/* * avrdude - A Downloader/Uploader for AVR device programmers * Copyright (C) 2000-2004 Brian S. Dean <bsd@bsdhome.com> * Copyright (C) 2006 Joerg Wunsch <j@uriah.heep.sax.de> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* $Id$ */ %{ #include "ac_cfg.h" #include <stdlib.h> #include <string.h> #include <math.h> #include "avrdude.h" #include "config.h" #include "lists.h" #include "par.h" #include "serbb.h" #include "pindefs.h" #include "ppi.h" #include "pgm.h" #include "pgm_type.h" #include "avr.h" #if defined(WIN32NATIVE) #define strtok_r( _s, _sep, _lasts ) \ ( *(_lasts) = strtok( (_s), (_sep) ) ) #endif int yylex(void); int yyerror(char * errmsg); static int assign_pin(int pinno, TOKEN * v, int invert); static int assign_pin_list(int invert); static int which_opcode(TOKEN * opcode); static int parse_cmdbits(OPCODE * op); static int pin_name; %} %token K_READ %token K_WRITE %token K_READ_LO %token K_READ_HI %token K_WRITE_LO %token K_WRITE_HI %token K_LOADPAGE_LO %token K_LOADPAGE_HI %token K_LOAD_EXT_ADDR %token K_WRITEPAGE %token K_CHIP_ERASE %token K_PGM_ENABLE %token K_MEMORY %token K_PAGE_SIZE %token K_PAGED %token K_BAUDRATE %token K_BS2 %token K_BUFF %token K_CHIP_ERASE_DELAY %token K_CONNTYPE %token K_DEDICATED %token K_DEFAULT_BITCLOCK %token K_DEFAULT_PARALLEL %token K_DEFAULT_PROGRAMMER %token K_DEFAULT_SAFEMODE %token K_DEFAULT_SERIAL %token K_DESC %token K_DEVICECODE %token K_STK500_DEVCODE %token K_AVR910_DEVCODE %token K_EEPROM %token K_ERRLED %token K_FLASH %token K_ID %token K_IO %token K_LOADPAGE %token K_MAX_WRITE_DELAY %token K_MCU_BASE %token K_MIN_WRITE_DELAY %token K_MISO %token K_MOSI %token K_NUM_PAGES %token K_NVM_BASE %token K_OCDREV %token K_OFFSET %token K_PAGEL %token K_PARALLEL %token K_PARENT %token K_PART %token K_PGMLED %token K_PROGRAMMER %token K_PSEUDO %token K_PWROFF_AFTER_WRITE %token K_RDYLED %token K_READBACK_P1 %token K_READBACK_P2 %token K_READMEM %token K_RESET %token K_RETRY_PULSE %token K_SERIAL %token K_SCK %token K_SIGNATURE %token K_SIZE %token K_USB %token K_USBDEV %token K_USBSN %token K_USBPID %token K_USBPRODUCT %token K_USBVENDOR %token K_USBVID %token K_TYPE %token K_VCC %token K_VFYLED %token K_NO %token K_YES /* stk500 v2 xml file parameters */ /* ISP */ %token K_TIMEOUT %token K_STABDELAY %token K_CMDEXEDELAY %token K_HVSPCMDEXEDELAY %token K_SYNCHLOOPS %token K_BYTEDELAY %token K_POLLVALUE %token K_POLLINDEX %token K_PREDELAY %token K_POSTDELAY %token K_POLLMETHOD %token K_MODE %token K_DELAY %token K_BLOCKSIZE %token K_READSIZE /* HV mode */ %token K_HVENTERSTABDELAY %token K_PROGMODEDELAY %token K_LATCHCYCLES %token K_TOGGLEVTG %token K_POWEROFFDELAY %token K_RESETDELAYMS %token K_RESETDELAYUS %token K_HVLEAVESTABDELAY %token K_RESETDELAY %token K_SYNCHCYCLES %token K_HVCMDEXEDELAY %token K_CHIPERASEPULSEWIDTH %token K_CHIPERASEPOLLTIMEOUT %token K_CHIPERASETIME %token K_PROGRAMFUSEPULSEWIDTH %token K_PROGRAMFUSEPOLLTIMEOUT %token K_PROGRAMLOCKPULSEWIDTH %token K_PROGRAMLOCKPOLLTIMEOUT %token K_PP_CONTROLSTACK %token K_HVSP_CONTROLSTACK /* JTAG ICE mkII specific parameters */ %token K_ALLOWFULLPAGEBITSTREAM /* * Internal parameter for the JTAG * ICE; describes the internal JTAG * streaming behaviour inside the MCU. * 1 for all older chips, 0 for newer * MCUs. */ %token K_ENABLEPAGEPROGRAMMING /* ? yes for mega256*, mega406 */ %token K_HAS_JTAG /* MCU has JTAG i/f. */ %token K_HAS_DW /* MCU has debugWire i/f. */ %token K_HAS_PDI /* MCU has PDI i/f rather than ISP (ATxmega). */ %token K_HAS_TPI /* MCU has TPI i/f rather than ISP (ATtiny4/5/9/10). */ %token K_IDR /* address of OCD register in IO space */ %token K_IS_AT90S1200 /* chip is an AT90S1200 (needs special treatment) */ %token K_IS_AVR32 /* chip is in the avr32 family */ %token K_RAMPZ /* address of RAMPZ reg. in IO space */ %token K_SPMCR /* address of SPMC[S]R in memory space */ %token K_EECR /* address of EECR in memory space */ %token K_FLASH_INSTR /* flash instructions */ %token K_EEPROM_INSTR /* EEPROM instructions */ %token TKN_COMMA %token TKN_EQUAL %token TKN_SEMI %token TKN_TILDE %token TKN_LEFT_PAREN %token TKN_RIGHT_PAREN %token TKN_NUMBER %token TKN_NUMBER_REAL %token TKN_STRING %start configuration %% number_real : TKN_NUMBER { $$ = $1; /* convert value to real */ $$->value.number_real = $$->value.number; $$->value.type = V_NUM_REAL; } | TKN_NUMBER_REAL { $$ = $1; } configuration : /* empty */ | config ; config : def | config def ; def : prog_def TKN_SEMI | part_def TKN_SEMI | K_DEFAULT_PROGRAMMER TKN_EQUAL TKN_STRING TKN_SEMI { strncpy(default_programmer, $3->value.string, MAX_STR_CONST); default_programmer[MAX_STR_CONST-1] = 0; free_token($3); } | K_DEFAULT_PARALLEL TKN_EQUAL TKN_STRING TKN_SEMI { strncpy(default_parallel, $3->value.string, PATH_MAX); default_parallel[PATH_MAX-1] = 0; free_token($3); } | K_DEFAULT_SERIAL TKN_EQUAL TKN_STRING TKN_SEMI { strncpy(default_serial, $3->value.string, PATH_MAX); default_serial[PATH_MAX-1] = 0; free_token($3); } | K_DEFAULT_BITCLOCK TKN_EQUAL number_real TKN_SEMI { default_bitclock = $3->value.number_real; free_token($3); } | K_DEFAULT_SAFEMODE TKN_EQUAL yesno TKN_SEMI { if ($3->primary == K_YES) default_safemode = 1; else if ($3->primary == K_NO) default_safemode = 0; free_token($3); } ; prog_def : prog_decl prog_parms { PROGRAMMER * existing_prog; char * id; if (lsize(current_prog->id) == 0) { fprintf(stderr, "%s: error at %s:%d: required parameter id not specified\n", progname, infile, lineno); exit(1); } if (current_prog->initpgm == NULL) { fprintf(stderr, "%s: error at %s:%d: programmer type not specified\n", progname, infile, lineno); exit(1); } id = ldata(lfirst(current_prog->id)); existing_prog = locate_programmer(programmers, id); if (existing_prog) { fprintf(stderr, "%s: warning at %s:%d: programmer %s overwrites " "previous definition %s:%d.\n", progname, infile, current_prog->lineno, id, existing_prog->config_file, existing_prog->lineno); lrmv_d(programmers, existing_prog); pgm_free(existing_prog); } PUSH(programmers, current_prog); // pgm_fill_old_pins(current_prog); // TODO to be removed if old pin data no longer needed // pgm_display_generic(current_prog, id); current_prog = NULL; } ; prog_decl : K_PROGRAMMER { current_prog = pgm_new(); strcpy(current_prog->config_file, infile); current_prog->lineno = lineno; } | K_PROGRAMMER K_PARENT TKN_STRING { struct programmer_t * pgm = locate_programmer(programmers, $3->value.string); if (pgm == NULL) { fprintf(stderr, "%s: error at %s:%d: parent programmer %s not found\n", progname, infile, lineno, $3->value.string); exit(1); } current_prog = pgm_dup(pgm); strcpy(current_prog->config_file, infile); current_prog->lineno = lineno; free_token($3); } ; part_def : part_decl part_parms { LNODEID ln; AVRMEM * m; AVRPART * existing_part; if (current_part->id[0] == 0) { fprintf(stderr, "%s: error at %s:%d: required parameter id not specified\n", progname, infile, lineno); exit(1); } /* * perform some sanity checking, and compute the number of bits * to shift a page for constructing the page address for * page-addressed memories. */ for (ln=lfirst(current_part->mem); ln; ln=lnext(ln)) { m = ldata(ln); if (m->paged) { if (m->page_size == 0) { fprintf(stderr, "%s: error at %s:%d: must specify page_size for paged " "memory\n", progname, infile, lineno); exit(1); } if (m->num_pages == 0) { fprintf(stderr, "%s: error at %s:%d: must specify num_pages for paged " "memory\n", progname, infile, lineno); exit(1); } if (m->size != m->page_size * m->num_pages) { fprintf(stderr, "%s: error at %s:%d: page size (%u) * num_pages (%u) = " "%u does not match memory size (%u)\n", progname, infile, lineno, m->page_size, m->num_pages, m->page_size * m->num_pages, m->size); exit(1); } } } existing_part = locate_part(part_list, current_part->id); if (existing_part) { fprintf(stderr, "%s: warning at %s:%d: part %s overwrites " "previous definition %s:%d.\n", progname, infile, current_part->lineno, current_part->id, existing_part->config_file, existing_part->lineno); lrmv_d(part_list, existing_part); avr_free_part(existing_part); } PUSH(part_list, current_part); current_part = NULL; } ; part_decl : K_PART { current_part = avr_new_part(); strcpy(current_part->config_file, infile); current_part->lineno = lineno; } | K_PART K_PARENT TKN_STRING { AVRPART * parent_part = locate_part(part_list, $3->value.string); if (parent_part == NULL) { fprintf(stderr, "%s: error at %s:%d: can't find parent part", progname, infile, lineno); exit(1); } current_part = avr_dup_part(parent_part); strcpy(current_part->config_file, infile); current_part->lineno = lineno; free_token($3); } ; string_list : TKN_STRING { ladd(string_list, $1); } | string_list TKN_COMMA TKN_STRING { ladd(string_list, $3); } ; num_list : TKN_NUMBER { ladd(number_list, $1); } | num_list TKN_COMMA TKN_NUMBER { ladd(number_list, $3); } ; prog_parms : prog_parm TKN_SEMI | prog_parms prog_parm TKN_SEMI ; prog_parm : K_ID TKN_EQUAL string_list { { TOKEN * t; while (lsize(string_list)) { t = lrmv_n(string_list, 1); ladd(current_prog->id, dup_string(t->value.string)); free_token(t); } } } | prog_parm_type | prog_parm_pins | prog_parm_usb | prog_parm_conntype | K_DESC TKN_EQUAL TKN_STRING { strncpy(current_prog->desc, $3->value.string, PGM_DESCLEN); current_prog->desc[PGM_DESCLEN-1] = 0; free_token($3); } | K_BAUDRATE TKN_EQUAL TKN_NUMBER { { current_prog->baudrate = $3->value.number; free_token($3); } } ; prog_parm_type: K_TYPE TKN_EQUAL prog_parm_type_id ; prog_parm_type_id: TKN_STRING { const struct programmer_type_t * pgm_type = locate_programmer_type($1->value.string); if (pgm_type == NULL) { fprintf(stderr, "%s: error at %s:%d: programmer type %s not found\n", progname, infile, lineno, $1->value.string); exit(1); } current_prog->initpgm = pgm_type->initpgm; free_token($1); } | error { fprintf(stderr, "%s: error at %s:%d: programmer type must be written as \"id_type\"\n", progname, infile, lineno); exit(1); } ; prog_parm_conntype: K_CONNTYPE TKN_EQUAL prog_parm_conntype_id ; prog_parm_conntype_id: K_PARALLEL { current_prog->conntype = CONNTYPE_PARALLEL; } | K_SERIAL { current_prog->conntype = CONNTYPE_SERIAL; } | K_USB { current_prog->conntype = CONNTYPE_USB; } ; prog_parm_usb: K_USBDEV TKN_EQUAL TKN_STRING { { strncpy(current_prog->usbdev, $3->value.string, PGM_USBSTRINGLEN); current_prog->usbdev[PGM_USBSTRINGLEN-1] = 0; free_token($3); } } | K_USBVID TKN_EQUAL TKN_NUMBER { { current_prog->usbvid = $3->value.number; free_token($3); } } | K_USBPID TKN_EQUAL TKN_NUMBER { { current_prog->usbpid = $3->value.number; free_token($3); } } | K_USBSN TKN_EQUAL TKN_STRING { { strncpy(current_prog->usbsn, $3->value.string, PGM_USBSTRINGLEN); current_prog->usbsn[PGM_USBSTRINGLEN-1] = 0; free_token($3); } } | K_USBVENDOR TKN_EQUAL TKN_STRING { { strncpy(current_prog->usbvendor, $3->value.string, PGM_USBSTRINGLEN); current_prog->usbvendor[PGM_USBSTRINGLEN-1] = 0; free_token($3); } } | K_USBPRODUCT TKN_EQUAL TKN_STRING { { strncpy(current_prog->usbproduct, $3->value.string, PGM_USBSTRINGLEN); current_prog->usbproduct[PGM_USBSTRINGLEN-1] = 0; free_token($3); } } ; pin_number_non_empty: TKN_NUMBER { assign_pin(pin_name, $1, 0); } | TKN_TILDE TKN_NUMBER { assign_pin(pin_name, $2, 1); } ; pin_number: pin_number_non_empty | /* empty */ { pin_clear_all(&(current_prog->pin[pin_name])); } ; pin_list_element: pin_number_non_empty | TKN_TILDE TKN_LEFT_PAREN num_list TKN_RIGHT_PAREN { assign_pin_list(1); } ; pin_list_non_empty: pin_list_element | pin_list_non_empty TKN_COMMA pin_list_element ; pin_list: pin_list_non_empty | /* empty */ { pin_clear_all(&(current_prog->pin[pin_name])); } ; prog_parm_pins: K_VCC TKN_EQUAL {pin_name = PPI_AVR_VCC; } pin_list | K_BUFF TKN_EQUAL {pin_name = PPI_AVR_BUFF; } pin_list | K_RESET TKN_EQUAL {pin_name = PIN_AVR_RESET;} pin_number { free_token($1); } | K_SCK TKN_EQUAL {pin_name = PIN_AVR_SCK; } pin_number { free_token($1); } | K_MOSI TKN_EQUAL {pin_name = PIN_AVR_MOSI; } pin_number | K_MISO TKN_EQUAL {pin_name = PIN_AVR_MISO; } pin_number | K_ERRLED TKN_EQUAL {pin_name = PIN_LED_ERR; } pin_number | K_RDYLED TKN_EQUAL {pin_name = PIN_LED_RDY; } pin_number | K_PGMLED TKN_EQUAL {pin_name = PIN_LED_PGM; } pin_number | K_VFYLED TKN_EQUAL {pin_name = PIN_LED_VFY; } pin_number ; opcode : K_READ | K_WRITE | K_READ_LO | K_READ_HI | K_WRITE_LO | K_WRITE_HI | K_LOADPAGE_LO | K_LOADPAGE_HI | K_LOAD_EXT_ADDR | K_WRITEPAGE | K_CHIP_ERASE | K_PGM_ENABLE ; part_parms : part_parm TKN_SEMI | part_parms part_parm TKN_SEMI ; reset_disposition : K_DEDICATED | K_IO ; parallel_modes : yesno | K_PSEUDO ; retry_lines : K_RESET | K_SCK ; part_parm : K_ID TKN_EQUAL TKN_STRING { strncpy(current_part->id, $3->value.string, AVR_IDLEN); current_part->id[AVR_IDLEN-1] = 0; free_token($3); } | K_DESC TKN_EQUAL TKN_STRING { strncpy(current_part->desc, $3->value.string, AVR_DESCLEN); current_part->desc[AVR_DESCLEN-1] = 0; free_token($3); } | K_DEVICECODE TKN_EQUAL TKN_NUMBER { { fprintf(stderr, "%s: error at %s:%d: devicecode is deprecated, use " "stk500_devcode instead\n", progname, infile, lineno); exit(1); } } | K_STK500_DEVCODE TKN_EQUAL TKN_NUMBER { { current_part->stk500_devcode = $3->value.number; free_token($3); } } | K_AVR910_DEVCODE TKN_EQUAL TKN_NUMBER { { current_part->avr910_devcode = $3->value.number; free_token($3); } } | K_SIGNATURE TKN_EQUAL TKN_NUMBER TKN_NUMBER TKN_NUMBER { { current_part->signature[0] = $3->value.number; current_part->signature[1] = $4->value.number; current_part->signature[2] = $5->value.number; free_token($3); free_token($4); free_token($5); } } | K_USBPID TKN_EQUAL TKN_NUMBER { { current_part->usbpid = $3->value.number; free_token($3); } } | K_PP_CONTROLSTACK TKN_EQUAL num_list { { TOKEN * t; unsigned nbytes; int ok; current_part->ctl_stack_type = CTL_STACK_PP; nbytes = 0; ok = 1; memset(current_part->controlstack, 0, CTL_STACK_SIZE); while (lsize(number_list)) { t = lrmv_n(number_list, 1); if (nbytes < CTL_STACK_SIZE) { current_part->controlstack[nbytes] = t->value.number; nbytes++; } else { ok = 0; } free_token(t); } if (!ok) { fprintf(stderr, "%s: Warning: line %d of %s: " "too many bytes in control stack\n", progname, lineno, infile); } } } | K_HVSP_CONTROLSTACK TKN_EQUAL num_list { { TOKEN * t; unsigned nbytes; int ok; current_part->ctl_stack_type = CTL_STACK_HVSP; nbytes = 0; ok = 1; memset(current_part->controlstack, 0, CTL_STACK_SIZE); while (lsize(number_list)) { t = lrmv_n(number_list, 1); if (nbytes < CTL_STACK_SIZE) { current_part->controlstack[nbytes] = t->value.number; nbytes++; } else { ok = 0; } free_token(t); } if (!ok) { fprintf(stderr, "%s: Warning: line %d of %s: " "too many bytes in control stack\n", progname, lineno, infile); } } } | K_FLASH_INSTR TKN_EQUAL num_list { { TOKEN * t; unsigned nbytes; int ok; nbytes = 0; ok = 1; memset(current_part->flash_instr, 0, FLASH_INSTR_SIZE); while (lsize(number_list)) { t = lrmv_n(number_list, 1); if (nbytes < FLASH_INSTR_SIZE) { current_part->flash_instr[nbytes] = t->value.number; nbytes++; } else { ok = 0; } free_token(t); } if (!ok) { fprintf(stderr, "%s: Warning: line %d of %s: " "too many bytes in flash instructions\n", progname, lineno, infile); } } } | K_EEPROM_INSTR TKN_EQUAL num_list { { TOKEN * t; unsigned nbytes; int ok; nbytes = 0; ok = 1; memset(current_part->eeprom_instr, 0, EEPROM_INSTR_SIZE); while (lsize(number_list)) { t = lrmv_n(number_list, 1); if (nbytes < EEPROM_INSTR_SIZE) { current_part->eeprom_instr[nbytes] = t->value.number; nbytes++; } else { ok = 0; } free_token(t); } if (!ok) { fprintf(stderr, "%s: Warning: line %d of %s: " "too many bytes in EEPROM instructions\n", progname, lineno, infile); } } } | K_CHIP_ERASE_DELAY TKN_EQUAL TKN_NUMBER { current_part->chip_erase_delay = $3->value.number; free_token($3); } | K_PAGEL TKN_EQUAL TKN_NUMBER { current_part->pagel = $3->value.number; free_token($3); } | K_BS2 TKN_EQUAL TKN_NUMBER { current_part->bs2 = $3->value.number; free_token($3); } | K_RESET TKN_EQUAL reset_disposition { if ($3->primary == K_DEDICATED) current_part->reset_disposition = RESET_DEDICATED; else if ($3->primary == K_IO) current_part->reset_disposition = RESET_IO; free_tokens(2, $1, $3); } | K_TIMEOUT TKN_EQUAL TKN_NUMBER { current_part->timeout = $3->value.number; free_token($3); } | K_STABDELAY TKN_EQUAL TKN_NUMBER { current_part->stabdelay = $3->value.number; free_token($3); } | K_CMDEXEDELAY TKN_EQUAL TKN_NUMBER { current_part->cmdexedelay = $3->value.number; free_token($3); } | K_HVSPCMDEXEDELAY TKN_EQUAL TKN_NUMBER { current_part->hvspcmdexedelay = $3->value.number; free_token($3); } | K_SYNCHLOOPS TKN_EQUAL TKN_NUMBER { current_part->synchloops = $3->value.number; free_token($3); } | K_BYTEDELAY TKN_EQUAL TKN_NUMBER { current_part->bytedelay = $3->value.number; free_token($3); } | K_POLLVALUE TKN_EQUAL TKN_NUMBER { current_part->pollvalue = $3->value.number; free_token($3); } | K_POLLINDEX TKN_EQUAL TKN_NUMBER { current_part->pollindex = $3->value.number; free_token($3); } | K_PREDELAY TKN_EQUAL TKN_NUMBER { current_part->predelay = $3->value.number; free_token($3); } | K_POSTDELAY TKN_EQUAL TKN_NUMBER { current_part->postdelay = $3->value.number; free_token($3); } | K_POLLMETHOD TKN_EQUAL TKN_NUMBER { current_part->pollmethod = $3->value.number; free_token($3); } | K_HVENTERSTABDELAY TKN_EQUAL TKN_NUMBER { current_part->hventerstabdelay = $3->value.number; free_token($3); } | K_PROGMODEDELAY TKN_EQUAL TKN_NUMBER { current_part->progmodedelay = $3->value.number; free_token($3); } | K_LATCHCYCLES TKN_EQUAL TKN_NUMBER { current_part->latchcycles = $3->value.number; free_token($3); } | K_TOGGLEVTG TKN_EQUAL TKN_NUMBER { current_part->togglevtg = $3->value.number; free_token($3); } | K_POWEROFFDELAY TKN_EQUAL TKN_NUMBER { current_part->poweroffdelay = $3->value.number; free_token($3); } | K_RESETDELAYMS TKN_EQUAL TKN_NUMBER { current_part->resetdelayms = $3->value.number; free_token($3); } | K_RESETDELAYUS TKN_EQUAL TKN_NUMBER { current_part->resetdelayus = $3->value.number; free_token($3); } | K_HVLEAVESTABDELAY TKN_EQUAL TKN_NUMBER { current_part->hvleavestabdelay = $3->value.number; free_token($3); } | K_RESETDELAY TKN_EQUAL TKN_NUMBER { current_part->resetdelay = $3->value.number; free_token($3); } | K_CHIPERASEPULSEWIDTH TKN_EQUAL TKN_NUMBER { current_part->chiperasepulsewidth = $3->value.number; free_token($3); } | K_CHIPERASEPOLLTIMEOUT TKN_EQUAL TKN_NUMBER { current_part->chiperasepolltimeout = $3->value.number; free_token($3); } | K_CHIPERASETIME TKN_EQUAL TKN_NUMBER { current_part->chiperasetime = $3->value.number; free_token($3); } | K_PROGRAMFUSEPULSEWIDTH TKN_EQUAL TKN_NUMBER { current_part->programfusepulsewidth = $3->value.number; free_token($3); } | K_PROGRAMFUSEPOLLTIMEOUT TKN_EQUAL TKN_NUMBER { current_part->programfusepolltimeout = $3->value.number; free_token($3); } | K_PROGRAMLOCKPULSEWIDTH TKN_EQUAL TKN_NUMBER { current_part->programlockpulsewidth = $3->value.number; free_token($3); } | K_PROGRAMLOCKPOLLTIMEOUT TKN_EQUAL TKN_NUMBER { current_part->programlockpolltimeout = $3->value.number; free_token($3); } | K_SYNCHCYCLES TKN_EQUAL TKN_NUMBER { current_part->synchcycles = $3->value.number; free_token($3); } | K_HAS_JTAG TKN_EQUAL yesno { if ($3->primary == K_YES) current_part->flags |= AVRPART_HAS_JTAG; else if ($3->primary == K_NO) current_part->flags &= ~AVRPART_HAS_JTAG; free_token($3); } | K_HAS_DW TKN_EQUAL yesno { if ($3->primary == K_YES) current_part->flags |= AVRPART_HAS_DW; else if ($3->primary == K_NO) current_part->flags &= ~AVRPART_HAS_DW; free_token($3); } | K_HAS_PDI TKN_EQUAL yesno { if ($3->primary == K_YES) current_part->flags |= AVRPART_HAS_PDI; else if ($3->primary == K_NO) current_part->flags &= ~AVRPART_HAS_PDI; free_token($3); } | K_HAS_TPI TKN_EQUAL yesno { if ($3->primary == K_YES) current_part->flags |= AVRPART_HAS_TPI; else if ($3->primary == K_NO) current_part->flags &= ~AVRPART_HAS_TPI; free_token($3); } | K_IS_AT90S1200 TKN_EQUAL yesno { if ($3->primary == K_YES) current_part->flags |= AVRPART_IS_AT90S1200; else if ($3->primary == K_NO) current_part->flags &= ~AVRPART_IS_AT90S1200; free_token($3); } | K_IS_AVR32 TKN_EQUAL yesno { if ($3->primary == K_YES) current_part->flags |= AVRPART_AVR32; else if ($3->primary == K_NO) current_part->flags &= ~AVRPART_AVR32; free_token($3); } | K_ALLOWFULLPAGEBITSTREAM TKN_EQUAL yesno { if ($3->primary == K_YES) current_part->flags |= AVRPART_ALLOWFULLPAGEBITSTREAM; else if ($3->primary == K_NO) current_part->flags &= ~AVRPART_ALLOWFULLPAGEBITSTREAM; free_token($3); } | K_ENABLEPAGEPROGRAMMING TKN_EQUAL yesno { if ($3->primary == K_YES) current_part->flags |= AVRPART_ENABLEPAGEPROGRAMMING; else if ($3->primary == K_NO) current_part->flags &= ~AVRPART_ENABLEPAGEPROGRAMMING; free_token($3); } | K_IDR TKN_EQUAL TKN_NUMBER { current_part->idr = $3->value.number; free_token($3); } | K_RAMPZ TKN_EQUAL TKN_NUMBER { current_part->rampz = $3->value.number; free_token($3); } | K_SPMCR TKN_EQUAL TKN_NUMBER { current_part->spmcr = $3->value.number; free_token($3); } | K_EECR TKN_EQUAL TKN_NUMBER { current_part->eecr = $3->value.number; free_token($3); } | K_MCU_BASE TKN_EQUAL TKN_NUMBER { current_part->mcu_base = $3->value.number; free_token($3); } | K_NVM_BASE TKN_EQUAL TKN_NUMBER { current_part->nvm_base = $3->value.number; free_token($3); } | K_OCDREV TKN_EQUAL TKN_NUMBER { current_part->ocdrev = $3->value.number; free_token($3); } | K_SERIAL TKN_EQUAL yesno { if ($3->primary == K_YES) current_part->flags |= AVRPART_SERIALOK; else if ($3->primary == K_NO) current_part->flags &= ~AVRPART_SERIALOK; free_token($3); } | K_PARALLEL TKN_EQUAL parallel_modes { if ($3->primary == K_YES) { current_part->flags |= AVRPART_PARALLELOK; current_part->flags &= ~AVRPART_PSEUDOPARALLEL; } else if ($3->primary == K_NO) { current_part->flags &= ~AVRPART_PARALLELOK; current_part->flags &= ~AVRPART_PSEUDOPARALLEL; } else if ($3->primary == K_PSEUDO) { current_part->flags |= AVRPART_PARALLELOK; current_part->flags |= AVRPART_PSEUDOPARALLEL; } free_token($3); } | K_RETRY_PULSE TKN_EQUAL retry_lines { switch ($3->primary) { case K_RESET : current_part->retry_pulse = PIN_AVR_RESET; break; case K_SCK : current_part->retry_pulse = PIN_AVR_SCK; break; } free_token($1); } | /* K_EEPROM { current_mem = AVR_M_EEPROM; } mem_specs | K_FLASH { current_mem = AVR_M_FLASH; } mem_specs | */ K_MEMORY TKN_STRING { current_mem = avr_new_memtype(); strncpy(current_mem->desc, $2->value.string, AVR_MEMDESCLEN); current_mem->desc[AVR_MEMDESCLEN-1] = 0; free_token($2); } mem_specs { AVRMEM * existing_mem; existing_mem = avr_locate_mem(current_part, current_mem->desc); if (existing_mem != NULL) { lrmv_d(current_part->mem, existing_mem); avr_free_mem(existing_mem); } ladd(current_part->mem, current_mem); current_mem = NULL; } | opcode TKN_EQUAL string_list { { int opnum; OPCODE * op; opnum = which_opcode($1); op = avr_new_opcode(); parse_cmdbits(op); if (current_part->op[opnum] != NULL) { /*fprintf(stderr, "%s: warning at %s:%d: operation redefined\n", progname, infile, lineno);*/ avr_free_opcode(current_part->op[opnum]); } current_part->op[opnum] = op; free_token($1); } } ; yesno : K_YES | K_NO ; mem_specs : mem_spec TKN_SEMI | mem_specs mem_spec TKN_SEMI ; mem_spec : K_PAGED TKN_EQUAL yesno { current_mem->paged = $3->primary == K_YES ? 1 : 0; free_token($3); } | K_SIZE TKN_EQUAL TKN_NUMBER { current_mem->size = $3->value.number; free_token($3); } | K_PAGE_SIZE TKN_EQUAL TKN_NUMBER { current_mem->page_size = $3->value.number; free_token($3); } | K_NUM_PAGES TKN_EQUAL TKN_NUMBER { current_mem->num_pages = $3->value.number; free_token($3); } | K_OFFSET TKN_EQUAL TKN_NUMBER { current_mem->offset = $3->value.number; free_token($3); } | K_MIN_WRITE_DELAY TKN_EQUAL TKN_NUMBER { current_mem->min_write_delay = $3->value.number; free_token($3); } | K_MAX_WRITE_DELAY TKN_EQUAL TKN_NUMBER { current_mem->max_write_delay = $3->value.number; free_token($3); } | K_PWROFF_AFTER_WRITE TKN_EQUAL yesno { current_mem->pwroff_after_write = $3->primary == K_YES ? 1 : 0; free_token($3); } | K_READBACK_P1 TKN_EQUAL TKN_NUMBER { current_mem->readback[0] = $3->value.number; free_token($3); } | K_READBACK_P2 TKN_EQUAL TKN_NUMBER { current_mem->readback[1] = $3->value.number; free_token($3); } | K_MODE TKN_EQUAL TKN_NUMBER { current_mem->mode = $3->value.number; free_token($3); } | K_DELAY TKN_EQUAL TKN_NUMBER { current_mem->delay = $3->value.number; free_token($3); } | K_BLOCKSIZE TKN_EQUAL TKN_NUMBER { current_mem->blocksize = $3->value.number; free_token($3); } | K_READSIZE TKN_EQUAL TKN_NUMBER { current_mem->readsize = $3->value.number; free_token($3); } | K_POLLINDEX TKN_EQUAL TKN_NUMBER { current_mem->pollindex = $3->value.number; free_token($3); } | opcode TKN_EQUAL string_list { { int opnum; OPCODE * op; opnum = which_opcode($1); op = avr_new_opcode(); parse_cmdbits(op); if (current_mem->op[opnum] != NULL) { /*fprintf(stderr, "%s: warning at %s:%d: operation redefined\n", progname, infile, lineno);*/ avr_free_opcode(current_mem->op[opnum]); } current_mem->op[opnum] = op; free_token($1); } } ; %% #if 0 static char * vtypestr(int type) { switch (type) { case V_NUM : return "INTEGER"; case V_NUM_REAL: return "REAL"; case V_STR : return "STRING"; default: return "<UNKNOWN>"; } } #endif static int assign_pin(int pinno, TOKEN * v, int invert) { int value; value = v->value.number; free_token(v); if ((value < PIN_MIN) || (value > PIN_MAX)) { fprintf(stderr, "%s: error at line %d of %s: pin must be in the " "range %d-%d\n", progname, lineno, infile, PIN_MIN, PIN_MAX); exit(1); } pin_set_value(&(current_prog->pin[pinno]), value, invert); return 0; } static int assign_pin_list(int invert) { TOKEN * t; int pin; current_prog->pinno[pin_name] = 0; while (lsize(number_list)) { t = lrmv_n(number_list, 1); pin = t->value.number; if ((pin < PIN_MIN) || (pin > PIN_MAX)) { fprintf(stderr, "%s: error at line %d of %s: pin must be in the " "range %d-%d\n", progname, lineno, infile, PIN_MIN, PIN_MAX); exit(1); /* TODO clear list and free tokens if no exit is done */ } pin_set_value(&(current_prog->pin[pin_name]), pin, invert); free_token(t); } return 0; } static int which_opcode(TOKEN * opcode) { switch (opcode->primary) { case K_READ : return AVR_OP_READ; break; case K_WRITE : return AVR_OP_WRITE; break; case K_READ_LO : return AVR_OP_READ_LO; break; case K_READ_HI : return AVR_OP_READ_HI; break; case K_WRITE_LO : return AVR_OP_WRITE_LO; break; case K_WRITE_HI : return AVR_OP_WRITE_HI; break; case K_LOADPAGE_LO : return AVR_OP_LOADPAGE_LO; break; case K_LOADPAGE_HI : return AVR_OP_LOADPAGE_HI; break; case K_LOAD_EXT_ADDR : return AVR_OP_LOAD_EXT_ADDR; break; case K_WRITEPAGE : return AVR_OP_WRITEPAGE; break; case K_CHIP_ERASE : return AVR_OP_CHIP_ERASE; break; case K_PGM_ENABLE : return AVR_OP_PGM_ENABLE; break; default : fprintf(stderr, "%s: error at %s:%d: invalid opcode\n", progname, infile, lineno); exit(1); break; } } static int parse_cmdbits(OPCODE * op) { TOKEN * t; int bitno; char ch; char * e; char * q; int len; char * s, *brkt = NULL; bitno = 32; while (lsize(string_list)) { t = lrmv_n(string_list, 1); s = strtok_r(t->value.string, " ", &brkt); while (s != NULL) { bitno--; if (bitno < 0) { fprintf(stderr, "%s: error at %s:%d: too many opcode bits for instruction\n", progname, infile, lineno); exit(1); } len = strlen(s); if (len == 0) { fprintf(stderr, "%s: error at %s:%d: invalid bit specifier \"\"\n", progname, infile, lineno); exit(1); } ch = s[0]; if (len == 1) { switch (ch) { case '1': op->bit[bitno].type = AVR_CMDBIT_VALUE; op->bit[bitno].value = 1; op->bit[bitno].bitno = bitno % 8; break; case '0': op->bit[bitno].type = AVR_CMDBIT_VALUE; op->bit[bitno].value = 0; op->bit[bitno].bitno = bitno % 8; break; case 'x': op->bit[bitno].type = AVR_CMDBIT_IGNORE; op->bit[bitno].value = 0; op->bit[bitno].bitno = bitno % 8; break; case 'a': op->bit[bitno].type = AVR_CMDBIT_ADDRESS; op->bit[bitno].value = 0; op->bit[bitno].bitno = 8*(bitno/8) + bitno % 8; break; case 'i': op->bit[bitno].type = AVR_CMDBIT_INPUT; op->bit[bitno].value = 0; op->bit[bitno].bitno = bitno % 8; break; case 'o': op->bit[bitno].type = AVR_CMDBIT_OUTPUT; op->bit[bitno].value = 0; op->bit[bitno].bitno = bitno % 8; break; default : fprintf(stderr, "%s: error at %s:%d: invalid bit specifier '%c'\n", progname, infile, lineno, ch); exit(1); break; } } else { if (ch == 'a') { q = &s[1]; op->bit[bitno].bitno = strtol(q, &e, 0); if ((e == q)||(*e != 0)) { fprintf(stderr, "%s: error at %s:%d: can't parse bit number from \"%s\"\n", progname, infile, lineno, q); exit(1); } op->bit[bitno].type = AVR_CMDBIT_ADDRESS; op->bit[bitno].value = 0; } else { fprintf(stderr, "%s: error at %s:%d: invalid bit specifier \"%s\"\n", progname, infile, lineno, s); exit(1); } } s = strtok_r(NULL, " ", &brkt); } free_token(t); } /* while */ return 0; }