i;
/* step #1: ensure the page cache is up to date */
if (jtag3_read_byte(pgm, p, mem, addr, &dummy) < 0)
return -1;
/* step #2: update our value in page cache, and copy
* cache to mem->buf */
cache_ptr[addr & (pagesize - 1)] = data;
addr &= ~(pagesize - 1); /* page base address */
memcpy(mem->buf + addr, cache_ptr, pagesize);
/* step #3: write back */
i = jtag3_paged_write(pgm, p, mem, pagesize, addr, pagesize);
if (i < 0)
return -1;
else
return 0;
}
/* non-paged writes go here */
if (!(pgm->flag & PGM_FL_IS_DW) && jtag3_program_enable(pgm) < 0)
return -1;
u32_to_b4(cmd + 8, 1);
u32_to_b4(cmd + 4, jtag3_memaddr(pgm, p, mem, addr));
cmd[12] = 0;
cmd[13] = data;
if ((status = jtag3_command(pgm, cmd, 14, &resp, "write memory")) < 0)
return status;
free(resp);
return 0;
}
/*
* Set the JTAG clock. The actual frequency is quite a bit of
* guesswork, based on the values claimed by AVR Studio. Inside the
* JTAG ICE, the value is the delay count of a delay loop between the
* JTAG clock edges. A count of 0 bypasses the delay loop.
*
* As the STK500 expresses it as a period length (and we actualy do
* program a period length as well), we rather call it by that name.
*/
static int jtag3_set_sck_period(const PROGRAMMER *pgm, double v) {
unsigned char parm[2];
unsigned int clock = 1E-3 / v; /* kHz */
parm[0] = clock & 0xff;
parm[1] = (clock >> 8) & 0xff;
if (PDATA(pgm)->set_sck == NULL) {
pmsg_error("no backend to set the SCK period for\n");
return -1;
}
return (PDATA(pgm)->set_sck(pgm, parm) < 0)? -1: 0;
}
/*
* Read (an) emulator parameter(s).
*/
int jtag3_getparm(const PROGRAMMER *pgm, unsigned char scope,
unsigned char section, unsigned char parm,
unsigned char *value, unsigned char length) {
int status;
unsigned char buf[6], *resp, c;
char descr[60];
pmsg_notice2("jtag3_getparm()\n");
buf[0] = scope;
buf[1] = CMD3_GET_PARAMETER;
buf[2] = 0;
buf[3] = section;
buf[4] = parm;
buf[5] = length;
sprintf(descr, "get parameter (scope 0x%02x, section %d, parm %d)",
scope, section, parm);
if ((status = jtag3_command(pgm, buf, 6, &resp, descr)) < 0)
return -1;
c = resp[1];
if (c != RSP3_DATA || status < 3) {
pmsg_notice("jtag3_getparm(): bad response to %s\n", descr);
free(resp);
return -1;
}
status -= 3;
if (status < 0) {
pmsg_error("unexpected return value %d from jtag3_command()\n", status);
free(resp);
return -1;
}
memcpy(value, resp + 3, (length < status? length: status));
free(resp);
return 0;
}
/*
* Write an emulator parameter.
*/
int jtag3_setparm(const PROGRAMMER *pgm, unsigned char scope,
unsigned char section, unsigned char parm,
unsigned char *value, unsigned char length) {
int status;
unsigned char *buf, *resp;
char descr[60];
pmsg_notice2("jtag3_setparm()\n");
sprintf(descr, "set parameter (scope 0x%02x, section %d, parm %d)",
scope, section, parm);
if ((buf = malloc(6 + length)) == NULL) {
pmsg_error("out of memory\n");
return -1;
}
buf[0] = scope;
buf[1] = CMD3_SET_PARAMETER;
buf[2] = 0;
buf[3] = section;
buf[4] = parm;
buf[5] = length;
memcpy(buf + 6, value, length);
status = jtag3_command(pgm, buf, length + 6, &resp, descr);
free(buf);
if (status >= 0)
free(resp);
return status;
}
int jtag3_read_sib(const PROGRAMMER *pgm, const AVRPART *p, char *sib) {
int status;
unsigned char cmd[12];
unsigned char *resp = NULL;
cmd[0] = SCOPE_AVR;
cmd[1] = CMD3_READ_MEMORY;
cmd[2] = 0;
cmd[3] = MTYPE_SIB;
u32_to_b4(cmd + 4, 0);
u32_to_b4(cmd + 8, AVR_SIBLEN);
if ((status = jtag3_command(pgm, cmd, 12, &resp, "read SIB")) < 0)
return status;
memcpy(sib, resp+3, AVR_SIBLEN);
sib[AVR_SIBLEN] = 0; // Zero terminate string
pmsg_debug("jtag3_read_sib(): received SIB: %s\n", sib);
free(resp);
return 0;
}
int jtag3_set_vtarget(const PROGRAMMER *pgm, double v) {
unsigned uaref, utarg;
unsigned char buf[2];
utarg = (unsigned)(v * 1000);
if (jtag3_getparm(pgm, SCOPE_GENERAL, 1, PARM3_VTARGET, buf, 2) < 0) {
pmsg_warning("cannot obtain V[target]\n");
}
uaref = b2_to_u16(buf);
u16_to_b2(buf, utarg);
pmsg_info("jtag3_set_vtarget(): changing V[target] from %.1f to %.1f\n", uaref / 1000.0, v);
if (jtag3_setparm(pgm, SCOPE_GENERAL, 1, PARM3_VADJUST, buf, sizeof(buf)) < 0) {
pmsg_error("cannot confirm new V[target] value\n");
return -1;
}
return 0;
}
void jtag3_display(const PROGRAMMER *pgm, const char *p) {
unsigned char parms[5];
unsigned char *resp = NULL;
const char *sn;
/*
* Ask for:
* PARM3_HW_VER (1 byte)
* PARM3_FW_MAJOR (1 byte)
* PARM3_FW_MINOR (1 byte)
* PARM3_FW_RELEASE (2 bytes)
*/
if (jtag3_getparm(pgm, SCOPE_GENERAL, 0, PARM3_HW_VER, parms, 5) < 0)
return;
// Use serial number pulled from the USB driver. If not present, query the programmer
if (pgm->usbsn && *pgm->usbsn)
sn = pgm->usbsn;
else {
unsigned char cmd[4], c;
int status;
cmd[0] = SCOPE_INFO;
cmd[1] = CMD3_GET_INFO;
cmd[2] = 0;
cmd[3] = CMD3_INFO_SERIAL;
if ((status = jtag3_command(pgm, cmd, 4, &resp, "get info (serial number)")) < 0) {
free(resp);
return;
}
c = resp[1];
if (c != RSP3_INFO) {
pmsg_error("response is not RSP3_INFO\n");
free(resp);
return;
}
if (status < 3) {
msg_error("unexpected response from CMD3_GET_INFO command\n");
free(resp);
return;
}
memmove(resp, resp + 3, status - 3);
resp[status - 3] = 0;
sn = (const char*)resp;
}
msg_info("%sICE HW version : %d\n", p, parms[0]);
msg_info("%sICE FW version : %d.%02d (rel. %d)\n", p, parms[1], parms[2],
(parms[3] | (parms[4] << 8)));
msg_info("%sSerial number : %s", p, sn);
free(resp);
}
void jtag3_print_parms1(const PROGRAMMER *pgm, const char *p, FILE *fp) {
unsigned char prog_mode[2];
unsigned char buf[3];
if (jtag3_getparm(pgm, SCOPE_GENERAL, 1, PARM3_VTARGET, buf, 2) < 0)
return;
msg_info("%sVtarget : %.2f V\n", p, b2_to_u16(buf)/1000.0);
// Print features unique to the Power Debugger
for(LNODEID ln=lfirst(pgm->id); ln; ln=lnext(ln)) {
if(matches(ldata(ln), "powerdebugger")) {
short analog_raw_data;
// Read generator set voltage value (VOUT)
if (jtag3_getparm(pgm, SCOPE_GENERAL, 1, PARM3_VADJUST, buf, 2) < 0)
return;
analog_raw_data = b2_to_u16(buf);
fmsg_out(fp, "%sVout set : %.2f V\n", p, analog_raw_data / 1000.0);
// Read measured generator voltage value (VOUT)
if (jtag3_getparm(pgm, SCOPE_GENERAL, 1, PARM3_TSUP_VOLTAGE_MEAS, buf, 2) < 0)
return;
analog_raw_data = ((buf[0] & 0x0F) << 8) + buf[1];
if ((buf[0] & 0xF0) != 0x30)
pmsg_error("invalid PARM3_TSUP_VOLTAGE_MEAS data packet format\n");
else {
if (analog_raw_data & 0x0800)
analog_raw_data |= 0xF000;
fmsg_out(fp, "%sVout measured : %.02f V\n", p, (float) analog_raw_data / -200.0);
}
// Read channel A voltage
if (jtag3_getparm(pgm, SCOPE_GENERAL, 1, PARM3_ANALOG_A_VOLTAGE, buf, 2) < 0)
return;
analog_raw_data = ((buf[0] & 0x0F) << 8) + buf[1];
if ((buf[0] & 0xF0) != 0x20)
pmsg_error("invalid PARM3_ANALOG_A_VOLTAGE data packet format\n");
else {
if (analog_raw_data & 0x0800)
analog_raw_data |= 0xF000;
fmsg_out(fp, "%sCh A voltage : %.03f V\n", p, (float) analog_raw_data / -200.0);
}
// Read channel A current
if (jtag3_getparm(pgm, SCOPE_GENERAL, 1, PARM3_ANALOG_A_CURRENT, buf, 3) < 0)
return;
analog_raw_data = (buf[1] << 8) + buf[2];
if (buf[0] != 0x90)
pmsg_error("invalid PARM3_ANALOG_A_CURRENT data packet format\n");
else
fmsg_out(fp, "%sCh A current : %.3f mA\n", p, (float) analog_raw_data * 0.003472);
// Read channel B voltage
if (jtag3_getparm(pgm, SCOPE_GENERAL, 1, PARM3_ANALOG_B_VOLTAGE, buf, 2) < 0)
return;
analog_raw_data = ((buf[0] & 0x0F) << 8) + buf[1];
if ((buf[0] & 0xF0) != 0x10)
pmsg_error("invalid PARM3_ANALOG_B_VOLTAGE data packet format\n");
else {
if (analog_raw_data & 0x0800)
analog_raw_data |= 0xF000;
fmsg_out(fp, "%sCh B voltage : %.03f V\n", p, (float) analog_raw_data / -200.0);
}
// Read channel B current
if (jtag3_getparm(pgm, SCOPE_GENERAL, 1, PARM3_ANALOG_B_CURRENT, buf, 3) < 0)
return;
analog_raw_data = ((buf[0] & 0x0F) << 8) + buf[1];
if ((buf[0] & 0xF0) != 0x00)
pmsg_error("invalid PARM3_ANALOG_B_CURRENT data packet format\n");
else {
if (analog_raw_data & 0x0800)
analog_raw_data |= 0xF000;
fmsg_out(fp, "%sCh B current : %.3f mA\n", p, (float) analog_raw_data * 0.555556);
}
break;
}
}
// Print clocks if programmer typ is not TPI
if (strcmp(pgm->type, "JTAGICE3_TPI")) {
// Get current programming mode and target type from to determine what data to print
if (jtag3_getparm(pgm, SCOPE_AVR, 1, PARM3_CONNECTION, prog_mode, 1) < 0)
return;
if (jtag3_getparm(pgm, SCOPE_AVR, 0, PARM3_ARCH, &prog_mode[1], 1) < 0)
return;
if (prog_mode[0] == PARM3_CONN_JTAG) {
if (prog_mode[1] == PARM3_ARCH_XMEGA) {
if (jtag3_getparm(pgm, SCOPE_AVR, 1, PARM3_CLK_XMEGA_JTAG, buf, 2) < 0)
return;
if (b2_to_u16(buf) > 0)
fmsg_out(fp, "%sJTAG clk Xmega : %u kHz\n", p, b2_to_u16(buf));
} else {
if (jtag3_getparm(pgm, SCOPE_AVR, 1, PARM3_CLK_MEGA_PROG, buf, 2) < 0)
return;
if (b2_to_u16(buf) > 0)
fmsg_out(fp, "%sJTAG clk prog. : %u kHz\n", p, b2_to_u16(buf));
if (jtag3_getparm(pgm, SCOPE_AVR, 1, PARM3_CLK_MEGA_DEBUG, buf, 2) < 0)
return;
if (b2_to_u16(buf) > 0)
fmsg_out(fp, "%sJTAG clk debug : %u kHz\n", p, b2_to_u16(buf));
}
}
else if (prog_mode[0] == PARM3_CONN_PDI || prog_mode[0] == PARM3_CONN_UPDI) {
if (jtag3_getparm(pgm, SCOPE_AVR, 1, PARM3_CLK_XMEGA_PDI, buf, 2) < 0)
return;
if (b2_to_u16(buf) > 0)
fmsg_out(fp, "%sPDI/UPDI clk : %u kHz\n", p, b2_to_u16(buf));
}
}
fmsg_out(fp, "\n");
}
static void jtag3_print_parms(const PROGRAMMER *pgm, FILE *fp) {
jtag3_print_parms1(pgm, "", fp);
}
static unsigned char jtag3_memtype(const PROGRAMMER *pgm, const AVRPART *p, unsigned long addr) {
if (p->prog_modes & PM_PDI) {
if (addr >= PDATA(pgm)->boot_start)
return MTYPE_BOOT_FLASH;
else
return MTYPE_FLASH;
} else {
return MTYPE_FLASH_PAGE;
}
}
static unsigned int jtag3_memaddr(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m, unsigned long addr) {
if (p->prog_modes & PM_PDI) {
if (addr >= PDATA(pgm)->boot_start)
/*
* all memories but "flash" are smaller than boot_start anyway, so
* no need for an extra check we are operating on "flash"
*/
return addr - PDATA(pgm)->boot_start;
else
/* normal flash, or anything else */
return addr;
}
// Non-Xmega device
if (p->prog_modes & PM_UPDI) {
if (strcmp(m->desc, "flash") == 0) {
return addr;
}
else if (m->size == 1) {
addr = m->offset;
}
else if (m->size > 1) {
addr += m->offset;
}
}
return addr;
}
unsigned char tpi_get_memtype(const AVRMEM *mem) {
unsigned char memtype;
if (strcmp(mem->desc, "fuse") == 0) {
memtype = XPRG_MEM_TYPE_FUSE;
} else if (strcmp(mem->desc, "lock") == 0) {
memtype = XPRG_MEM_TYPE_LOCKBITS;
} else if (strcmp(mem->desc, "calibration") == 0) {
memtype = XPRG_MEM_TYPE_LOCKBITS;
} else if (strcmp(mem->desc, "signature") == 0) {
memtype = XPRG_MEM_TYPE_LOCKBITS;
} else if (strcmp(mem->desc, "sigrow") == 0) {
memtype = XPRG_MEM_TYPE_LOCKBITS;
} else {
memtype = XPRG_MEM_TYPE_APPL;
}
return memtype;
}
/*
* Send the data as a JTAGICE3 encapsulated TPI packet.
*/
static int jtag3_send_tpi(const PROGRAMMER *pgm, unsigned char *data, size_t len) {
unsigned char *cmdbuf;
int rv;
if ((cmdbuf = malloc(len + 1)) == NULL) {
pmsg_error("jtag3_send_tpi(): out of memory for command packet\n");
exit(1);
}
cmdbuf[0] = SCOPE_AVR_TPI;
if (len > INT_MAX) {
pmsg_error("invalid jtag3_send_tpi() packet length %zu\n", len);
free(cmdbuf);
return -1;
}
memcpy(cmdbuf + 1, data, len);
msg_trace("[TPI send] ");
for (size_t i=1; i<=len; i++)
msg_trace("0x%02x ", cmdbuf[i]);
msg_trace("\n");
rv = jtag3_send(pgm, cmdbuf, len + 1);
free(cmdbuf);
return rv;
}
int jtag3_recv_tpi(const PROGRAMMER *pgm, unsigned char **msg) {
int rv;
rv = jtag3_recv(pgm, msg);
if (rv <= 0) {
pmsg_error("jtag3_recv_tpi(): unable to receive\n");
return -1;
}
rv = rv - 1;
memcpy(*msg, *msg + 1, rv);
msg_trace("[TPI recv] ");
for (int i=0; i<rv; i++)
msg_trace("0x%02x ", (*msg)[i]);
msg_trace("\n");
return rv;
}
int jtag3_command_tpi(const PROGRAMMER *pgm, unsigned char *cmd, unsigned int cmdlen,
unsigned char **resp, const char *descr) {
int status;
unsigned char c;
jtag3_send_tpi(pgm, cmd, cmdlen);
status = jtag3_recv_tpi(pgm, resp);
if (status <= 0) {
msg_notice2("\n");
pmsg_notice2("TPI %s command: timeout/error communicating with programmer (status %d)\n", descr, status);
return LIBAVRDUDE_GENERAL_FAILURE;
}
c = (*resp)[1];
if (c != XPRG_ERR_OK) {
pmsg_error("[TPI] command %s FAILED! Status: 0x%02x\n", descr, c);
status = (*resp)[3];
free(*resp);
resp = 0;
return LIBAVRDUDE_GENERAL_FAILURE;
}
return status;
}
/*
* initialize the AVR device and prepare it to accept commands
*/
static int jtag3_initialize_tpi(const PROGRAMMER *pgm, const AVRPART *p) {
unsigned char cmd[3];
unsigned char* resp;
int status;
pmsg_notice2("jtag3_initialize_tpi() start\n");
cmd[0] = XPRG_CMD_ENTER_PROGMODE;
if ((status = jtag3_command_tpi(pgm, cmd, 1, &resp, "Enter Progmode")) < 0)
return -1;
free(resp);
cmd[0] = XPRG_CMD_SET_PARAM;
cmd[1] = XPRG_PARAM_NVMCMD_ADDR;
cmd[2] = TPI_NVMCMD_ADDRESS;
if ((status = jtag3_command_tpi(pgm, cmd, 3, &resp, "Set NVMCMD")) < 0)
return -1;
free(resp);
cmd[0] = XPRG_CMD_SET_PARAM;
cmd[1] = XPRG_PARAM_NVMCSR_ADDR;
cmd[2] = TPI_NVMCSR_ADDRESS;
if ((status = jtag3_command_tpi(pgm, cmd, 3, &resp, "Set NVMCSR")) < 0)
return -1;
free(resp);
jtag3_print_parms1(pgm, progbuf, stderr);
return 0;
}
static void jtag3_enable_tpi(PROGRAMMER *pgm, const AVRPART *p) {
pmsg_notice2("jtag3_enable_tpi() is empty. No action necessary.\n");
}
static void jtag3_disable_tpi(const PROGRAMMER *pgm) {
unsigned char cmd[1];
unsigned char* resp;
int status;
cmd[0] = XPRG_CMD_LEAVE_PROGMODE;
if ((status = jtag3_command_tpi(pgm, cmd, 1, &resp, "Leave Progmode")) < 0)
return;
free(resp);
}
static int jtag3_read_byte_tpi(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned long addr, unsigned char * value) {
int status;
const size_t len = 8;
unsigned char cmd[8]; // Using "len" as array length causes msvc build jobs to fail with error C2057: expected constant expression
unsigned char* resp;
unsigned long paddr = 0UL;
msg_notice2("\n");
pmsg_notice2("jtag3_read_byte_tpi(.., %s, 0x%lx, ...)\n", mem->desc, addr);
paddr = mem->offset + addr;
cmd[0] = XPRG_CMD_READ_MEM;
cmd[1] = tpi_get_memtype(mem);
u32_to_b4_big_endian((cmd+2), paddr); // Address
u16_to_b2_big_endian((cmd+6), 1); // Size
if ((status = jtag3_command_tpi(pgm, cmd, len, &resp, "Read Byte")) < 0)
return -1;
*value = resp[2];
free(resp);
return 0;
}
static int jtag3_erase_tpi(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned long addr) {
const size_t len = 6;
unsigned char cmd[6]; // Using "len" as array length causes msvc build jobs to fail with error C2057: expected constant expression
unsigned char* resp;
int status;
unsigned long paddr = 0UL;
cmd[0] = XPRG_CMD_ERASE;
if (strcmp(mem->desc, "fuse") == 0) {
cmd[1] = XPRG_ERASE_CONFIG;
} else if (strcmp(mem->desc, "flash") == 0) {
cmd[1] = XPRG_ERASE_APP;
} else {
pmsg_error("jtag3_erase_tpi() unsupported memory: %s\n", mem->desc);
return -1;
}
paddr = (mem->offset + addr) | 0x01; // An erase is triggered by an access to the hi-byte
u32_to_b4_big_endian((cmd+2), paddr);
if ((status = jtag3_command_tpi(pgm, cmd, len, &resp, "Erase")) < 0)
return -1;
free(resp);
return 0;
}
static int jtag3_write_byte_tpi(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned long addr, unsigned char data) {
size_t len = 11;
size_t data_size = 2;
unsigned char cmd[17];
unsigned char* resp;
int status;
unsigned long paddr = 0UL;
status = jtag3_erase_tpi(pgm, p, mem, addr);
if (status < 0) {
pmsg_error("error in communication, received status 0x%02x\n", status);
return -1;
}
paddr = mem->offset + addr;
if (mem->n_word_writes != 0) {
if (mem->n_word_writes == 2) {
len = 13;
data_size = 4;
}
else if (mem->n_word_writes == 4) {
len = 17;
data_size = 8;
}
}
cmd[0] = XPRG_CMD_WRITE_MEM;
cmd[1] = tpi_get_memtype(mem);
cmd[2] = 0; // Page Mode - Not used
u32_to_b4_big_endian((cmd+3), paddr); // Address
u16_to_b2_big_endian((cmd+7), data_size); // Size
cmd[9] = data;
cmd[10] = 0xFF; // len = 11 if no n_word_writes
cmd[11] = 0xFF;
cmd[12] = 0xFF; // len = 13 if n_word_writes == 2
cmd[13] = 0xFF;
cmd[14] = 0xFF;
cmd[15] = 0xFF;
cmd[16] = 0xFF; // len = 17 if n_word_writes == 4
if ((status = jtag3_command_tpi(pgm, cmd, len, &resp, "Write Byte")) < 0)
return -1;
free(resp);
return 0;
}
static int jtag3_chip_erase_tpi(const PROGRAMMER *pgm, const AVRPART *p) {
const size_t len = 6;
unsigned char cmd[6]; // Using "len" as array length causes msvc build jobs to fail with error C2057: expected constant expression
unsigned char* resp;
int status;
unsigned long paddr = 0UL;
AVRMEM *m = avr_locate_mem(p, "flash");
if (m == NULL) {
pmsg_error("no flash memory for part %s\n", p->desc);
return LIBAVRDUDE_GENERAL_FAILURE;
}
// An erase is triggered by an access to the hi-byte
paddr = m->offset | 0x01;
cmd[0] = XPRG_CMD_ERASE;
cmd[1] = XPRG_ERASE_CHIP;
u32_to_b4_big_endian((cmd+2), paddr);
if ((status = jtag3_command_tpi(pgm, cmd, len, &resp, "Chip Erase")) < 0)
return -1;
free(resp);
return 0;
}
static int jtag3_open_tpi(PROGRAMMER *pgm, const char *port) {
pmsg_notice2("jtag3_open_tpi()\n");
if (jtag3_open_common(pgm, port) < 0)
return -1;
return 0;
}
void jtag3_close_tpi(PROGRAMMER *pgm) {
pmsg_notice2("jtag3_close_tpi() is empty. No action necessary.\n");
}
static int jtag3_paged_load_tpi(const PROGRAMMER *pgm, const AVRPART *p,
const AVRMEM *m, unsigned int page_size,
unsigned int addr, unsigned int n_bytes) {
unsigned int block_size = 0;
unsigned int maxaddr = addr + n_bytes;
unsigned char cmd[8];
unsigned char *resp;
int status;
long otimeout = serial_recv_timeout;
msg_notice2("\n");
pmsg_notice2("jtag3_paged_load_tpi(.., %s, %d, 0x%04x, %d)\n",
m->desc, page_size, addr, n_bytes);
if(m->offset)
imsg_notice2("mapped to address: 0x%04x\n", (addr+m->offset));
cmd[0] = XPRG_CMD_READ_MEM;
cmd[1] = tpi_get_memtype(m);
if(m->blocksize > (int) page_size)
page_size = m->blocksize;
serial_recv_timeout = 100;
for (; addr < maxaddr; addr += page_size) {
if ((maxaddr - addr) < page_size)
block_size = maxaddr - addr;
else
block_size = page_size;
pmsg_debug("jtag3_paged_load_tpi(): "
"block_size at addr 0x%x is %d\n", addr, block_size);
u32_to_b4_big_endian((cmd+2), addr + m->offset); // Address
u16_to_b2_big_endian((cmd+6), block_size); // Size
if ((status = jtag3_command_tpi(pgm, cmd, 8, &resp, "Read Memory")) < 0)
return -1;
if (resp[1] != XPRG_ERR_OK || status < (int) block_size + 2) {
pmsg_error("wrong/short reply to read memory command\n");
serial_recv_timeout = otimeout;
free(resp);
return -1;
}
if (status < 2) {
pmsg_error("unexpected return value %d from jtag3_paged_load_tpi()\n", status);
free(resp);
return -1;
}
memcpy(m->buf + addr, resp + 2, status - 2);
free(resp);
}
serial_recv_timeout = otimeout;
return n_bytes;
}
static int jtag3_paged_write_tpi(const PROGRAMMER *pgm, const AVRPART *p,
const AVRMEM *m, unsigned int page_size,
unsigned int addr, unsigned int n_bytes) {
unsigned int block_size;
unsigned int maxaddr = addr + n_bytes;
unsigned char *cmd;
unsigned char *resp;
int status;
long otimeout = serial_recv_timeout;
msg_notice2("\n");
pmsg_notice2("jtag3_paged_write_tpi(.., %s, %d, 0x%04x, %d)\n", m->desc, page_size, addr, n_bytes);
if(m->offset)
imsg_notice2("mapped to address: 0x%04x\n", (addr+m->offset));
if (page_size == 0)
page_size = m->page_size;
if ((cmd = malloc(page_size + 9)) == NULL) {
pmsg_error("out of memory\n");
return -1;
}
cmd[0] = XPRG_CMD_WRITE_MEM;
cmd[1] = tpi_get_memtype(m);
cmd[2] = 0; // Page Mode; Not used - ignored
serial_recv_timeout = 100;
for (; addr < maxaddr; addr += page_size) {
if ((maxaddr - addr) < page_size)
block_size = maxaddr - addr;
else
block_size = page_size;
pmsg_debug("jtag3_paged_write(): "
"block_size at addr 0x%x is %d\n", addr, block_size);
u32_to_b4_big_endian((cmd+3), addr + m->offset); // Address
u16_to_b2_big_endian((cmd+7), page_size); // Size
/*
* If a partial page has been requested, set the remainder to 0xff.
* (Maybe we should rather read back the existing contents instead
* before? Doesn't matter much, as bits cannot be written to 1 anyway.)
*/
memset(cmd + 9, 0xff, page_size);
memcpy(cmd + 9, m->buf + addr, block_size);
if ((status = jtag3_command_tpi(pgm, cmd, page_size + 9,
&resp, "Write Memory")) < 0) {
free(cmd);
serial_recv_timeout = otimeout;
return -1;
}
free(resp);
}
free(cmd);
serial_recv_timeout = otimeout;
return n_bytes;
}
const char jtag3_desc[] = "Atmel JTAGICE3";
void jtag3_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "JTAGICE3");
/*
* mandatory functions
*/
pgm->initialize = jtag3_initialize;
pgm->display = jtag3_display;
pgm->enable = jtag3_enable;
pgm->disable = jtag3_disable;
pgm->program_enable = jtag3_program_enable_dummy;
pgm->chip_erase = jtag3_chip_erase;
pgm->open = jtag3_open;
pgm->close = jtag3_close;
pgm->read_byte = jtag3_read_byte;
pgm->write_byte = jtag3_write_byte;
/*
* optional functions
*/
pgm->paged_write = jtag3_paged_write;
pgm->paged_load = jtag3_paged_load;
pgm->page_erase = jtag3_page_erase;
pgm->print_parms = jtag3_print_parms;
pgm->set_sck_period = jtag3_set_sck_period;
pgm->parseextparams = jtag3_parseextparms;
pgm->setup = jtag3_setup;
pgm->teardown = jtag3_teardown;
pgm->page_size = 256;
pgm->flag = PGM_FL_IS_JTAG;
for(LNODEID ln=lfirst(pgm->id); ln; ln=lnext(ln)) {
if (matches(ldata(ln), "powerdebugger")) {
pgm->set_vtarget = jtag3_set_vtarget;
break;
}
}
}
const char jtag3_dw_desc[] = "Atmel JTAGICE3 in debugWire mode";
void jtag3_dw_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "JTAGICE3_DW");
/*
* mandatory functions
*/
pgm->initialize = jtag3_initialize;
pgm->display = jtag3_display;
pgm->enable = jtag3_enable;
pgm->disable = jtag3_disable;
pgm->program_enable = jtag3_program_enable_dummy;
pgm->chip_erase = jtag3_chip_erase_dw;
pgm->open = jtag3_open_dw;
pgm->close = jtag3_close;
pgm->read_byte = jtag3_read_byte;
pgm->write_byte = jtag3_write_byte;
/*
* optional functions
*/
pgm->paged_write = jtag3_paged_write;
pgm->paged_load = jtag3_paged_load;
pgm->print_parms = jtag3_print_parms;
pgm->setup = jtag3_setup;
pgm->teardown = jtag3_teardown;
pgm->page_size = 256;
pgm->flag = PGM_FL_IS_DW;
for(LNODEID ln=lfirst(pgm->id); ln; ln=lnext(ln)) {
if (matches(ldata(ln), "powerdebugger")) {
pgm->set_vtarget = jtag3_set_vtarget;
break;
}
}
}
const char jtag3_pdi_desc[] = "Atmel JTAGICE3 in PDI mode";
void jtag3_pdi_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "JTAGICE3_PDI");
/*
* mandatory functions
*/
pgm->initialize = jtag3_initialize;
pgm->display = jtag3_display;
pgm->enable = jtag3_enable;
pgm->disable = jtag3_disable;
pgm->program_enable = jtag3_program_enable_dummy;
pgm->chip_erase = jtag3_chip_erase;
pgm->open = jtag3_open_pdi;
pgm->close = jtag3_close;
pgm->read_byte = jtag3_read_byte;
pgm->write_byte = jtag3_write_byte;
/*
* optional functions
*/
pgm->paged_write = jtag3_paged_write;
pgm->paged_load = jtag3_paged_load;
pgm->page_erase = jtag3_page_erase;
pgm->print_parms = jtag3_print_parms;
pgm->set_sck_period = jtag3_set_sck_period;
pgm->setup = jtag3_setup;
pgm->teardown = jtag3_teardown;
pgm->page_size = 256;
pgm->flag = PGM_FL_IS_PDI;
for(LNODEID ln=lfirst(pgm->id); ln; ln=lnext(ln)) {
if (matches(ldata(ln), "powerdebugger")) {
pgm->set_vtarget = jtag3_set_vtarget;
break;
}
}
}
const char jtag3_updi_desc[] = "Atmel JTAGICE3 in UPDI mode";
void jtag3_updi_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "JTAGICE3_UPDI");
/*
* mandatory functions
*/
pgm->initialize = jtag3_initialize;
pgm->parseextparams = jtag3_parseextparms;
pgm->display = jtag3_display;
pgm->enable = jtag3_enable;
pgm->disable = jtag3_disable;
pgm->program_enable = jtag3_program_enable_dummy;
pgm->chip_erase = jtag3_chip_erase;
pgm->open = jtag3_open_updi;
pgm->close = jtag3_close;
pgm->read_byte = jtag3_read_byte;
pgm->write_byte = jtag3_write_byte;
/*
* optional functions
*/
pgm->paged_write = jtag3_paged_write;
pgm->paged_load = jtag3_paged_load;
pgm->page_erase = jtag3_page_erase;
pgm->print_parms = jtag3_print_parms;
pgm->set_sck_period = jtag3_set_sck_period;
pgm->setup = jtag3_setup;
pgm->teardown = jtag3_teardown;
pgm->page_size = 256;
pgm->flag = PGM_FL_IS_UPDI;
pgm->unlock = jtag3_unlock_erase_key;
pgm->read_sib = jtag3_read_sib;
for(LNODEID ln=lfirst(pgm->id); ln; ln=lnext(ln)) {
if (matches(ldata(ln), "powerdebugger") ||
matches(ldata(ln), "pkob")) {
pgm->set_vtarget = jtag3_set_vtarget;
break;
}
}
}
const char jtag3_tpi_desc[] = "Atmel JTAGICE3 in TPI mode";
void jtag3_tpi_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "JTAGICE3_TPI");
/*
* mandatory functions
*/
pgm->initialize = jtag3_initialize_tpi;
pgm->display = jtag3_display;
pgm->enable = jtag3_enable_tpi;
pgm->disable = jtag3_disable_tpi;
pgm->program_enable = jtag3_program_enable_dummy;
pgm->chip_erase = jtag3_chip_erase_tpi;
pgm->open = jtag3_open_tpi;
pgm->close = jtag3_close_tpi;
pgm->read_byte = jtag3_read_byte_tpi;
pgm->write_byte = jtag3_write_byte_tpi;
/*
* optional functions
*/
pgm->paged_write = jtag3_paged_write_tpi;
pgm->paged_load = jtag3_paged_load_tpi;
pgm->print_parms = jtag3_print_parms;
pgm->setup = jtag3_setup;
pgm->teardown = jtag3_teardown;
pgm->page_size = 256;
pgm->flag = PGM_FL_IS_TPI;
}