/* * avrdude - A Downloader/Uploader for AVR device programmers * Copyright (C) 2000-2004 Brian S. Dean * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* $Id$ */ #include "ac_cfg.h" #include #include #include #include #include #include #if defined(__FreeBSD__) # include "freebsd_ppi.h" #elif defined(__linux__) # include "linux_ppdev.h" #elif defined(__sun__) && defined(__svr4__) /* Solaris */ # include "solaris_ecpp.h" #endif #include "avr.h" #include "pindefs.h" #include "pgm.h" #include "ppi.h" #include "bitbang.h" extern char * progname; extern int do_cycles; extern int verbose; #if HAVE_PARPORT #define SLOW_TOGGLE 0 struct ppipins_t { int pin; int reg; int bit; int inverted; }; struct ppipins_t ppipins[] = { { 1, PPICTRL, 0x01, 1 }, { 2, PPIDATA, 0x01, 0 }, { 3, PPIDATA, 0x02, 0 }, { 4, PPIDATA, 0x04, 0 }, { 5, PPIDATA, 0x08, 0 }, { 6, PPIDATA, 0x10, 0 }, { 7, PPIDATA, 0x20, 0 }, { 8, PPIDATA, 0x40, 0 }, { 9, PPIDATA, 0x80, 0 }, { 10, PPISTATUS, 0x40, 0 }, { 11, PPISTATUS, 0x80, 1 }, { 12, PPISTATUS, 0x20, 0 }, { 13, PPISTATUS, 0x10, 0 }, { 14, PPICTRL, 0x02, 1 }, { 15, PPISTATUS, 0x08, 0 }, { 16, PPICTRL, 0x04, 0 }, { 17, PPICTRL, 0x08, 1 } }; #define NPINS (sizeof(ppipins)/sizeof(struct ppipins_t)) static int par_setpin(PROGRAMMER * pgm, int pin, int value) { int inverted; inverted = pin & PIN_INVERSE; pin &= PIN_MASK; if (pin < 1 || pin > 17) return -1; pin--; if (ppipins[pin].inverted) inverted = !inverted; if (inverted) value = !value; if (value) ppi_set(pgm->fd, ppipins[pin].reg, ppipins[pin].bit); else ppi_clr(pgm->fd, ppipins[pin].reg, ppipins[pin].bit); #if SLOW_TOGGLE usleep(1000); #endif return 0; } static int par_getpin(PROGRAMMER * pgm, int pin) { int value; int inverted; inverted = pin & PIN_INVERSE; pin &= PIN_MASK; if (pin < 1 || pin > 17) return -1; pin--; value = ppi_get(pgm->fd, ppipins[pin].reg, ppipins[pin].bit); if (value) value = 1; if (ppipins[pin].inverted) inverted = !inverted; if (inverted) value = !value; return value; } static int par_highpulsepin(PROGRAMMER * pgm, int pin) { int inverted; inverted = pin & PIN_INVERSE; pin &= PIN_MASK; if (pin < 1 || pin > 17) return -1; pin--; if (ppipins[pin].inverted) inverted = !inverted; if (inverted) { ppi_clr(pgm->fd, ppipins[pin].reg, ppipins[pin].bit); #if SLOW_TOGGLE usleep(1000); #endif ppi_set(pgm->fd, ppipins[pin].reg, ppipins[pin].bit); #if SLOW_TOGGLE usleep(1000); #endif } else { ppi_set(pgm->fd, ppipins[pin].reg, ppipins[pin].bit); #if SLOW_TOGGLE usleep(1000); #endif ppi_clr(pgm->fd, ppipins[pin].reg, ppipins[pin].bit); #if SLOW_TOGGLE usleep(1000); #endif } return 0; } int par_getpinmask(int pin) { pin &= PIN_MASK; if (pin < 1 || pin > 17) return -1; return ppipins[pin-1].bit; } char vccpins_buf[64]; static char * vccpins_str(unsigned int pmask) { unsigned int mask; int pin; char b2[8]; char * b; b = vccpins_buf; b[0] = 0; for (pin = 2, mask = 1; mask < 0x80; mask = mask << 1, pin++) { if (pmask & mask) { sprintf(b2, "%d", pin); if (b[0] != 0) strcat(b, ","); strcat(b, b2); } } return b; } /* * apply power to the AVR processor */ static void par_powerup(PROGRAMMER * pgm) { ppi_set(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_VCC]); /* power up */ usleep(100000); } /* * remove power from the AVR processor */ static void par_powerdown(PROGRAMMER * pgm) { ppi_clr(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_VCC]); /* power down */ } static void par_disable(PROGRAMMER * pgm) { ppi_set(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_BUFF]); } static void par_enable(PROGRAMMER * pgm) { /* * Prepare to start talking to the connected device - pull reset low * first, delay a few milliseconds, then enable the buffer. This * sequence allows the AVR to be reset before the buffer is enabled * to avoid a short period of time where the AVR may be driving the * programming lines at the same time the programmer tries to. Of * course, if a buffer is being used, then the /RESET line from the * programmer needs to be directly connected to the AVR /RESET line * and not via the buffer chip. */ par_setpin(pgm, pgm->pinno[PIN_AVR_RESET], 0); usleep(1); /* * enable the 74367 buffer, if connected; this signal is active low */ ppi_clr(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_BUFF]); } static int par_open(PROGRAMMER * pgm, char * port) { int rc; pgm->fd = ppi_open(port); if (pgm->fd < 0) { fprintf(stderr, "%s: failed to open parallel port \"%s\"\n\n", progname, port); exit(1); } /* * save pin values, so they can be restored when device is closed */ rc = ppi_getall(pgm->fd, PPIDATA); if (rc < 0) { fprintf(stderr, "%s: error reading status of ppi data port\n", progname); return -1; } pgm->ppidata = rc; rc = ppi_getall(pgm->fd, PPICTRL); if (rc < 0) { fprintf(stderr, "%s: error reading status of ppi ctrl port\n", progname); return -1; } pgm->ppictrl = rc; return 0; } static void par_close(PROGRAMMER * pgm) { /* * Restore pin values before closing, * but ensure that buffers are turned off. */ pgm->ppidata |= pgm->pinno[PPI_AVR_BUFF]; ppi_setall(pgm->fd, PPIDATA, pgm->ppidata); ppi_setall(pgm->fd, PPICTRL, pgm->ppictrl); ppi_close(pgm->fd); pgm->fd = -1; } static void par_display(PROGRAMMER * pgm, char * p) { char vccpins[64]; char buffpins[64]; if (pgm->pinno[PPI_AVR_VCC]) { snprintf(vccpins, sizeof(vccpins), " = pins %s", vccpins_str(pgm->pinno[PPI_AVR_VCC])); } else { strcpy(vccpins, " (not used)"); } if (pgm->pinno[PPI_AVR_BUFF]) { snprintf(buffpins, sizeof(buffpins), " = pins %s", vccpins_str(pgm->pinno[PPI_AVR_BUFF])); } else { strcpy(buffpins, " (not used)"); } fprintf(stderr, "%s VCC = 0x%02x%s\n" "%s BUFF = 0x%02x%s\n" "%s RESET = %d\n" "%s SCK = %d\n" "%s MOSI = %d\n" "%s MISO = %d\n" "%s ERR LED = %d\n" "%s RDY LED = %d\n" "%s PGM LED = %d\n" "%s VFY LED = %d\n", p, pgm->pinno[PPI_AVR_VCC], vccpins, p, pgm->pinno[PPI_AVR_BUFF], buffpins, p, pgm->pinno[PIN_AVR_RESET], p, pgm->pinno[PIN_AVR_SCK], p, pgm->pinno[PIN_AVR_MOSI], p, pgm->pinno[PIN_AVR_MISO], p, pgm->pinno[PIN_LED_ERR], p, pgm->pinno[PIN_LED_RDY], p, pgm->pinno[PIN_LED_PGM], p, pgm->pinno[PIN_LED_VFY]); } /* * parse the -E string */ static int par_getexitspecs(PROGRAMMER * pgm, char *s, int *set, int *clr) { char *cp; while ((cp = strtok(s, ","))) { if (strcmp(cp, "reset") == 0) { *clr |= par_getpinmask(pgm->pinno[PIN_AVR_RESET]); } else if (strcmp(cp, "noreset") == 0) { *set |= par_getpinmask(pgm->pinno[PIN_AVR_RESET]); } else if (strcmp(cp, "vcc") == 0) { if (pgm->pinno[PPI_AVR_VCC]) *set |= pgm->pinno[PPI_AVR_VCC]; } else if (strcmp(cp, "novcc") == 0) { if (pgm->pinno[PPI_AVR_VCC]) *clr |= pgm->pinno[PPI_AVR_VCC]; } else { return -1; } s = 0; /* strtok() should be called with the actual string only once */ } return 0; } void par_initpgm(PROGRAMMER * pgm) { strcpy(pgm->type, "PPI"); pgm->rdy_led = bitbang_rdy_led; pgm->err_led = bitbang_err_led; pgm->pgm_led = bitbang_pgm_led; pgm->vfy_led = bitbang_vfy_led; pgm->initialize = bitbang_initialize; pgm->display = par_display; pgm->enable = par_enable; pgm->disable = par_disable; pgm->powerup = par_powerup; pgm->powerdown = par_powerdown; pgm->program_enable = bitbang_program_enable; pgm->chip_erase = bitbang_chip_erase; pgm->cmd = bitbang_cmd; pgm->open = par_open; pgm->close = par_close; pgm->setpin = par_setpin; pgm->getpin = par_getpin; pgm->highpulsepin = par_highpulsepin; pgm->getexitspecs = par_getexitspecs; } #else /* !HAVE_PARPORT */ void par_initpgm(PROGRAMMER * pgm) { fprintf(stderr, "%s: parallel port access not available in this configuration\n", progname); } #endif /* HAVE_PARPORT */