/* * avrdude - A Downloader/Uploader for AVR device programmers * Copyright (C) 2000-2004 Brian S. Dean * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* $Id$ */ #include "ac_cfg.h" #include #include #include #include #include #include #include #if defined(HAVE_LIBREADLINE) # include # include #endif #include "avrdude.h" #include "term.h" struct command { char * name; int (*func)(PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]); char * desc; }; static int cmd_dump (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]); static int cmd_write (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]); static int cmd_erase (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]); static int cmd_sig (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]); static int cmd_part (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]); static int cmd_help (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]); static int cmd_quit (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]); static int cmd_send (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]); static int cmd_parms (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]); static int cmd_vtarg (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]); static int cmd_varef (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]); static int cmd_fosc (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]); static int cmd_sck (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]); static int cmd_spi (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]); static int cmd_pgm (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]); static int cmd_verbose (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]); static int cmd_quell (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]); struct command cmd[] = { { "dump", cmd_dump, "%s [ | ... | | ...]" }, { "read", cmd_dump, "alias for dump" }, { "write", cmd_write, "%s [[,] {[,]} | [,] {[,]} ...]" }, { "erase", cmd_erase, "perform a chip erase" }, { "sig", cmd_sig, "display device signature bytes" }, { "part", cmd_part, "display the current part information" }, { "send", cmd_send, "send a raw command: %s " }, { "parms", cmd_parms, "display adjustable parameters (STK500 and Curiosity Nano only)" }, { "vtarg", cmd_vtarg, "set (STK500 and Curiosity Nano only)" }, { "varef", cmd_varef, "set (STK500 only)" }, { "fosc", cmd_fosc, "set (STK500 only)" }, { "sck", cmd_sck, "set (STK500 only)" }, { "spi", cmd_spi, "enter direct SPI mode" }, { "pgm", cmd_pgm, "return to programming mode" }, { "verbose", cmd_verbose, "change verbosity" }, { "quell", cmd_quell, "set quell level for progress bars" }, { "help", cmd_help, "help" }, { "?", cmd_help, "help" }, { "quit", cmd_quit, "quit" } }; #define NCMDS ((int)(sizeof(cmd)/sizeof(struct command))) static int spi_mode = 0; static int nexttok(char * buf, char ** tok, char ** next) { unsigned char *q, *n; q = (unsigned char *) buf; while (isspace(*q)) q++; /* isolate first token */ n = q; uint8_t quotes = 0; while (*n && (!isspace(*n) || quotes)) { if (*n == '\"') quotes++; else if (isspace(*n) && *(n-1) == '\"') break; n++; } if (*n) { *n = 0; n++; } /* find start of next token */ while (isspace(*n)) n++; *tok = (char *) q; *next = (char *) n; return 0; } static int hexdump_line(char * buffer, unsigned char * p, int n, int pad) { char * hexdata = "0123456789abcdef"; char * b = buffer; int i = 0; int j = 0; for (i=0; i> 4]; b[j++] = hexdata[(p[i] & 0x0f)]; if (i < 15) b[j++] = ' '; } for (i=j; i sizeof b? sizeof b: n; memcpy(b, p, n); for (int i = 0; i < n; i++) { buffer[i] = '.'; if (isalpha(b[i]) || isdigit(b[i]) || ispunct(b[i])) buffer[i] = b[i]; else if (isspace(b[i])) buffer[i] = ' '; } for (i = n; i < pad; i++) buffer[i] = ' '; buffer[i] = 0; return 0; } static int hexdump_buf(FILE * f, int startaddr, unsigned char * buf, int len) { char dst1[80]; char dst2[80]; int addr = startaddr; unsigned char * p = (unsigned char *)buf; while (len) { int n = 16; if (n > len) n = len; hexdump_line(dst1, p, n, 48); chardump_line(dst2, p, n, 16); fprintf(stdout, "%04x %s |%s|\n", addr, dst1, dst2); len -= n; addr += n; p += n; } return 0; } static int cmd_dump(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[]) { if (argc < 2 || argc > 4) { avrdude_message(MSG_INFO, "Usage: %s \n" " %s ...\n" " %s \n" " %s ...\n" " %s \n", argv[0], argv[0], argv[0], argv[0], argv[0]); return -1; } enum { read_size = 256 }; static char prevmem[AVR_MEMDESCLEN] = {0x00}; char * memtype = argv[1]; AVRMEM * mem = avr_locate_mem(p, memtype); if (mem == NULL) { avrdude_message(MSG_INFO, "%s (dump): %s memory type not defined for part %s\n", progname, memtype, p->desc); return -1; } int maxsize = mem->size; // Get start address if present char * end_ptr; static int addr = 0; if (argc >= 3 && strcmp(argv[2], "...") != 0) { addr = strtoul(argv[2], &end_ptr, 0); if (*end_ptr || (end_ptr == argv[2])) { avrdude_message(MSG_INFO, "%s (dump): can't parse address %s\n", progname, argv[2]); return -1; } else if (addr >= maxsize) { avrdude_message(MSG_INFO, "%s (dump): address 0x%05lx is out of range for %s memory\n", progname, (long) addr, mem->desc); return -1; } } // Get no. bytes to read if present static int len = read_size; if (argc >= 3) { memset(prevmem, 0x00, sizeof(prevmem)); if (strcmp(argv[argc - 1], "...") == 0) { if (argc == 3) addr = 0; len = maxsize - addr; } else if (argc == 4) { len = strtol(argv[3], &end_ptr, 0); if (*end_ptr || (end_ptr == argv[3])) { avrdude_message(MSG_INFO, "%s (dump): can't parse length %s\n", progname, argv[3]); return -1; } } else { len = read_size; } } // No address or length specified else if (argc == 2) { if (strncmp(prevmem, memtype, strlen(memtype)) != 0) { addr = 0; len = read_size; strncpy(prevmem, memtype, sizeof(prevmem) - 1); prevmem[sizeof(prevmem) - 1] = 0; } if (addr >= maxsize) addr = 0; // Wrap around } // Trim len if nessary to not read past the end of memory if ((addr + len) > maxsize) len = maxsize - addr; uint8_t * buf = malloc(len); if (buf == NULL) { avrdude_message(MSG_INFO, "%s (dump): out of memory\n", progname); return -1; } report_progress(0, 1, "Reading"); for (int i = 0; i < len; i++) { int rc = pgm->read_byte(pgm, p, mem, addr + i, &buf[i]); if (rc != 0) { avrdude_message(MSG_INFO, "%s (dump): error reading %s address 0x%05lx of part %s\n", progname, mem->desc, (long) addr + i, p->desc); if (rc == -1) avrdude_message(MSG_INFO, "%*sread operation not supported on memory type %s\n", (int) strlen(progname)+9, "", mem->desc); return -1; } report_progress(i, len, NULL); } report_progress(1, 1, NULL); hexdump_buf(stdout, addr, buf, len); fprintf(stdout, "\n"); free(buf); addr = addr + len; return 0; } // Convert the next n hex digits of s to a hex number static unsigned int tohex(const unsigned char *s, unsigned int n) { int ret, c; ret = 0; while(n--) { ret *= 16; c = *s++; ret += c >= '0' && c <= '9'? c - '0': c >= 'a' && c <= 'f'? c - 'a' + 10: c - 'A' + 10; } return ret; } /* * Create a utf-8 character sequence from a single unicode character. * Permissive for some invalid unicode sequences but not for those with * high bit set). Returns numbers of characters written (0-6). */ static int wc_to_utf8str(unsigned int wc, unsigned char *str) { if(!(wc & ~0x7fu)) { *str = (char) wc; return 1; } if(!(wc & ~0x7ffu)) { *str++ = (char) ((wc >> 6) | 0xc0); *str++ = (char) ((wc & 0x3f) | 0x80); return 2; } if(!(wc & ~0xffffu)) { *str++ = (char) ((wc >> 12) | 0xe0); *str++ = (char) (((wc >> 6) & 0x3f) | 0x80); *str++ = (char) ((wc & 0x3f) | 0x80); return 3; } if(!(wc & ~0x1fffffu)) { *str++ = (char) ((wc >> 18) | 0xf0); *str++ = (char) (((wc >> 12) & 0x3f) | 0x80); *str++ = (char) (((wc >> 6) & 0x3f) | 0x80); *str++ = (char) ((wc & 0x3f) | 0x80); return 4; } if(!(wc & ~0x3ffffffu)) { *str++ = (char) ((wc >> 24) | 0xf8); *str++ = (char) (((wc >> 18) & 0x3f) | 0x80); *str++ = (char) (((wc >> 12) & 0x3f) | 0x80); *str++ = (char) (((wc >> 6) & 0x3f) | 0x80); *str++ = (char) ((wc & 0x3f) | 0x80); return 5; } if(!(wc & ~0x7fffffffu)) { *str++ = (char) ((wc >> 30) | 0xfc); *str++ = (char) (((wc >> 24) & 0x3f) | 0x80); *str++ = (char) (((wc >> 18) & 0x3f) | 0x80); *str++ = (char) (((wc >> 12) & 0x3f) | 0x80); *str++ = (char) (((wc >> 6) & 0x3f) | 0x80); *str++ = (char) ((wc & 0x3f) | 0x80); return 6; } return 0; } // Unescape C-style strings, destination d must hold enough space (and can be source s) static unsigned char *unescape(unsigned char *d, const unsigned char *s) { unsigned char *ret = d; int n, k; while(*s) { switch (*s) { case '\\': switch (*++s) { case 'n': *d = '\n'; break; case 't': *d = '\t'; break; case 'a': *d = '\a'; break; case 'b': *d = '\b'; break; case 'e': // Non-standard ESC *d = 27; break; case 'f': *d = '\f'; break; case 'r': *d = '\r'; break; case 'v': *d = '\v'; break; case '?': *d = '?'; break; case '`': *d = '`'; break; case '"': *d = '"'; break; case '\'': *d = '\''; break; case '\\': *d = '\\'; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': // 1-3 octal digits n = *s - '0'; for(k = 0; k < 2 && s[1] >= '0' && s[1] <= '7'; k++) // Max 2 more octal characters n *= 8, n += s[1] - '0', s++; *d = n; break; case 'x': // Unlimited hex digits for(k = 0; isxdigit(s[k + 1]); k++) continue; if(k > 0) { *d = tohex(s + 1, k); s += k; } else { // No hex digits after \x? copy \x *d++ = '\\'; *d = 'x'; } break; case 'u': // Exactly 4 hex digits and valid unicode if(isxdigit(s[1]) && isxdigit(s[2]) && isxdigit(s[3]) && isxdigit(s[4]) && (n = wc_to_utf8str(tohex(s+1, 4), d))) { d += n - 1; s += 4; } else { // Invalid \u sequence? copy \u *d++ = '\\'; *d = 'u'; } break; case 'U': // Exactly 6 hex digits and valid unicode if(isxdigit(s[1]) && isxdigit(s[2]) && isxdigit(s[3]) && isxdigit(s[4]) && isxdigit(s[5]) && isxdigit(s[6]) && (n = wc_to_utf8str(tohex(s+1, 6), d))) { d += n - 1; s += 6; } else { // Invalid \U sequence? copy \U *d++ = '\\'; *d = 'U'; } break; default: // Keep the escape sequence (C would warn and remove \) *d++ = '\\'; *d = *s; } break; default: // Not an escape sequence: just copy the character *d = *s; } d++; s++; } *d = *s; // Terminate return ret; } static size_t maxstrlen(int argc, char **argv) { size_t max = 0; for(int i=0; i max) max = strlen(argv[i]); return max; } // Change data item p of size bytes from big endian to little endian and vice versa static void change_endian(void *p, int size) { uint8_t tmp, *w = p; for(int i=0; i [,] {[,]} \n" " write [,] {[,]} ...\n" "\n" "Ellipsis ... writes bytes padded by repeating the last item.\n" "\n" " can be hexadecimal, octal or decimal integers, double, float or\n" "C-style strings and chars. For numbers, an optional case-insensitive suffix\n" "specifies the data size: HH: 8 bit, H/S: 16 bit, L: 32 bit, LL: 64 bit, F:\n" "32-bit float. Hexadecimal floating point notation is supported. The\n" "ambiguous trailing F in 0x1.8F makes the number be interpreted as double;\n" "use a zero exponent as in 0x1.8p0F to denote a hexadecimal float.\n" "\n" "An optional U suffix makes a number unsigned. Ordinary 0x hex numbers are\n" "always treated as unsigned. +0x or -0x hex numbers are treated as signed\n" "unless they have a U suffix. Unsigned integers cannot be larger than 2^64-1.\n" "If n is an unsigned integer then -n is also a valid unsigned integer as in C.\n" "Signed integers must fall into the [-2^63, 2^63-1] range or a correspondingly\n" "smaller range when a suffix specifies a smaller type. Out of range signed\n" "numbers trigger a warning.\n" "\n" "Ordinary 0x hex numbers with n hex digits (counting leading zeros) use\n" "the smallest size of 1, 2, 4 and 8 bytes that can accommodate any n-digit hex\n" "number. If a suffix specifies a size explicitly the corresponding number of\n" "least significant bytes are written. Otherwise, signed and unsigned integers\n" "alike occupy the smallest of 1, 2, 4, or 8 bytes needed to accommodate them\n" "in their respective representation.\n" ); return -1; } int i; uint8_t write_mode; // Operation mode, "standard" or "fill" uint8_t start_offset; // Which argc argument int len; // Number of bytes to write to memory char * memtype = argv[1]; // Memory name string AVRMEM * mem = avr_locate_mem(p, memtype); if (mem == NULL) { avrdude_message(MSG_INFO, "%s (write): %s memory type not defined for part %s\n", progname, memtype, p->desc); return -1; } int maxsize = mem->size; char * end_ptr; int addr = strtoul(argv[2], &end_ptr, 0); if (*end_ptr || (end_ptr == argv[2])) { avrdude_message(MSG_INFO, "%s (write): can't parse address %s\n", progname, argv[2]); return -1; } if (addr > maxsize) { avrdude_message(MSG_INFO, "%s (write): address 0x%05lx is out of range for %s memory\n", progname, (long) addr, memtype); return -1; } // Allocate a buffer guaranteed to be large enough uint8_t * buf = calloc(mem->size + 0x10 + maxstrlen(argc-3, argv+3), sizeof(uint8_t)); if (buf == NULL) { avrdude_message(MSG_INFO, "%s (write): out of memory\n", progname); return -1; } // Find the first argument to write to flash and how many arguments to parse and write if (strcmp(argv[argc - 1], "...") == 0) { write_mode = WRITE_MODE_FILL; start_offset = 4; len = strtoul(argv[3], &end_ptr, 0); if (*end_ptr || (end_ptr == argv[3])) { avrdude_message(MSG_INFO, "%s (write ...): can't parse length %s\n", progname, argv[3]); free(buf); return -1; } } else { write_mode = WRITE_MODE_STANDARD; start_offset = 3; len = argc - start_offset; } // Structure related to data that is being written to memory struct Data { // Data info int bytes_grown; uint8_t size; char *str_ptr; // Data union union { float f; double d; int64_t ll; uint64_t ull; uint8_t a[8]; }; } data = { .bytes_grown = 0, .size = 0, .str_ptr = NULL, .ull = 1 }; if(sizeof(long long) != sizeof(int64_t) || (data.a[0]^data.a[7]) != 1) avrdude_message(MSG_INFO, "%s (write): assumption on data types not met? " "Check source and recompile\n", progname); bool is_big_endian = data.a[7]; for (i = start_offset; i < len + start_offset; i++) { // Handle the next argument if (i < argc - start_offset + 3) { char *argi = argv[i]; size_t arglen = strlen(argi); data.size = 0; // Free string pointer if already allocated if(data.str_ptr) { free(data.str_ptr); data.str_ptr = NULL; } // Remove trailing comma to allow cut and paste of lists if(arglen > 0 && argi[arglen-1] == ',') argi[--arglen] = 0; // Try integers and assign data size errno = 0; data.ull = strtoull(argi, &end_ptr, 0); if (!(end_ptr == argi || errno)) { unsigned int nu=0, nl=0, nh=0, ns=0, nx=0; char *p; // Parse suffixes: ULL, LL, UL, L ... UHH, HH for(p=end_ptr; *p; p++) switch(toupper(*p)) { case 'U': nu++; break; case 'L': nl++; break; case 'H': nh++; break; case 'S': ns++; break; default: nx++; } if(nx==0 && nu<2 && nl<3 && nh<3 && ns<2) { // Could be valid integer suffix if(nu==0 || toupper(*end_ptr) == 'U' || toupper(p[-1]) == 'U') { // If U, then must be at start or end bool is_hex = strncasecmp(argi, "0x", 2) == 0; // Ordinary hex: 0x... without explicit +/- sign bool is_signed = !(nu || is_hex); // Neither explicitly unsigned nor ordinary hex bool is_outside_int64_t = 0; bool is_out_of_range = 0; int nhexdigs = p-argi-2; if(is_signed) { // Is input in range for int64_t? errno = 0; (void) strtoll(argi, NULL, 0); is_outside_int64_t = errno == ERANGE; } if(nl==0 && ns==0 && nh==0) { // No explicit data size // Ordinary hex numbers have implicit size given by number of hex digits, including leading zeros if(is_hex) { data.size = nhexdigs > 8? 8: nhexdigs > 4? 4: nhexdigs > 2? 2: 1; } else if(is_signed) { // Smallest size that fits signed representation data.size = is_outside_int64_t? 8: data.ll < INT32_MIN || data.ll > INT32_MAX? 8: data.ll < INT16_MIN || data.ll > INT16_MAX? 4: data.ll < INT8_MIN || data.ll > INT8_MAX? 2: 1; } else { // Smallest size that fits unsigned representation data.size = data.ull > UINT32_MAX? 8: data.ull > UINT16_MAX? 4: data.ull > UINT8_MAX? 2: 1; } } else if(nl==0 && nh==2 && ns==0) { // HH data.size = 1; if(is_outside_int64_t || (is_signed && (data.ll < INT8_MIN || data.ll > INT8_MAX))) { is_out_of_range = 1; data.ll = (int8_t) data.ll; } } else if(nl==0 && ((nh==1 && ns==0) || (nh==0 && ns==1))) { // H or S data.size = 2; if(is_outside_int64_t || (is_signed && (data.ll < INT16_MIN || data.ll > INT16_MAX))) { is_out_of_range = 1; data.ll = (int16_t) data.ll; } } else if(nl==1 && nh==0 && ns==0) { // L data.size = 4; if(is_outside_int64_t || (is_signed && (data.ll < INT32_MIN || data.ll > INT32_MAX))) { is_out_of_range = 1; data.ll = (int32_t) data.ll; } } else if(nl==2 && nh==0 && ns==0) { // LL data.size = 8; } if(is_outside_int64_t || is_out_of_range) avrdude_message(MSG_INFO, "%s (write): %s out of int%d_t range, " "interpreted as %d-byte %lld; consider 'U' suffix\n", progname, argi, data.size*8, data.size, data.ll); } } } if(!data.size) { // Try double now that input was rejected as integer data.d = strtod(argi, &end_ptr); // Do not accept valid mantissa-only doubles that are integer rejects (eg, 078 or ULL overflows) if (end_ptr != argi && *end_ptr == 0) if (!is_mantissa_only(argi)) data.size = 8; } if(!data.size) { // Try float data.f = strtof(argi, &end_ptr); if (end_ptr != argi && toupper(*end_ptr) == 'F' && end_ptr[1] == 0) data.size = 4; } if(!data.size) { // Try C-style string or single character if ((*argi == '\'' && argi[arglen-1] == '\'') || (*argi == '\"' && argi[arglen-1] == '\"')) { char *s = calloc(arglen-1, 1); if (s == NULL) { avrdude_message(MSG_INFO, "%s (write str): out of memory\n", progname); free(buf); return -1; } // Strip start and end quotes, and unescape C string strncpy(s, argi+1, arglen-2); unescape((unsigned char *) s, (unsigned char *) s); if (*argi == '\'') { // Single C-style character if(*s && s[1]) avrdude_message(MSG_INFO, "%s (write): only using first character of %s\n", progname, argi); data.ll = *s; data.size = 1; free(s); } else { // C-style string data.str_ptr = s; } } } if(!data.size && !data.str_ptr) { avrdude_message(MSG_INFO, "%s (write): can't parse data %s\n", progname, argi); free(buf); return -1; } // Assume endianness is the same for double and int, and ensure little endian representation if(is_big_endian && data.size > 1) change_endian(data.a, data.size); } if(data.str_ptr) { for(size_t j = 0; j < strlen(data.str_ptr); j++) buf[i - start_offset + data.bytes_grown++] = (uint8_t)data.str_ptr[j]; } else { buf[i - start_offset + data.bytes_grown] = data.a[0]; if (llabs(data.ll) > 0x000000FF || data.size >= 2) buf[i - start_offset + ++data.bytes_grown] = data.a[1]; if (llabs(data.ll) > 0x0000FFFF || data.size >= 4) { buf[i - start_offset + ++data.bytes_grown] = data.a[2]; buf[i - start_offset + ++data.bytes_grown] = data.a[3]; } if (llabs(data.ll) > 0xFFFFFFFF || data.size == 8) { buf[i - start_offset + ++data.bytes_grown] = data.a[4]; buf[i - start_offset + ++data.bytes_grown] = data.a[5]; buf[i - start_offset + ++data.bytes_grown] = data.a[6]; buf[i - start_offset + ++data.bytes_grown] = data.a[7]; } } // Make sure buf does not overflow if (i - start_offset + data.bytes_grown > maxsize) break; } // When in "fill" mode, the maximum size is already predefined if (write_mode == WRITE_MODE_FILL) data.bytes_grown = 0; if ((addr + len + data.bytes_grown) > maxsize) { avrdude_message(MSG_INFO, "%s (write): selected address and # bytes exceed " "range for %s memory\n", progname, memtype); free(buf); return -1; } if(data.str_ptr) free(data.str_ptr); avrdude_message(MSG_NOTICE, "Info: writing %d bytes starting from address 0x%02lx", len + data.bytes_grown, (long) addr); if (write_mode == WRITE_MODE_FILL) avrdude_message(MSG_NOTICE, "; remaining space filled with %s", argv[argc - 2]); avrdude_message(MSG_NOTICE, "\n"); pgm->err_led(pgm, OFF); bool werror = false; report_progress(0, 1, "Writing"); for (i = 0; i < (len + data.bytes_grown); i++) { int rc = avr_write_byte(pgm, p, mem, addr+i, buf[i]); if (rc) { avrdude_message(MSG_INFO, "%s (write): error writing 0x%02x at 0x%05lx, rc=%d\n", progname, buf[i], (long) addr+i, (int) rc); if (rc == -1) avrdude_message(MSG_INFO, "%*swrite operation not supported on memory type %s\n", (int) strlen(progname)+10, "", mem->desc); werror = true; } uint8_t b; rc = pgm->read_byte(pgm, p, mem, addr+i, &b); if (b != buf[i]) { avrdude_message(MSG_INFO, "%s (write): error writing 0x%02x at 0x%05lx cell=0x%02x\n", progname, buf[i], (long) addr+i, b); werror = true; } if (werror) { pgm->err_led(pgm, ON); } report_progress(i, (len + data.bytes_grown), NULL); } report_progress(1, 1, NULL); free(buf); return 0; } static int cmd_send(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[]) { unsigned char cmd[4], res[4]; char * e; int i; int len; if (pgm->cmd == NULL) { avrdude_message(MSG_INFO, "%s (send): the %s programmer does not support direct ISP commands\n", progname, pgm->type); return -1; } if (spi_mode && (pgm->spi == NULL)) { avrdude_message(MSG_INFO, "%s (send): the %s programmer does not support direct SPI transfers\n", progname, pgm->type); return -1; } if ((argc > 5) || ((argc < 5) && (!spi_mode))) { avrdude_message(MSG_INFO, spi_mode? "Usage: send [ [ []]]\n": "Usage: send \n"); return -1; } /* number of bytes to write at the specified address */ len = argc - 1; /* load command bytes */ for (i=1; ierr_led(pgm, OFF); if (spi_mode) pgm->spi(pgm, cmd, res, argc-1); else pgm->cmd(pgm, cmd, res); /* * display results */ avrdude_message(MSG_INFO, "results:"); for (i=0; ichip_erase(pgm, p); return 0; } static int cmd_part(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[]) { fprintf(stdout, "\n"); avr_display(stdout, p, "", 0); fprintf(stdout, "\n"); return 0; } static int cmd_sig(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[]) { int i; int rc; AVRMEM * m; rc = avr_signature(pgm, p); if (rc != 0) { avrdude_message(MSG_INFO, "%s (sig): error reading signature data, rc=%d\n", progname, rc); } m = avr_locate_mem(p, "signature"); if (m == NULL) { avrdude_message(MSG_INFO, "%s (sig): signature data not defined for device %s\n", progname, p->desc); } else { fprintf(stdout, "Device signature = 0x"); for (i=0; isize; i++) fprintf(stdout, "%02x", m->buf[i]); fprintf(stdout, "\n\n"); } return 0; } static int cmd_quit(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[]) { /* FUSE bit verify will fail if left in SPI mode */ if (spi_mode) { cmd_pgm(pgm, p, 0, NULL); } return 1; } static int cmd_parms(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[]) { if (pgm->print_parms == NULL) { avrdude_message(MSG_INFO, "%s (parms): the %s programmer does not support " "adjustable parameters\n", progname, pgm->type); return -1; } pgm->print_parms(pgm); return 0; } static int cmd_vtarg(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[]) { int rc; double v; char *endp; if (argc != 2) { avrdude_message(MSG_INFO, "Usage: vtarg \n"); return -1; } v = strtod(argv[1], &endp); if (endp == argv[1]) { avrdude_message(MSG_INFO, "%s (vtarg): can't parse voltage %s\n", progname, argv[1]); return -1; } if (pgm->set_vtarget == NULL) { avrdude_message(MSG_INFO, "%s (vtarg): the %s programmer cannot set V[target]\n", progname, pgm->type); return -2; } if ((rc = pgm->set_vtarget(pgm, v)) != 0) { avrdude_message(MSG_INFO, "%s (vtarg): failed to set V[target] (rc = %d)\n", progname, rc); return -3; } return 0; } static int cmd_fosc(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[]) { int rc; double v; char *endp; if (argc != 2) { avrdude_message(MSG_INFO, "Usage: fosc [M|k] | off\n"); return -1; } v = strtod(argv[1], &endp); if (endp == argv[1]) { if (strcmp(argv[1], "off") == 0) v = 0.0; else { avrdude_message(MSG_INFO, "%s (fosc): can't parse frequency %s\n", progname, argv[1]); return -1; } } if (*endp == 'm' || *endp == 'M') v *= 1e6; else if (*endp == 'k' || *endp == 'K') v *= 1e3; if (pgm->set_fosc == NULL) { avrdude_message(MSG_INFO, "%s (fosc): the %s programmer cannot set oscillator frequency\n", progname, pgm->type); return -2; } if ((rc = pgm->set_fosc(pgm, v)) != 0) { avrdude_message(MSG_INFO, "%s (fosc): failed to set oscillator frequency (rc = %d)\n", progname, rc); return -3; } return 0; } static int cmd_sck(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[]) { int rc; double v; char *endp; if (argc != 2) { avrdude_message(MSG_INFO, "Usage: sck \n"); return -1; } v = strtod(argv[1], &endp); if (endp == argv[1]) { avrdude_message(MSG_INFO, "%s (sck): can't parse period %s\n", progname, argv[1]); return -1; } v *= 1e-6; /* Convert from microseconds to seconds. */ if (pgm->set_sck_period == NULL) { avrdude_message(MSG_INFO, "%s (sck): the %s programmer cannot set SCK period\n", progname, pgm->type); return -2; } if ((rc = pgm->set_sck_period(pgm, v)) != 0) { avrdude_message(MSG_INFO, "%s (sck): failed to set SCK period (rc = %d)\n", progname, rc); return -3; } return 0; } static int cmd_varef(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[]) { int rc; unsigned int chan; double v; char *endp; if (argc != 2 && argc != 3) { avrdude_message(MSG_INFO, "Usage: varef [channel] \n"); return -1; } if (argc == 2) { chan = 0; v = strtod(argv[1], &endp); if (endp == argv[1]) { avrdude_message(MSG_INFO, "%s (varef): can't parse voltage %s\n", progname, argv[1]); return -1; } } else { chan = strtoul(argv[1], &endp, 10); if (endp == argv[1]) { avrdude_message(MSG_INFO, "%s (varef): can't parse channel %s\n", progname, argv[1]); return -1; } v = strtod(argv[2], &endp); if (endp == argv[2]) { avrdude_message(MSG_INFO, "%s (varef): can't parse voltage %s\n", progname, argv[2]); return -1; } } if (pgm->set_varef == NULL) { avrdude_message(MSG_INFO, "%s (varef): the %s programmer cannot set V[aref]\n", progname, pgm->type); return -2; } if ((rc = pgm->set_varef(pgm, chan, v)) != 0) { avrdude_message(MSG_INFO, "%s (varef): failed to set V[aref] (rc = %d)\n", progname, rc); return -3; } return 0; } static int cmd_help(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[]) { int i; fprintf(stdout, "Valid commands:\n"); for (i=0; isetpin != NULL) { pgm->setpin(pgm, PIN_AVR_RESET, 1); spi_mode = 1; return 0; } avrdude_message(MSG_INFO, "%s: spi command unavailable for this programmer type\n", progname); return -1; } static int cmd_pgm(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[]) { if (pgm->setpin != NULL) { pgm->setpin(pgm, PIN_AVR_RESET, 0); spi_mode = 0; pgm->initialize(pgm, p); return 0; } avrdude_message(MSG_INFO, "%s: pgm command unavailable for this programmer type\n", progname); return -1; } static int cmd_verbose(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[]) { int nverb; char *endp; if (argc != 1 && argc != 2) { avrdude_message(MSG_INFO, "Usage: verbose []\n"); return -1; } if (argc == 1) { avrdude_message(MSG_INFO, "Verbosity level: %d\n", verbose); return 0; } nverb = strtol(argv[1], &endp, 0); if (endp == argv[1] || *endp) { avrdude_message(MSG_INFO, "%s (verbose): can't parse verbosity level %s\n", progname, argv[1]); return -1; } if (nverb < 0) { avrdude_message(MSG_INFO, "%s: verbosity level must not be negative: %d\n", progname, nverb); return -1; } verbose = nverb; avrdude_message(MSG_INFO, "New verbosity level: %d\n", verbose); return 0; } static int cmd_quell(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[]) { int nquell; char *endp; if (argc != 1 && argc != 2) { avrdude_message(MSG_INFO, "Usage: quell []\n"); return -1; } if (argc == 1) { avrdude_message(MSG_INFO, "Quell level: %d\n", quell_progress); return 0; } nquell = strtol(argv[1], &endp, 0); if (endp == argv[1] || *endp) { avrdude_message(MSG_INFO, "%s (quell): can't parse quell level %s\n", progname, argv[1]); return -1; } if (nquell < 0) { avrdude_message(MSG_INFO, "%s: quell level must not be negative: %d\n", progname, nquell); return -1; } quell_progress = nquell; avrdude_message(MSG_INFO, "New quell level: %d\n", quell_progress); if(quell_progress > 0) update_progress = NULL; return 0; } static int tokenize(char * s, char *** argv) { int i, n, l, k, nargs, offset; int len, slen; char * buf; int bufsize; char ** bufv; char * bufp; char * q, * r; char * nbuf; char ** av; slen = strlen(s); /* * initialize allow for 20 arguments, use realloc to grow this if * necessary */ nargs = 20; bufsize = slen + 20; buf = malloc(bufsize); bufv = (char **) malloc(nargs*sizeof(char *)); for (i=0; i= 1)) add_history(input); return input; #else char input[256]; printf("%s", prompt); if (fgets(input, sizeof(input), stdin)) { /* FIXME: readline strips the '\n', should this too? */ return strdup(input); } else return NULL; #endif } int terminal_mode(PROGRAMMER * pgm, struct avrpart * p) { char * cmdbuf; char * q; int rc; int argc; char ** argv; rc = 0; while ((cmdbuf = terminal_get_input("avrdude> ")) != NULL) { /* * find the start of the command, skipping any white space */ q = cmdbuf; while (*q && isspace((unsigned char) *q)) q++; /* skip blank lines and comments */ if (!*q || (*q == '#')) continue; /* tokenize command line */ argc = tokenize(q, &argv); if (argc < 0) { free(cmdbuf); return argc; } #if !defined(HAVE_LIBREADLINE) || defined(WIN32) fprintf(stdout, ">>> "); for (int i=0; i 0) { rc = 0; break; } free(cmdbuf); } return rc; }