avrdude/src/config_gram.y

1761 lines
42 KiB
Plaintext

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2000-2004 Brian S. Dean <bsd@bsdhome.com>
* Copyright (C) 2006 Joerg Wunsch <j@uriah.heep.sax.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* $Id$ */
%{
#include "ac_cfg.h"
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <errno.h>
#include "avrdude.h"
#include "libavrdude.h"
#include "config.h"
#include "developer_opts.h"
#if defined(WIN32)
#define strtok_r( _s, _sep, _lasts ) \
( *(_lasts) = strtok( (_s), (_sep) ) )
#endif
#define STRINGIFY(x) #x
#define TOSTRING(x) STRINGIFY(x)
int yylex(void);
int yyerror(char * errmsg, ...);
int yywarning(char * errmsg, ...);
static int clear_pin(int pinfunc);
static int assign_pin(int pinfunc, TOKEN *v, int invert);
static int assign_pin_list(int invert);
static int which_opcode(TOKEN * opcode);
static int parse_cmdbits(OPCODE * op, int opnum);
static int pin_name;
%}
%token K_NULL;
%token K_READ
%token K_WRITE
%token K_READ_LO
%token K_READ_HI
%token K_WRITE_LO
%token K_WRITE_HI
%token K_LOADPAGE_LO
%token K_LOADPAGE_HI
%token K_LOAD_EXT_ADDR
%token K_WRITEPAGE
%token K_CHIP_ERASE
%token K_PGM_ENABLE
%token K_MEMORY
%token K_PAGE_SIZE
%token K_PAGED
%token K_ALIAS
%token K_BAUDRATE
%token K_BS2
%token K_BUFF
%token K_CHIP_ERASE_DELAY
%token K_CONNTYPE
%token K_DEDICATED
%token K_DEFAULT_BITCLOCK
%token K_DEFAULT_PARALLEL
%token K_DEFAULT_PROGRAMMER
%token K_DEFAULT_SERIAL
%token K_DEFAULT_SPI
%token K_DESC
%token K_FAMILY_ID
%token K_HVUPDI_SUPPORT
%token K_HVUPDI_VARIANT
%token K_DEVICECODE
%token K_STK500_DEVCODE
%token K_AVR910_DEVCODE
%token K_EEPROM
%token K_ERRLED
%token K_FLASH
%token K_ID
%token K_IO
%token K_LOADPAGE
%token K_MAX_WRITE_DELAY
%token K_MCU_BASE
%token K_MIN_WRITE_DELAY
%token K_SDI
%token K_SDO
%token K_NUM_PAGES
%token K_NVM_BASE
%token K_OCD_BASE
%token K_OCDREV
%token K_OFFSET
%token K_PAGEL
%token K_PARALLEL
%token K_PARENT
%token K_PART
%token K_PGMLED
%token K_PROGRAMMER
%token K_PSEUDO
%token K_PWROFF_AFTER_WRITE
%token K_RDYLED
%token K_READBACK
%token K_READBACK_P1
%token K_READBACK_P2
%token K_READMEM
%token K_RESET
%token K_RETRY_PULSE
%token K_SERIAL
%token K_SPI
%token K_SCK
%token K_SIGNATURE
%token K_SIZE
%token K_USB
%token K_USBDEV
%token K_USBSN
%token K_USBPID
%token K_USBPRODUCT
%token K_USBVENDOR
%token K_USBVID
%token K_TYPE
%token K_VCC
%token K_VFYLED
%token K_NO
%token K_YES
/* stk500 v2 xml file parameters */
/* ISP */
%token K_TIMEOUT
%token K_STABDELAY
%token K_CMDEXEDELAY
%token K_HVSPCMDEXEDELAY
%token K_SYNCHLOOPS
%token K_BYTEDELAY
%token K_POLLVALUE
%token K_POLLINDEX
%token K_PREDELAY
%token K_POSTDELAY
%token K_POLLMETHOD
%token K_MODE
%token K_DELAY
%token K_BLOCKSIZE
%token K_READSIZE
/* HV mode */
%token K_HVENTERSTABDELAY
%token K_PROGMODEDELAY
%token K_LATCHCYCLES
%token K_TOGGLEVTG
%token K_POWEROFFDELAY
%token K_RESETDELAYMS
%token K_RESETDELAYUS
%token K_HVLEAVESTABDELAY
%token K_RESETDELAY
%token K_SYNCHCYCLES
%token K_HVCMDEXEDELAY
%token K_CHIPERASEPULSEWIDTH
%token K_CHIPERASEPOLLTIMEOUT
%token K_CHIPERASETIME
%token K_PROGRAMFUSEPULSEWIDTH
%token K_PROGRAMFUSEPOLLTIMEOUT
%token K_PROGRAMLOCKPULSEWIDTH
%token K_PROGRAMLOCKPOLLTIMEOUT
%token K_PP_CONTROLSTACK
%token K_HVSP_CONTROLSTACK
/* JTAG ICE mkII specific parameters */
%token K_ALLOWFULLPAGEBITSTREAM /*
* Internal parameter for the JTAG
* ICE; describes the internal JTAG
* streaming behaviour inside the MCU.
* 1 for all older chips, 0 for newer
* MCUs.
*/
%token K_ENABLEPAGEPROGRAMMING /* ? yes for mega256*, mega406 */
%token K_HAS_JTAG /* MCU has JTAG i/f. */
%token K_HAS_DW /* MCU has debugWire i/f. */
%token K_HAS_PDI /* MCU has PDI i/f rather than ISP (ATxmega). */
%token K_HAS_UPDI /* MCU has UPDI i/f (AVR8X). */
%token K_HAS_TPI /* MCU has TPI i/f rather than ISP (ATtiny4/5/9/10). */
%token K_IS_AT90S1200 /* chip is an AT90S1200 (needs special treatment) */
%token K_IS_AVR32 /* chip is in the avr32 family */
%token K_FLASH_INSTR /* flash instructions */
%token K_EEPROM_INSTR /* EEPROM instructions */
%token TKN_COMMA
%token TKN_EQUAL
%token TKN_SEMI
%token TKN_LEFT_PAREN
%token TKN_RIGHT_PAREN
%token TKN_NUMBER
%token TKN_NUMBER_REAL
%token TKN_STRING
%token TKN_COMPONENT
%left OP_OR /* calculator operations */
%left OP_XOR
%left OP_AND
%left OP_PLUS OP_MINUS
%left OP_TIMES OP_DIVIDE OP_MODULO
%right OP_TILDE UNARY
%start configuration
%%
number_real :
numexpr {
$$ = $1;
/* convert value to real */
$$->value.number_real = $$->value.number;
$$->value.type = V_NUM_REAL;
} |
TKN_NUMBER_REAL {
$$ = $1;
}
;
expr: numexpr | TKN_STRING;
numexpr:
TKN_NUMBER |
numexpr OP_OR numexpr { $$ = $1; $$->value.number |= $3->value.number; } |
numexpr OP_XOR numexpr { $$ = $1; $$->value.number ^= $3->value.number; } |
numexpr OP_AND numexpr { $$ = $1; $$->value.number &= $3->value.number; } |
numexpr OP_PLUS numexpr { $$ = $1; $$->value.number += $3->value.number; } |
numexpr OP_MINUS numexpr { $$ = $1; $$->value.number -= $3->value.number; } |
numexpr OP_TIMES numexpr { $$ = $1; $$->value.number *= $3->value.number; } |
numexpr OP_DIVIDE numexpr { $$ = $1; $$->value.number /= $3->value.number; } |
numexpr OP_MODULO numexpr { $$ = $1; $$->value.number %= $3->value.number; } |
OP_PLUS numexpr %prec UNARY { $$ = $2; } |
OP_MINUS numexpr %prec UNARY { $$ = $2; $$->value.number = -$$->value.number; } |
OP_TILDE numexpr %prec UNARY { $$ = $2; $$->value.number = ~$$->value.number; } |
TKN_LEFT_PAREN numexpr TKN_RIGHT_PAREN { $$ = $2; }
;
configuration :
/* empty */ | config
;
config :
def |
config def
;
def :
prog_def TKN_SEMI |
part_def TKN_SEMI |
K_DEFAULT_PROGRAMMER TKN_EQUAL TKN_STRING TKN_SEMI {
default_programmer = cache_string($3->value.string);
free_token($3);
} |
K_DEFAULT_PARALLEL TKN_EQUAL TKN_STRING TKN_SEMI {
default_parallel = cache_string($3->value.string);
free_token($3);
} |
K_DEFAULT_SERIAL TKN_EQUAL TKN_STRING TKN_SEMI {
default_serial = cache_string($3->value.string);
free_token($3);
} |
K_DEFAULT_SPI TKN_EQUAL TKN_STRING TKN_SEMI {
default_spi = cache_string($3->value.string);
free_token($3);
} |
K_DEFAULT_BITCLOCK TKN_EQUAL number_real TKN_SEMI {
default_bitclock = $3->value.number_real;
free_token($3);
}
;
prog_def :
prog_decl prog_parms
{
PROGRAMMER * existing_prog;
char * id;
if (lsize(current_prog->id) == 0) {
yyerror("required parameter id not specified");
YYABORT;
}
if (current_prog->initpgm == NULL) {
yyerror("programmer type not specified");
YYABORT;
}
id = ldata(lfirst(current_prog->id));
existing_prog = locate_programmer(programmers, id);
if (existing_prog) {
{ /* temporarily set lineno to lineno of programmer start */
int temp = cfg_lineno; cfg_lineno = current_prog->lineno;
yywarning("programmer %s overwrites previous definition %s:%d.",
id, existing_prog->config_file, existing_prog->lineno);
cfg_lineno = temp;
}
lrmv_d(programmers, existing_prog);
pgm_free(existing_prog);
}
current_prog->comments = cfg_move_comments();
LISTADD(programmers, current_prog);
// pgm_fill_old_pins(current_prog); // TODO to be removed if old pin data no longer needed
// pgm_display_generic(current_prog, id);
current_prog = NULL;
current_strct = COMP_CONFIG_MAIN;
}
;
prog_decl :
K_PROGRAMMER
{ current_prog = pgm_new();
current_prog->config_file = cache_string(cfg_infile);
current_prog->lineno = cfg_lineno;
}
|
K_PROGRAMMER K_PARENT TKN_STRING
{
PROGRAMMER * pgm = locate_programmer(programmers, $3->value.string);
if (pgm == NULL) {
yyerror("parent programmer %s not found", $3->value.string);
free_token($3);
YYABORT;
}
current_prog = pgm_dup(pgm);
current_prog->parent_id = cache_string($3->value.string);
current_prog->comments = NULL;
current_prog->config_file = cache_string(cfg_infile);
current_prog->lineno = cfg_lineno;
free_token($3);
}
;
part_def :
part_decl part_parms
{
LNODEID ln;
AVRMEM * m;
AVRPART * existing_part;
if (current_part->id[0] == 0) {
yyerror("required parameter id not specified");
YYABORT;
}
cfg_update_mcuid(current_part);
// Sanity checks for memory sizes and compute/override num_pages entry
for (ln=lfirst(current_part->mem); ln; ln=lnext(ln)) {
m = ldata(ln);
if (m->paged) {
if (m->size <= 0) {
yyerror("must specify a positive size for paged memory %s", m->desc);
YYABORT;
}
if (m->page_size <= 0) {
yyerror("must specify a positive page size for paged memory %s", m->desc);
YYABORT;
}
// Code base relies on page_size being a power of 2 in some places
if (m->page_size & (m->page_size - 1)) {
yyerror("page size must be a power of 2 for paged memory %s", m->desc);
YYABORT;
}
// Code base relies on size being a multiple of page_size
if (m->size % m->page_size) {
yyerror("size must be a multiple of page size for paged memory %s", m->desc);
YYABORT;
}
// Warn if num_pages was specified but is inconsistent with size and page size
if (m->num_pages && m->num_pages != m->size / m->page_size)
yywarning("overriding num_page to be %d for memory %s", m->size/m->page_size, m->desc);
m->num_pages = m->size / m->page_size;
}
}
existing_part = locate_part(part_list, current_part->id);
if (existing_part) {
{ /* temporarily set lineno to lineno of part start */
int temp = cfg_lineno; cfg_lineno = current_part->lineno;
yywarning("part %s overwrites previous definition %s:%d.",
current_part->id,
existing_part->config_file, existing_part->lineno);
cfg_lineno = temp;
}
lrmv_d(part_list, existing_part);
avr_free_part(existing_part);
}
current_part->comments = cfg_move_comments();
LISTADD(part_list, current_part);
current_part = NULL;
current_strct = COMP_CONFIG_MAIN;
}
;
part_decl :
K_PART
{
current_part = avr_new_part();
current_part->config_file = cache_string(cfg_infile);
current_part->lineno = cfg_lineno;
} |
K_PART K_PARENT TKN_STRING
{
AVRPART * parent_part = locate_part(part_list, $3->value.string);
if (parent_part == NULL) {
yyerror("can't find parent part");
free_token($3);
YYABORT;
}
current_part = avr_dup_part(parent_part);
current_part->parent_id = cache_string($3->value.string);
current_part->comments = NULL;
current_part->config_file = cache_string(cfg_infile);
current_part->lineno = cfg_lineno;
free_token($3);
}
;
string_list :
TKN_STRING { ladd(string_list, $1); } |
string_list TKN_COMMA TKN_STRING { ladd(string_list, $3); }
;
num_list :
numexpr { ladd(number_list, $1); } |
num_list TKN_COMMA numexpr { ladd(number_list, $3); }
;
prog_parms :
prog_parm TKN_SEMI |
prog_parms prog_parm TKN_SEMI
;
prog_parm :
TKN_COMPONENT TKN_EQUAL expr {
cfg_assign((char *) current_prog, COMP_PROGRAMMER, $1->value.comp, &$3->value);
free_token($1);
} |
K_ID TKN_EQUAL string_list {
{
while (lsize(string_list)) {
TOKEN *t = lrmv_n(string_list, 1);
ladd(current_prog->id, cfg_strdup("config_gram.y", t->value.string));
free_token(t);
}
}
} |
prog_parm_type
|
prog_parm_pins
|
prog_parm_usb
|
prog_parm_conntype
|
K_DESC TKN_EQUAL TKN_STRING {
current_prog->desc = cache_string($3->value.string);
free_token($3);
} |
K_BAUDRATE TKN_EQUAL numexpr {
{
current_prog->baudrate = $3->value.number;
free_token($3);
}
} |
prog_parm_updi
;
prog_parm_type:
K_TYPE TKN_EQUAL prog_parm_type_id
;
prog_parm_type_id:
TKN_STRING {
const struct programmer_type_t * pgm_type = locate_programmer_type($1->value.string);
if (pgm_type == NULL) {
yyerror("programmer type %s not found", $1->value.string);
free_token($1);
YYABORT;
}
current_prog->initpgm = pgm_type->initpgm;
free_token($1);
}
| error
{
yyerror("programmer type must be written as \"id_type\"");
YYABORT;
}
;
prog_parm_conntype:
K_CONNTYPE TKN_EQUAL prog_parm_conntype_id
;
prog_parm_conntype_id:
K_PARALLEL { current_prog->conntype = CONNTYPE_PARALLEL; } |
K_SERIAL { current_prog->conntype = CONNTYPE_SERIAL; } |
K_USB { current_prog->conntype = CONNTYPE_USB; } |
K_SPI { current_prog->conntype = CONNTYPE_SPI; }
;
prog_parm_usb:
K_USBDEV TKN_EQUAL TKN_STRING {
{
current_prog->usbdev = cache_string($3->value.string);
free_token($3);
}
} |
K_USBVID TKN_EQUAL numexpr {
{
current_prog->usbvid = $3->value.number;
free_token($3);
}
} |
K_USBPID TKN_EQUAL usb_pid_list |
K_USBSN TKN_EQUAL TKN_STRING {
{
current_prog->usbsn = cache_string($3->value.string);
free_token($3);
}
} |
K_USBVENDOR TKN_EQUAL TKN_STRING {
{
current_prog->usbvendor = cache_string($3->value.string);
free_token($3);
}
} |
K_USBPRODUCT TKN_EQUAL TKN_STRING {
{
current_prog->usbproduct = cache_string($3->value.string);
free_token($3);
}
}
;
usb_pid_list:
numexpr {
{
/* overwrite pids, so clear the existing entries */
if(current_prog->usbpid)
ldestroy_cb(current_prog->usbpid, free);
current_prog->usbpid = lcreat(NULL, 0);
}
{
int *ip = cfg_malloc("usb_pid_list", sizeof(int));
*ip = $1->value.number;
ladd(current_prog->usbpid, ip);
free_token($1);
}
} |
usb_pid_list TKN_COMMA numexpr {
{
int *ip = cfg_malloc("usb_pid_list", sizeof(int));
*ip = $3->value.number;
ladd(current_prog->usbpid, ip);
free_token($3);
}
}
;
prog_parm_updi:
K_HVUPDI_SUPPORT TKN_EQUAL hvupdi_support_list
;
hvupdi_support_list:
numexpr {
{
/* overwrite list entries, so clear the existing entries */
if(current_prog->hvupdi_support)
ldestroy_cb(current_prog->hvupdi_support, free);
current_prog->hvupdi_support = lcreat(NULL, 0);
}
{
int *ip = cfg_malloc("hvupdi_support_list", sizeof(int));
*ip = $1->value.number;
ladd(current_prog->hvupdi_support, ip);
free_token($1);
}
} |
hvupdi_support_list TKN_COMMA numexpr {
{
int *ip = cfg_malloc("hvupdi_support_list", sizeof(int));
*ip = $3->value.number;
ladd(current_prog->hvupdi_support, ip);
free_token($3);
}
}
;
pin_number_non_empty:
TKN_NUMBER { if(0 != assign_pin(pin_name, $1, 0)) YYABORT; }
|
OP_TILDE TKN_NUMBER { if(0 != assign_pin(pin_name, $2, 1)) YYABORT; }
;
pin_number:
pin_number_non_empty
|
/* empty */ { pin_clear_all(&(current_prog->pin[pin_name])); }
;
pin_list_element:
pin_number_non_empty
|
OP_TILDE TKN_LEFT_PAREN num_list TKN_RIGHT_PAREN { if(0 != assign_pin_list(1)) YYABORT; }
;
pin_list_non_empty:
pin_list_element
|
pin_list_non_empty TKN_COMMA pin_list_element
;
pin_list:
pin_list_non_empty
|
/* empty */ { pin_clear_all(&(current_prog->pin[pin_name])); }
;
prog_parm_pins:
K_VCC TKN_EQUAL {pin_name = PPI_AVR_VCC; clear_pin(pin_name); } pin_list |
K_BUFF TKN_EQUAL {pin_name = PPI_AVR_BUFF; clear_pin(pin_name); } pin_list |
K_RESET TKN_EQUAL {pin_name = PIN_AVR_RESET; clear_pin(pin_name);} pin_number { free_token($1); } |
K_SCK TKN_EQUAL {pin_name = PIN_AVR_SCK; clear_pin(pin_name); } pin_number { free_token($1); } |
K_SDO TKN_EQUAL {pin_name = PIN_AVR_SDO; clear_pin(pin_name); } pin_number |
K_SDI TKN_EQUAL {pin_name = PIN_AVR_SDI; clear_pin(pin_name); } pin_number |
K_ERRLED TKN_EQUAL {pin_name = PIN_LED_ERR; clear_pin(pin_name); } pin_number |
K_RDYLED TKN_EQUAL {pin_name = PIN_LED_RDY; clear_pin(pin_name); } pin_number |
K_PGMLED TKN_EQUAL {pin_name = PIN_LED_PGM; clear_pin(pin_name); } pin_number |
K_VFYLED TKN_EQUAL {pin_name = PIN_LED_VFY; clear_pin(pin_name); } pin_number
;
opcode :
K_READ |
K_WRITE |
K_READ_LO |
K_READ_HI |
K_WRITE_LO |
K_WRITE_HI |
K_LOADPAGE_LO |
K_LOADPAGE_HI |
K_LOAD_EXT_ADDR |
K_WRITEPAGE |
K_CHIP_ERASE |
K_PGM_ENABLE
;
part_parms :
part_parm TKN_SEMI |
part_parms part_parm TKN_SEMI
;
reset_disposition :
K_DEDICATED | K_IO
;
parallel_modes :
yesno | K_PSEUDO
;
retry_lines :
K_RESET | K_SCK
;
part_parm :
TKN_COMPONENT TKN_EQUAL expr {
cfg_assign((char *) current_part, COMP_AVRPART, $1->value.comp, &$3->value);
free_token($1);
} |
K_ID TKN_EQUAL TKN_STRING
{
current_part->id = cache_string($3->value.string);
free_token($3);
} |
K_DESC TKN_EQUAL TKN_STRING
{
current_part->desc = cache_string($3->value.string);
free_token($3);
} |
K_FAMILY_ID TKN_EQUAL TKN_STRING
{
current_part->family_id = cache_string($3->value.string);
free_token($3);
} |
K_HVUPDI_VARIANT TKN_EQUAL numexpr
{
current_part->hvupdi_variant = $3->value.number;
free_token($3);
} |
K_DEVICECODE TKN_EQUAL numexpr {
{
yyerror("devicecode is deprecated, use "
"stk500_devcode instead");
YYABORT;
}
} |
K_STK500_DEVCODE TKN_EQUAL numexpr {
{
current_part->stk500_devcode = $3->value.number;
free_token($3);
}
} |
K_AVR910_DEVCODE TKN_EQUAL numexpr {
{
current_part->avr910_devcode = $3->value.number;
free_token($3);
}
} |
K_SIGNATURE TKN_EQUAL TKN_NUMBER TKN_NUMBER TKN_NUMBER {
{
current_part->signature[0] = $3->value.number;
current_part->signature[1] = $4->value.number;
current_part->signature[2] = $5->value.number;
free_token($3);
free_token($4);
free_token($5);
}
} |
K_USBPID TKN_EQUAL numexpr {
{
current_part->usbpid = $3->value.number;
free_token($3);
}
} |
K_PP_CONTROLSTACK TKN_EQUAL num_list {
{
TOKEN * t;
unsigned nbytes;
int ok;
current_part->ctl_stack_type = CTL_STACK_PP;
nbytes = 0;
ok = 1;
memset(current_part->controlstack, 0, CTL_STACK_SIZE);
while (lsize(number_list)) {
t = lrmv_n(number_list, 1);
if (nbytes < CTL_STACK_SIZE)
{
current_part->controlstack[nbytes] = t->value.number;
nbytes++;
}
else
{
ok = 0;
}
free_token(t);
}
if (!ok)
{
yywarning("too many bytes in control stack");
}
}
} |
K_PP_CONTROLSTACK TKN_EQUAL K_NULL {
{
current_part->ctl_stack_type = CTL_STACK_NONE;
memset(current_part->controlstack, 0, CTL_STACK_SIZE);
}
} |
K_HVSP_CONTROLSTACK TKN_EQUAL num_list {
{
TOKEN * t;
unsigned nbytes;
int ok;
current_part->ctl_stack_type = CTL_STACK_HVSP;
nbytes = 0;
ok = 1;
memset(current_part->controlstack, 0, CTL_STACK_SIZE);
while (lsize(number_list)) {
t = lrmv_n(number_list, 1);
if (nbytes < CTL_STACK_SIZE)
{
current_part->controlstack[nbytes] = t->value.number;
nbytes++;
}
else
{
ok = 0;
}
free_token(t);
}
if (!ok)
{
yywarning("too many bytes in control stack");
}
}
} |
K_HVSP_CONTROLSTACK TKN_EQUAL K_NULL {
{
current_part->ctl_stack_type = CTL_STACK_NONE;
memset(current_part->controlstack, 0, CTL_STACK_SIZE);
}
} |
K_FLASH_INSTR TKN_EQUAL num_list {
{
TOKEN * t;
unsigned nbytes;
int ok;
nbytes = 0;
ok = 1;
memset(current_part->flash_instr, 0, FLASH_INSTR_SIZE);
while (lsize(number_list)) {
t = lrmv_n(number_list, 1);
if (nbytes < FLASH_INSTR_SIZE)
{
current_part->flash_instr[nbytes] = t->value.number;
nbytes++;
}
else
{
ok = 0;
}
free_token(t);
}
if (!ok)
{
yywarning("too many bytes in flash instructions");
}
}
} |
K_FLASH_INSTR TKN_EQUAL K_NULL {
{
memset(current_part->flash_instr, 0, FLASH_INSTR_SIZE);
}
} |
K_EEPROM_INSTR TKN_EQUAL num_list {
{
TOKEN * t;
unsigned nbytes;
int ok;
nbytes = 0;
ok = 1;
memset(current_part->eeprom_instr, 0, EEPROM_INSTR_SIZE);
while (lsize(number_list)) {
t = lrmv_n(number_list, 1);
if (nbytes < EEPROM_INSTR_SIZE)
{
current_part->eeprom_instr[nbytes] = t->value.number;
nbytes++;
}
else
{
ok = 0;
}
free_token(t);
}
if (!ok)
{
yywarning("too many bytes in EEPROM instructions");
}
}
} |
K_EEPROM_INSTR TKN_EQUAL K_NULL {
{
memset(current_part->eeprom_instr, 0, EEPROM_INSTR_SIZE);
}
} |
K_CHIP_ERASE_DELAY TKN_EQUAL numexpr
{
current_part->chip_erase_delay = $3->value.number;
free_token($3);
} |
K_PAGEL TKN_EQUAL numexpr
{
current_part->pagel = $3->value.number;
free_token($3);
} |
K_BS2 TKN_EQUAL numexpr
{
current_part->bs2 = $3->value.number;
free_token($3);
} |
K_RESET TKN_EQUAL reset_disposition
{
if ($3->primary == K_DEDICATED)
current_part->reset_disposition = RESET_DEDICATED;
else if ($3->primary == K_IO)
current_part->reset_disposition = RESET_IO;
free_tokens(2, $1, $3);
} |
K_TIMEOUT TKN_EQUAL numexpr
{
current_part->timeout = $3->value.number;
free_token($3);
} |
K_STABDELAY TKN_EQUAL numexpr
{
current_part->stabdelay = $3->value.number;
free_token($3);
} |
K_CMDEXEDELAY TKN_EQUAL numexpr
{
current_part->cmdexedelay = $3->value.number;
free_token($3);
} |
K_HVSPCMDEXEDELAY TKN_EQUAL numexpr
{
current_part->hvspcmdexedelay = $3->value.number;
free_token($3);
} |
K_SYNCHLOOPS TKN_EQUAL numexpr
{
current_part->synchloops = $3->value.number;
free_token($3);
} |
K_BYTEDELAY TKN_EQUAL numexpr
{
current_part->bytedelay = $3->value.number;
free_token($3);
} |
K_POLLVALUE TKN_EQUAL numexpr
{
current_part->pollvalue = $3->value.number;
free_token($3);
} |
K_POLLINDEX TKN_EQUAL numexpr
{
current_part->pollindex = $3->value.number;
free_token($3);
} |
K_PREDELAY TKN_EQUAL numexpr
{
current_part->predelay = $3->value.number;
free_token($3);
} |
K_POSTDELAY TKN_EQUAL numexpr
{
current_part->postdelay = $3->value.number;
free_token($3);
} |
K_POLLMETHOD TKN_EQUAL numexpr
{
current_part->pollmethod = $3->value.number;
free_token($3);
} |
K_HVENTERSTABDELAY TKN_EQUAL numexpr
{
current_part->hventerstabdelay = $3->value.number;
free_token($3);
} |
K_PROGMODEDELAY TKN_EQUAL numexpr
{
current_part->progmodedelay = $3->value.number;
free_token($3);
} |
K_LATCHCYCLES TKN_EQUAL numexpr
{
current_part->latchcycles = $3->value.number;
free_token($3);
} |
K_TOGGLEVTG TKN_EQUAL numexpr
{
current_part->togglevtg = $3->value.number;
free_token($3);
} |
K_POWEROFFDELAY TKN_EQUAL numexpr
{
current_part->poweroffdelay = $3->value.number;
free_token($3);
} |
K_RESETDELAYMS TKN_EQUAL numexpr
{
current_part->resetdelayms = $3->value.number;
free_token($3);
} |
K_RESETDELAYUS TKN_EQUAL numexpr
{
current_part->resetdelayus = $3->value.number;
free_token($3);
} |
K_HVLEAVESTABDELAY TKN_EQUAL numexpr
{
current_part->hvleavestabdelay = $3->value.number;
free_token($3);
} |
K_RESETDELAY TKN_EQUAL numexpr
{
current_part->resetdelay = $3->value.number;
free_token($3);
} |
K_CHIPERASEPULSEWIDTH TKN_EQUAL numexpr
{
current_part->chiperasepulsewidth = $3->value.number;
free_token($3);
} |
K_CHIPERASEPOLLTIMEOUT TKN_EQUAL numexpr
{
current_part->chiperasepolltimeout = $3->value.number;
free_token($3);
} |
K_CHIPERASETIME TKN_EQUAL numexpr
{
current_part->chiperasetime = $3->value.number;
free_token($3);
} |
K_PROGRAMFUSEPULSEWIDTH TKN_EQUAL numexpr
{
current_part->programfusepulsewidth = $3->value.number;
free_token($3);
} |
K_PROGRAMFUSEPOLLTIMEOUT TKN_EQUAL numexpr
{
current_part->programfusepolltimeout = $3->value.number;
free_token($3);
} |
K_PROGRAMLOCKPULSEWIDTH TKN_EQUAL numexpr
{
current_part->programlockpulsewidth = $3->value.number;
free_token($3);
} |
K_PROGRAMLOCKPOLLTIMEOUT TKN_EQUAL numexpr
{
current_part->programlockpolltimeout = $3->value.number;
free_token($3);
} |
K_SYNCHCYCLES TKN_EQUAL numexpr
{
current_part->synchcycles = $3->value.number;
free_token($3);
} |
K_HAS_JTAG TKN_EQUAL yesno
{
if ($3->primary == K_YES)
current_part->prog_modes |= PM_JTAG;
else if ($3->primary == K_NO)
current_part->prog_modes &= ~(PM_JTAG | PM_JTAGmkI | PM_XMEGAJTAG | PM_AVR32JTAG);
free_token($3);
} |
K_HAS_DW TKN_EQUAL yesno
{
if ($3->primary == K_YES)
current_part->prog_modes |= PM_debugWIRE;
else if ($3->primary == K_NO)
current_part->prog_modes &= ~PM_debugWIRE;
free_token($3);
} |
K_HAS_PDI TKN_EQUAL yesno
{
if ($3->primary == K_YES)
current_part->prog_modes |= PM_PDI;
else if ($3->primary == K_NO)
current_part->prog_modes &= ~PM_PDI;
free_token($3);
} |
K_HAS_UPDI TKN_EQUAL yesno
{
if ($3->primary == K_YES)
current_part->prog_modes |= PM_UPDI;
else if ($3->primary == K_NO)
current_part->prog_modes &= ~PM_UPDI;
free_token($3);
} |
K_HAS_TPI TKN_EQUAL yesno
{
if ($3->primary == K_YES)
current_part->prog_modes |= PM_TPI;
else if ($3->primary == K_NO)
current_part->prog_modes &= ~PM_TPI;
free_token($3);
} |
K_IS_AT90S1200 TKN_EQUAL yesno
{
if ($3->primary == K_YES)
current_part->flags |= AVRPART_IS_AT90S1200;
else if ($3->primary == K_NO)
current_part->flags &= ~AVRPART_IS_AT90S1200;
free_token($3);
} |
K_IS_AVR32 TKN_EQUAL yesno
{
if ($3->primary == K_YES)
current_part->prog_modes |= PM_aWire;
else if ($3->primary == K_NO)
current_part->prog_modes &= ~PM_aWire;
free_token($3);
} |
K_ALLOWFULLPAGEBITSTREAM TKN_EQUAL yesno
{
if ($3->primary == K_YES)
current_part->flags |= AVRPART_ALLOWFULLPAGEBITSTREAM;
else if ($3->primary == K_NO)
current_part->flags &= ~AVRPART_ALLOWFULLPAGEBITSTREAM;
free_token($3);
} |
K_ENABLEPAGEPROGRAMMING TKN_EQUAL yesno
{
if ($3->primary == K_YES)
current_part->flags |= AVRPART_ENABLEPAGEPROGRAMMING;
else if ($3->primary == K_NO)
current_part->flags &= ~AVRPART_ENABLEPAGEPROGRAMMING;
free_token($3);
} |
K_MCU_BASE TKN_EQUAL numexpr
{
current_part->mcu_base = $3->value.number;
free_token($3);
} |
K_NVM_BASE TKN_EQUAL numexpr
{
current_part->nvm_base = $3->value.number;
free_token($3);
} |
K_OCD_BASE TKN_EQUAL numexpr
{
current_part->ocd_base = $3->value.number;
free_token($3);
} |
K_OCDREV TKN_EQUAL numexpr
{
current_part->ocdrev = $3->value.number;
free_token($3);
} |
K_SERIAL TKN_EQUAL yesno
{
if ($3->primary == K_YES)
current_part->flags |= AVRPART_SERIALOK;
else if ($3->primary == K_NO)
current_part->flags &= ~AVRPART_SERIALOK;
free_token($3);
} |
K_PARALLEL TKN_EQUAL parallel_modes
{
if ($3->primary == K_YES) {
current_part->flags |= AVRPART_PARALLELOK;
current_part->flags &= ~AVRPART_PSEUDOPARALLEL;
}
else if ($3->primary == K_NO) {
current_part->flags &= ~AVRPART_PARALLELOK;
current_part->flags &= ~AVRPART_PSEUDOPARALLEL;
}
else if ($3->primary == K_PSEUDO) {
current_part->flags |= AVRPART_PARALLELOK;
current_part->flags |= AVRPART_PSEUDOPARALLEL;
}
free_token($3);
} |
K_RETRY_PULSE TKN_EQUAL retry_lines
{
switch ($3->primary) {
case K_RESET :
current_part->retry_pulse = PIN_AVR_RESET;
break;
case K_SCK :
current_part->retry_pulse = PIN_AVR_SCK;
break;
}
free_token($1);
} |
K_MEMORY TKN_STRING
{ /* select memory for extension or create if not there */
AVRMEM *mem = avr_locate_mem_noalias(current_part, $2->value.string);
if(!mem) {
mem = avr_new_memtype();
mem->desc = cache_string($2->value.string);
ladd(current_part->mem, mem);
}
avr_add_mem_order($2->value.string);
current_mem = mem;
free_token($2);
}
mem_specs
{
if (is_alias) { // alias mem has been already entered
lrmv_d(current_part->mem, current_mem);
avr_free_mem(current_mem);
is_alias = false;
} else { // check all opcodes re necessary address bits
unsigned char cmd[4] = { 0, 0, 0, 0, };
int bn;
for(int i=0; i<AVR_OP_MAX; i++)
if(current_mem && current_mem->op[i]) {
if((bn = avr_set_addr_mem(current_mem, i, cmd, 0UL)) > 0)
yywarning("%s's %s %s misses a necessary address bit a%d",
current_part->desc, current_mem->desc, opcodename(i), bn-1);
}
current_mem->comments = cfg_move_comments();
}
cfg_pop_comms();
current_mem = NULL;
current_strct = COMP_AVRPART;
} |
K_MEMORY TKN_STRING TKN_EQUAL K_NULL
{
AVRMEM *existing_mem = avr_locate_mem_noalias(current_part, $2->value.string);
if (existing_mem != NULL) {
lrmv_d(current_part->mem, existing_mem);
avr_free_mem(existing_mem);
}
free_token($2);
cfg_pop_comms();
current_mem = NULL;
current_strct = COMP_AVRPART;
} |
opcode TKN_EQUAL string_list {
{
int opnum;
OPCODE * op;
opnum = which_opcode($1);
if (opnum < 0) YYABORT;
op = avr_new_opcode();
if(0 != parse_cmdbits(op, opnum))
YYABORT;
if (current_part->op[opnum] != NULL) {
/*yywarning("operation redefined");*/
avr_free_opcode(current_part->op[opnum]);
}
current_part->op[opnum] = op;
free_token($1);
}
} |
opcode TKN_EQUAL K_NULL {
{
int opnum = which_opcode($1);
if(opnum < 0)
YYABORT;
if(current_part->op[opnum] != NULL)
avr_free_opcode(current_part->op[opnum]);
current_part->op[opnum] = NULL;
free_token($1);
}
}
;
yesno :
K_YES | K_NO
;
mem_specs :
mem_spec TKN_SEMI |
mem_alias TKN_SEMI |
mem_specs mem_spec TKN_SEMI
;
mem_spec :
TKN_COMPONENT TKN_EQUAL expr {
cfg_assign((char *) current_mem, COMP_AVRMEM, $1->value.comp, &$3->value);
free_token($1);
} |
K_PAGED TKN_EQUAL yesno
{
current_mem->paged = $3->primary == K_YES ? 1 : 0;
free_token($3);
} |
K_SIZE TKN_EQUAL numexpr
{
current_mem->size = $3->value.number;
free_token($3);
} |
K_PAGE_SIZE TKN_EQUAL numexpr
{
int ps = $3->value.number;
if (ps <= 0)
pmsg_warning("invalid page size %d, ignored [%s:%d]\n", ps, cfg_infile, cfg_lineno);
else
current_mem->page_size = ps;
free_token($3);
} |
K_NUM_PAGES TKN_EQUAL numexpr
{
current_mem->num_pages = $3->value.number;
free_token($3);
} |
K_OFFSET TKN_EQUAL numexpr
{
current_mem->offset = $3->value.number;
free_token($3);
} |
K_MIN_WRITE_DELAY TKN_EQUAL numexpr
{
current_mem->min_write_delay = $3->value.number;
free_token($3);
} |
K_MAX_WRITE_DELAY TKN_EQUAL numexpr
{
current_mem->max_write_delay = $3->value.number;
free_token($3);
} |
K_PWROFF_AFTER_WRITE TKN_EQUAL yesno
{
current_mem->pwroff_after_write = $3->primary == K_YES ? 1 : 0;
free_token($3);
} |
K_READBACK TKN_EQUAL TKN_NUMBER TKN_NUMBER
{
current_mem->readback[0] = $3->value.number;
current_mem->readback[1] = $4->value.number;
free_token($3);
free_token($4);
} |
K_READBACK_P1 TKN_EQUAL numexpr
{
current_mem->readback[0] = $3->value.number;
free_token($3);
} |
K_READBACK_P2 TKN_EQUAL numexpr
{
current_mem->readback[1] = $3->value.number;
free_token($3);
} |
K_MODE TKN_EQUAL numexpr
{
current_mem->mode = $3->value.number;
free_token($3);
} |
K_DELAY TKN_EQUAL numexpr
{
current_mem->delay = $3->value.number;
free_token($3);
} |
K_BLOCKSIZE TKN_EQUAL numexpr
{
current_mem->blocksize = $3->value.number;
free_token($3);
} |
K_READSIZE TKN_EQUAL numexpr
{
current_mem->readsize = $3->value.number;
free_token($3);
} |
K_POLLINDEX TKN_EQUAL numexpr
{
current_mem->pollindex = $3->value.number;
free_token($3);
} |
opcode TKN_EQUAL string_list {
{
int opnum;
OPCODE * op;
opnum = which_opcode($1);
if (opnum < 0) YYABORT;
op = avr_new_opcode();
if(0 != parse_cmdbits(op, opnum))
YYABORT;
if (current_mem->op[opnum] != NULL) {
/*yywarning("operation redefined");*/
avr_free_opcode(current_mem->op[opnum]);
}
current_mem->op[opnum] = op;
free_token($1);
}
} |
opcode TKN_EQUAL K_NULL {
{
int opnum = which_opcode($1);
if(opnum < 0)
YYABORT;
if(current_mem->op[opnum] != NULL)
avr_free_opcode(current_mem->op[opnum]);
current_mem->op[opnum] = NULL;
free_token($1);
}
}
;
mem_alias :
K_ALIAS TKN_STRING
{
AVRMEM * existing_mem;
existing_mem = avr_locate_mem(current_part, $2->value.string);
if (existing_mem == NULL) {
yyerror("%s alias to non-existent memory %s",
current_mem->desc, $2->value.string);
free_token($2);
YYABORT;
}
// if this alias does already exist, drop the old one
AVRMEM_ALIAS * alias = avr_locate_memalias(current_part, current_mem->desc);
if (alias) {
lrmv_d(current_part->mem_alias, alias);
avr_free_memalias(alias);
}
is_alias = true;
alias = avr_new_memalias();
alias->desc = current_mem->desc;
alias->aliased_mem = existing_mem;
ladd(current_part->mem_alias, alias);
free_token($2);
}
;
%%
#if 0
static char * vtypestr(int type)
{
switch (type) {
case V_NUM : return "INTEGER";
case V_NUM_REAL: return "REAL";
case V_STR : return "STRING";
default:
return "<UNKNOWN>";
}
}
#endif
static int clear_pin(int pinfunc) {
if(pinfunc < 0 || pinfunc >= N_PINS) {
yyerror("pin function must be in the range [0, %d]", N_PINS-1);
return -1;
}
pin_clear_all(&(current_prog->pin[pinfunc]));
return 0;
}
static int assign_pin(int pinfunc, TOKEN *v, int invert) {
if(pinfunc < 0 || pinfunc >= N_PINS) {
yyerror("pin function must be in the range [0, %d]", N_PINS-1);
return -1;
}
int value = v->value.number;
free_token(v);
if ((value < PIN_MIN) || (value > PIN_MAX)) {
yyerror("pin must be in the range " TOSTRING(PIN_MIN) "-" TOSTRING(PIN_MAX));
return -1;
}
pin_set_value(&(current_prog->pin[pinfunc]), value, invert);
return 0;
}
static int assign_pin_list(int invert)
{
TOKEN * t;
int pin;
int rv = 0;
if(pin_name < 0 || pin_name >= N_PINS) {
yyerror("pin_name should be in the range [0, %d]", N_PINS-1);
return -1;
}
current_prog->pinno[pin_name] = NO_PIN;
while (lsize(number_list)) {
t = lrmv_n(number_list, 1);
if (rv == 0) {
pin = t->value.number;
if ((pin < PIN_MIN) || (pin > PIN_MAX)) {
yyerror("pin must be in the range " TOSTRING(PIN_MIN) "-" TOSTRING(PIN_MAX));
rv = -1;
/* loop clears list and frees tokens */
}
pin_set_value(&(current_prog->pin[pin_name]), pin, invert);
}
free_token(t);
}
return rv;
}
static int which_opcode(TOKEN * opcode)
{
switch (opcode->primary) {
case K_READ : return AVR_OP_READ; break;
case K_WRITE : return AVR_OP_WRITE; break;
case K_READ_LO : return AVR_OP_READ_LO; break;
case K_READ_HI : return AVR_OP_READ_HI; break;
case K_WRITE_LO : return AVR_OP_WRITE_LO; break;
case K_WRITE_HI : return AVR_OP_WRITE_HI; break;
case K_LOADPAGE_LO : return AVR_OP_LOADPAGE_LO; break;
case K_LOADPAGE_HI : return AVR_OP_LOADPAGE_HI; break;
case K_LOAD_EXT_ADDR : return AVR_OP_LOAD_EXT_ADDR; break;
case K_WRITEPAGE : return AVR_OP_WRITEPAGE; break;
case K_CHIP_ERASE : return AVR_OP_CHIP_ERASE; break;
case K_PGM_ENABLE : return AVR_OP_PGM_ENABLE; break;
default :
yyerror("invalid opcode");
return -1;
break;
}
}
static int parse_cmdbits(OPCODE * op, int opnum)
{
TOKEN *t;
int bitno;
int len;
char *s, *brkt = NULL;
int rv = 0;
bitno = 32;
while (lsize(string_list)) {
t = lrmv_n(string_list, 1);
char *str = t->value.string;
// Compact alternative specification? (eg, "0100.0000--000x.xxxx--xxaa.aaaa--iiii.iiii")
char bit[2] = {0, 0}, *cc = str;
int compact = !strchr(str, ' ') && strlen(str) > 7;
bit[0] = *cc++;
s = !compact? strtok_r(str, " ", &brkt): *bit? bit: NULL;
while (rv == 0 && s != NULL) {
// Ignore visual grouping characters in compact mode
if(*s != '.' && *s != '-' && *s != '_' && *s !='/')
bitno--;
if (bitno < 0) {
yyerror("too many opcode bits for instruction");
rv = -1;
break;
}
len = strlen(s);
if (len == 0) {
yyerror("invalid bit specifier \"\"");
rv = -1;
break;
}
if (len == 1) {
switch (*s) {
case '1':
op->bit[bitno].type = AVR_CMDBIT_VALUE;
op->bit[bitno].value = 1;
op->bit[bitno].bitno = bitno % 8;
break;
case '0':
op->bit[bitno].type = AVR_CMDBIT_VALUE;
op->bit[bitno].value = 0;
op->bit[bitno].bitno = bitno % 8;
break;
case 'x':
op->bit[bitno].type = AVR_CMDBIT_IGNORE;
op->bit[bitno].value = 0;
op->bit[bitno].bitno = bitno % 8;
break;
case 'a':
op->bit[bitno].type = AVR_CMDBIT_ADDRESS;
op->bit[bitno].value = 0;
op->bit[bitno].bitno = bitno < 8 || bitno > 23? 0:
opnum == AVR_OP_LOAD_EXT_ADDR? bitno+8: bitno-8; /* correct bit number for lone 'a' */
if(bitno < 8 || bitno > 23)
yywarning("address bits don't normally appear in Bytes 0 or 3 of SPI commands");
break;
case 'i':
op->bit[bitno].type = AVR_CMDBIT_INPUT;
op->bit[bitno].value = 0;
op->bit[bitno].bitno = bitno % 8;
break;
case 'o':
op->bit[bitno].type = AVR_CMDBIT_OUTPUT;
op->bit[bitno].value = 0;
op->bit[bitno].bitno = bitno % 8;
break;
case '.':
case '-':
case '_':
case '/':
break;
default :
yyerror("invalid bit specifier '%c'", *s);
rv = -1;
break;
}
}
else {
if (*s == 'a') {
int sb, bn;
char *e, *q;
q = s+1;
errno = 0;
bn = strtol(q, &e, 0); // address line
if (e == q || *e != 0 || errno) {
yywarning("can't parse bit number from a%s", q);
bn = 0;
}
sb = opnum == AVR_OP_LOAD_EXT_ADDR? bitno+8: bitno-8; // should be this number
if(bitno < 8 || bitno > 23)
yywarning("address bits don't normally appear in Bytes 0 or 3 of SPI commands");
else if((bn & 31) != sb)
yywarning("a%d would normally be expected to be a%d", bn, sb);
else if(bn < 0 || bn > 31)
yywarning("invalid address bit a%d, using a%d", bn, bn & 31);
op->bit[bitno].bitno = bn & 31;
op->bit[bitno].type = AVR_CMDBIT_ADDRESS;
op->bit[bitno].value = 0;
}
else {
yyerror("invalid bit specifier %s", s);
rv = -1;
break;
}
}
bit[0] = *cc++;
s = !compact? strtok_r(NULL, " ", &brkt): *bit? bit: NULL;
} /* while */
free_token(t);
} /* while */
if(bitno > 0)
yywarning("too few opcode bits in instruction");
return rv;
}