/* * avrdude - A Downloader/Uploader for AVR device programmers * Copyright (C) 2000, 2001, 2002, 2003 Brian S. Dean * Copyright (C) 2005 Michael Holzt * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* $Id$ */ #include "ac_cfg.h" #include #include #include #include #include #include #if !defined(WIN32NATIVE) # include # include #endif #include "avr.h" #include "pindefs.h" #include "pgm.h" #include "par.h" #include "serbb.h" extern char * progname; extern int do_cycles; extern int verbose; static int delay_decrement; #if !defined(WIN32NATIVE) static volatile int done; typedef void (*mysighandler_t)(int); static mysighandler_t saved_alarmhandler; static void alarmhandler(int signo) { done = 1; signal(SIGALRM, saved_alarmhandler); } #endif /* !WIN32NATIVE */ /* * Calibrate the microsecond delay loop below. */ static void bitbang_calibrate_delay(void) { /* * Right now, we don't have any Win32 implementation for this, so we * can only run on a preconfigured delay stepping there. The figure * below should at least be correct within an order of magnitude, * judging from the auto-calibration figures seen on various Unix * systems on comparable hardware. */ #if defined(WIN32NATIVE) delay_decrement = 100; #else /* !WIN32NATIVE */ struct itimerval itv; volatile int i; if (verbose >= 2) fprintf(stderr, "%s: Calibrating delay loop...", progname); i = 0; done = 0; saved_alarmhandler = signal(SIGALRM, alarmhandler); /* * Set ITIMER_REAL to 100 ms. All known systems have a timer * granularity of 10 ms or better, so counting the delay cycles * accumulating over 100 ms should give us a rather realistic * picture, without annoying the user by a lengthy startup time (as * an alarm(1) would do). Of course, if heavy system activity * happens just during calibration but stops before the remaining * part of AVRDUDE runs, this will yield wrong values. There's not * much we can do about this. */ itv.it_value.tv_sec = 0; itv.it_value.tv_usec = 100000; itv.it_interval.tv_sec = itv.it_interval.tv_usec = 0; setitimer(ITIMER_REAL, &itv, 0); while (!done) i--; itv.it_value.tv_sec = itv.it_value.tv_usec = 0; setitimer(ITIMER_REAL, &itv, 0); /* * Calculate back from 100 ms to 1 us. */ delay_decrement = -i / 100000; if (verbose >= 2) fprintf(stderr, " calibrated to %d cycles per us\n", delay_decrement); #endif /* WIN32NATIVE */ } /* * Delay for approximately the number of microseconds specified. * usleep()'s granularity is usually like 1 ms or 10 ms, so it's not * really suitable for short delays in bit-bang algorithms. */ void bitbang_delay(int us) { volatile int del = us * delay_decrement; while (del > 0) del--; } /* * transmit and receive a byte of data to/from the AVR device */ static unsigned char bitbang_txrx(PROGRAMMER * pgm, unsigned char byte) { int i; unsigned char r, b, rbyte; rbyte = 0; for (i=7; i>=0; i--) { /* * Write and read one bit on SPI. * Some notes on timing: Let T be the time it takes to do * one pgm->setpin()-call resp. par clrpin()-call, then * - SCK is high for 2T * - SCK is low for 2T * - MOSI setuptime is 1T * - MOSI holdtime is 3T * - SCK low to MISO read is 2T to 3T * So we are within programming specs (expect for AT90S1200), * if and only if T>t_CLCL (t_CLCL=clock period of target system). * * Due to the delay introduced by "IN" and "OUT"-commands, * T is greater than 1us (more like 2us) on x86-architectures. * So programming works safely down to 1MHz target clock. */ b = (byte >> i) & 0x01; /* set the data input line as desired */ pgm->setpin(pgm, pgm->pinno[PIN_AVR_MOSI], b); pgm->setpin(pgm, pgm->pinno[PIN_AVR_SCK], 1); /* * read the result bit (it is either valid from a previous falling * edge or it is ignored in the current context) */ r = pgm->getpin(pgm, pgm->pinno[PIN_AVR_MISO]); pgm->setpin(pgm, pgm->pinno[PIN_AVR_SCK], 0); rbyte |= r << i; } return rbyte; } int bitbang_rdy_led(PROGRAMMER * pgm, int value) { pgm->setpin(pgm, pgm->pinno[PIN_LED_RDY], !value); return 0; } int bitbang_err_led(PROGRAMMER * pgm, int value) { pgm->setpin(pgm, pgm->pinno[PIN_LED_ERR], !value); return 0; } int bitbang_pgm_led(PROGRAMMER * pgm, int value) { pgm->setpin(pgm, pgm->pinno[PIN_LED_PGM], !value); return 0; } int bitbang_vfy_led(PROGRAMMER * pgm, int value) { pgm->setpin(pgm, pgm->pinno[PIN_LED_VFY], !value); return 0; } /* * transmit an AVR device command and return the results; 'cmd' and * 'res' must point to at least a 4 byte data buffer */ int bitbang_cmd(PROGRAMMER * pgm, unsigned char cmd[4], unsigned char res[4]) { int i; for (i=0; i<4; i++) { res[i] = bitbang_txrx(pgm, cmd[i]); } if(verbose >= 2) { fprintf(stderr, "bitbang_cmd(): [ "); for(i = 0; i < 4; i++) fprintf(stderr, "%02X ", cmd[i]); fprintf(stderr, "] [ "); for(i = 0; i < 4; i++) { fprintf(stderr, "%02X ", res[i]); } fprintf(stderr, "]\n"); } return 0; } /* * issue the 'chip erase' command to the AVR device */ int bitbang_chip_erase(PROGRAMMER * pgm, AVRPART * p) { unsigned char cmd[4]; unsigned char res[4]; if (p->op[AVR_OP_CHIP_ERASE] == NULL) { fprintf(stderr, "chip erase instruction not defined for part \"%s\"\n", p->desc); return -1; } pgm->pgm_led(pgm, ON); memset(cmd, 0, sizeof(cmd)); avr_set_bits(p->op[AVR_OP_CHIP_ERASE], cmd); pgm->cmd(pgm, cmd, res); usleep(p->chip_erase_delay); pgm->initialize(pgm, p); pgm->pgm_led(pgm, OFF); return 0; } /* * issue the 'program enable' command to the AVR device */ int bitbang_program_enable(PROGRAMMER * pgm, AVRPART * p) { unsigned char cmd[4]; unsigned char res[4]; if (p->op[AVR_OP_PGM_ENABLE] == NULL) { fprintf(stderr, "program enable instruction not defined for part \"%s\"\n", p->desc); return -1; } memset(cmd, 0, sizeof(cmd)); avr_set_bits(p->op[AVR_OP_PGM_ENABLE], cmd); pgm->cmd(pgm, cmd, res); if (res[2] != cmd[1]) return -2; return 0; } /* * initialize the AVR device and prepare it to accept commands */ int bitbang_initialize(PROGRAMMER * pgm, AVRPART * p) { int rc; int tries; bitbang_calibrate_delay(); pgm->powerup(pgm); usleep(20000); pgm->setpin(pgm, pgm->pinno[PIN_AVR_SCK], 0); pgm->setpin(pgm, pgm->pinno[PIN_AVR_RESET], 0); usleep(20000); pgm->highpulsepin(pgm, pgm->pinno[PIN_AVR_RESET]); usleep(20000); /* 20 ms XXX should be a per-chip parameter */ /* * Enable programming mode. If we are programming an AT90S1200, we * can only issue the command and hope it worked. If we are using * one of the other chips, the chip will echo 0x53 when issuing the * third byte of the command. In this case, try up to 32 times in * order to possibly get back into sync with the chip if we are out * of sync. */ if (strcmp(p->desc, "AT90S1200")==0) { pgm->program_enable(pgm, p); } else { tries = 0; do { rc = pgm->program_enable(pgm, p); if ((rc == 0)||(rc == -1)) break; pgm->highpulsepin(pgm, pgm->pinno[p->retry_pulse/*PIN_AVR_SCK*/]); tries++; } while (tries < 65); /* * can't sync with the device, maybe it's not attached? */ if (rc) { fprintf(stderr, "%s: AVR device not responding\n", progname); return -1; } } return 0; }