/* * avrdude - A Downloader/Uploader for AVR device programmers * Copyright (C) 2014 Joerg Wunsch * * This implementation has been cloned from FLIPv2 implementation * written by Kirill Levchenko. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* $Id$ */ #include "ac_cfg.h" #include #include #include #include #include #include #if HAVE_STDINT_H #include #elif HAVE_INTTYPES_H #include #endif #include "flip1.h" #include "dfu.h" #include "avrdude.h" #include "avr.h" #include "pgm.h" #include "usbdevs.h" /* for USB_VENDOR_ATMEL */ /* There are three versions of the FLIP protocol: * * Version 0: C51 parts * Version 1: megaAVR parts ("USB DFU Bootloader Datasheet" [doc7618]) * Version 2: XMEGA parts (AVR4023 [doc8457]) * * This implementation handles protocol version 1. */ /* EXPORTED CONSTANT STRINGS */ const char flip1_desc[] = "FLIP USB DFU protocol version 1 (doc7618)"; /* PRIVATE DATA STRUCTURES */ struct flip1 { struct dfu_dev *dfu; unsigned char part_sig[3]; unsigned char part_rev; unsigned char boot_ver; }; #define FLIP1(pgm) ((struct flip1 *)(pgm->cookie)) /* FLIP1 data structures and constants. */ #define FLIP1_CMD_PROG_START 0x01 #define FLIP1_CMD_DISPLAY_DATA 0x03 #define FLIP1_CMD_WRITE_COMMAND 0x04 #define FLIP1_CMD_READ_COMMAND 0x05 #define FLIP1_CMD_CHANGE_BASE_ADDRESS 0x06 enum flip1_mem_unit { FLIP1_MEM_UNIT_FLASH = 0x00, FLIP1_MEM_UNIT_EEPROM = 0x01 }; /* EXPORTED PROGRAMMER FUNCTION PROTOTYPES */ static int flip1_open(PROGRAMMER *pgm, char *port_spec); static int flip1_initialize(PROGRAMMER* pgm, AVRPART *part); static void flip1_close(PROGRAMMER* pgm); static void flip1_enable(PROGRAMMER* pgm); static void flip1_disable(PROGRAMMER* pgm); static void flip1_display(PROGRAMMER* pgm, const char *prefix); static int flip1_program_enable(PROGRAMMER* pgm, AVRPART *part); static int flip1_chip_erase(PROGRAMMER* pgm, AVRPART *part); static int flip1_read_byte(PROGRAMMER* pgm, AVRPART *part, AVRMEM *mem, unsigned long addr, unsigned char *value); static int flip1_write_byte(PROGRAMMER* pgm, AVRPART *part, AVRMEM *mem, unsigned long addr, unsigned char value); static int flip1_page_erase(PROGRAMMER* pgm, AVRPART *part, AVRMEM *mem, unsigned int base_addr); static int flip1_paged_load(PROGRAMMER* pgm, AVRPART *part, AVRMEM *mem, unsigned int page_size, unsigned int addr, unsigned int n_bytes); static int flip1_paged_write(PROGRAMMER* pgm, AVRPART *part, AVRMEM *mem, unsigned int page_size, unsigned int addr, unsigned int n_bytes); static int flip1_read_sig_bytes(PROGRAMMER* pgm, AVRPART *part, AVRMEM *mem); static void flip1_setup(PROGRAMMER * pgm); static void flip1_teardown(PROGRAMMER * pgm); /* INTERNAL PROGRAMMER FUNCTION PROTOTYPES */ static void flip1_show_info(struct flip1 *flip1); static int flip1_read_memory(struct dfu_dev *dfu, enum flip1_mem_unit mem_unit, uint32_t addr, void *ptr, int size); static int flip1_write_memory(struct dfu_dev *dfu, enum flip1_mem_unit mem_unit, uint32_t addr, const void *ptr, int size); static int flip1_read_max1k(struct dfu_dev *dfu, unsigned short offset, void *ptr, unsigned short size); static int flip1_write_max1k(struct dfu_dev *dfu, unsigned short offset, const void *ptr, unsigned short size); static const char * flip1_status_str(const struct dfu_status *status); static const char * flip1_mem_unit_str(enum flip1_mem_unit mem_unit); static enum flip1_mem_unit flip1_mem_unit(const char *name); /* THE INITPGM FUNCTION DEFINITIONS */ void flip1_initpgm(PROGRAMMER *pgm) { strcpy(pgm->type, "flip1"); /* Mandatory Functions */ pgm->initialize = flip1_initialize; pgm->enable = flip1_enable; pgm->disable = flip1_disable; pgm->display = flip1_display; pgm->program_enable = flip1_program_enable; pgm->chip_erase = flip1_chip_erase; pgm->open = flip1_open; pgm->close = flip1_close; pgm->page_erase = flip1_page_erase; pgm->paged_load = flip1_paged_load; pgm->paged_write = flip1_paged_write; pgm->read_byte = flip1_read_byte; pgm->write_byte = flip1_write_byte; pgm->read_sig_bytes = flip1_read_sig_bytes; pgm->setup = flip1_setup; pgm->teardown = flip1_teardown; } /* EXPORTED PROGRAMMER FUNCTION DEFINITIONS */ int flip1_open(PROGRAMMER *pgm, char *port_spec) { FLIP1(pgm)->dfu = dfu_open(port_spec); return (FLIP1(pgm)->dfu != NULL) ? 0 : -1; } int flip1_initialize(PROGRAMMER* pgm, AVRPART *part) { unsigned short vid, pid; int result; /* A note about return values. Negative return values from this function are * interpreted as failure by main(), from where this function is called. * However such failures are interpreted as a device signature check failure * and the user is adviced to use the -F option to override this check. In * our case, this is misleading, so we defer reporting an error until another * function is called. Thus, we always return 0 (success) from initialize(). * I don't like this, but I don't want to mess with main(). */ /* The dfu_init() function will try to find the target part either based on * a USB address provided by the user with the -P option or by matching the * VID and PID of the device. The VID may be specified in the programmer * definition; if not specified, it defaults to USB_VENDOR_ATMEL (defined * in usbdevs.h). The PID may be specified either in the programmer * definition or the part definition; the programmer definition takes * priority. The default PID value is 0, which causes dfu_init() to ignore * the PID when matching a target device. */ vid = (pgm->usbvid != 0) ? pgm->usbvid : USB_VENDOR_ATMEL; pid = (pgm->usbpid != 0) ? pgm->usbpid : part->usbpid; if (!ovsigck && (part->flags & AVRPART_HAS_PDI)) { fprintf(stderr, "%s: \"flip1\" (FLIP protocol version 1) is for AT90USB* and ATmega*U* devices.\n" "%s For Xmega devices, use \"flip2\".\n" "%s (Use -F to bypass this check.)\n", progname, progbuf, progbuf); return -1; } result = dfu_init(FLIP1(pgm)->dfu, vid, pid); if (result != 0) goto flip1_initialize_fail; #if 0 result = flip1_read_memory(FLIP1(pgm)->dfu, FLIP1_MEM_UNIT_SIGNATURE, 0, FLIP1(pgm)->part_sig, 4); if (result != 0) goto flip1_initialize_fail; result = flip1_read_memory(FLIP1(pgm)->dfu, FLIP1_MEM_UNIT_BOOTLOADER, 0, &FLIP1(pgm)->boot_ver, 1); if (result != 0) goto flip1_initialize_fail; #endif if (verbose) flip1_show_info(FLIP1(pgm)); return 0; flip1_initialize_fail: dfu_close(FLIP1(pgm)->dfu); FLIP1(pgm)->dfu = NULL; return 0; } void flip1_close(PROGRAMMER* pgm) { if (FLIP1(pgm)->dfu != NULL) { dfu_close(FLIP1(pgm)->dfu); FLIP1(pgm)->dfu = NULL; } } void flip1_enable(PROGRAMMER* pgm) { /* Nothing to do. */ } void flip1_disable(PROGRAMMER* pgm) { /* Nothing to do. */ } void flip1_display(PROGRAMMER* pgm, const char *prefix) { /* Nothing to do. */ } int flip1_program_enable(PROGRAMMER* pgm, AVRPART *part) { /* I couldn't find anything that uses this function, although it is marked * as "mandatory" in pgm.c. In case anyone does use it, we'll report an * error if we failed to initialize. */ return (FLIP1(pgm)->dfu != NULL) ? 0 : -1; } int flip1_chip_erase(PROGRAMMER* pgm, AVRPART *part) { #if 0 struct dfu_status status; int cmd_result = 0; int aux_result; if (verbose > 1) fprintf(stderr, "%s: flip_chip_erase()\n", progname); struct flip1_cmd cmd = { FLIP1_CMD_GROUP_EXEC, FLIP1_CMD_CHIP_ERASE, { 0xFF, 0, 0, 0 } }; for (;;) { cmd_result = dfu_dnload(FLIP1(pgm)->dfu, &cmd, sizeof(cmd)); aux_result = dfu_getstatus(FLIP1(pgm)->dfu, &status); if (aux_result != 0) return aux_result; if (status.bStatus != DFU_STATUS_OK) { if (status.bStatus == ((FLIP1_STATUS_ERASE_ONGOING >> 8) & 0xFF) && status.bState == ((FLIP1_STATUS_ERASE_ONGOING >> 0) & 0xFF)) { continue; } else fprintf(stderr, "%s: Error: DFU status %s\n", progname, flip1_status_str(&status)); dfu_clrstatus(FLIP1(pgm)->dfu); } else break; } return cmd_result; #endif } int flip1_read_byte(PROGRAMMER* pgm, AVRPART *part, AVRMEM *mem, unsigned long addr, unsigned char *value) { #if 0 enum flip1_mem_unit mem_unit; if (FLIP1(pgm)->dfu == NULL) return -1; mem_unit = flip1_mem_unit(mem->desc); if (mem_unit == FLIP1_MEM_UNIT_UNKNOWN) { fprintf(stderr, "%s: Error: " "\"%s\" memory not accessible using FLIP", progname, mem->desc); fprintf(stderr, "\n"); return -1; } return flip1_read_memory(FLIP1(pgm)->dfu, mem_unit, addr, value, 1); #endif } int flip1_write_byte(PROGRAMMER* pgm, AVRPART *part, AVRMEM *mem, unsigned long addr, unsigned char value) { #if 0 enum flip1_mem_unit mem_unit; if (FLIP1(pgm)->dfu == NULL) return -1; mem_unit = flip1_mem_unit(mem->desc); if (mem_unit == FLIP1_MEM_UNIT_UNKNOWN) { fprintf(stderr, "%s: Error: " "\"%s\" memory not accessible using FLIP", progname, mem->desc); fprintf(stderr, "\n"); return -1; } return flip1_write_memory(FLIP1(pgm)->dfu, mem_unit, addr, &value, 1); #endif } int flip1_page_erase(PROGRAMMER* pgm, AVRPART *part, AVRMEM *mem, unsigned int base_addr) { return 0; } int flip1_paged_load(PROGRAMMER* pgm, AVRPART *part, AVRMEM *mem, unsigned int page_size, unsigned int addr, unsigned int n_bytes) { #if 0 enum flip1_mem_unit mem_unit; int result; if (FLIP1(pgm)->dfu == NULL) return -1; mem_unit = flip1_mem_unit(mem->desc); if (mem_unit == FLIP1_MEM_UNIT_UNKNOWN) { fprintf(stderr, "%s: Error: " "\"%s\" memory not accessible using FLIP", progname, mem->desc); fprintf(stderr, "\n"); return -1; } if (n_bytes > INT_MAX) { /* This should never happen, unless the int type is only 16 bits. */ fprintf(stderr, "%s: Error: Attempting to read more than %d bytes\n", progname, INT_MAX); exit(1); } result = flip1_read_memory(FLIP1(pgm)->dfu, mem_unit, addr, mem->buf + addr, n_bytes); return (result == 0) ? n_bytes : -1; #endif } int flip1_paged_write(PROGRAMMER* pgm, AVRPART *part, AVRMEM *mem, unsigned int page_size, unsigned int addr, unsigned int n_bytes) { #if 0 enum flip1_mem_unit mem_unit; int result; if (FLIP1(pgm)->dfu == NULL) return -1; mem_unit = flip1_mem_unit(mem->desc); if (mem_unit == FLIP1_MEM_UNIT_UNKNOWN) { fprintf(stderr, "%s: Error: " "\"%s\" memory not accessible using FLIP", progname, mem->desc); fprintf(stderr, "\n"); return -1; } if (n_bytes > INT_MAX) { /* This should never happen, unless the int type is only 16 bits. */ fprintf(stderr, "%s: Error: Attempting to read more than %d bytes\n", progname, INT_MAX); exit(1); } result = flip1_write_memory(FLIP1(pgm)->dfu, mem_unit, addr, mem->buf + addr, n_bytes); return (result == 0) ? n_bytes : -1; #endif } int flip1_read_sig_bytes(PROGRAMMER* pgm, AVRPART *part, AVRMEM *mem) { #if 0 if (FLIP1(pgm)->dfu == NULL) return -1; if (mem->size < sizeof(FLIP1(pgm)->part_sig)) { fprintf(stderr, "%s: Error: Signature read must be at least %u bytes\n", progname, (unsigned int) sizeof(FLIP1(pgm)->part_sig)); return -1; } memcpy(mem->buf, FLIP1(pgm)->part_sig, sizeof(FLIP1(pgm)->part_sig)); return 0; #endif } void flip1_setup(PROGRAMMER * pgm) { pgm->cookie = calloc(1, sizeof(struct flip1)); if (pgm->cookie == NULL) { perror(progname); exit(1); } } void flip1_teardown(PROGRAMMER * pgm) { free(pgm->cookie); pgm->cookie = NULL; } /* INTERNAL FUNCTION DEFINITIONS */ void flip1_show_info(struct flip1 *flip1) { dfu_show_info(flip1->dfu); fprintf(stderr, " Part signature : 0x%02X%02X%02X\n", (int) flip1->part_sig[0], (int) flip1->part_sig[1], (int) flip1->part_sig[2]); if (flip1->part_rev < 26) fprintf(stderr, " Part revision : %c\n", (char) (flip1->part_rev + 'A')); else fprintf(stderr, " Part revision : %c%c\n", (char) (flip1->part_rev / 26 - 1 + 'A'), (char) (flip1->part_rev % 26 + 'A')); fprintf(stderr, " Bootloader version : 2.%hu.%hu\n", ((unsigned short) flip1->boot_ver >> 4) & 0xF, ((unsigned short) flip1->boot_ver >> 0) & 0xF); fprintf(stderr, " USB max packet size : %hu\n", (unsigned short) flip1->dfu->dev_desc.bMaxPacketSize0); } int flip1_read_memory(struct dfu_dev *dfu, enum flip1_mem_unit mem_unit, uint32_t addr, void *ptr, int size) { #if 0 unsigned short prev_page_addr; unsigned short page_addr; const char * mem_name; int read_size; int result; if (verbose > 1) fprintf(stderr, "%s: flip_read_memory(%s, 0x%04x, %d)\n", progname, flip1_mem_unit_str(mem_unit), addr, size); result = flip1_set_mem_unit(dfu, mem_unit); if (result != 0) { if ((mem_name = flip1_mem_unit_str(mem_unit)) != NULL) fprintf(stderr, "%s: Error: Failed to set memory unit 0x%02X (%s)\n", progname, (int) mem_unit, mem_name); else fprintf(stderr, "%s: Error: Failed to set memory unit 0x%02X\n", progname, (int) mem_unit); return -1; } page_addr = addr >> 16; result = flip1_set_mem_page(dfu, page_addr); if (result != 0) { fprintf(stderr, "%s: Error: Failed to set memory page 0x%04hX\n", progname, page_addr); return -1; } while (size > 0) { prev_page_addr = page_addr; page_addr = addr >> 16; if (page_addr != prev_page_addr) { result = flip1_set_mem_page(dfu, page_addr); if (result != 0) { fprintf(stderr, "%s: Error: Failed to set memory page 0x%04hX\n", progname, page_addr); return -1; } } read_size = (size > 0x400) ? 0x400 : size; result = flip1_read_max1k(dfu, addr & 0xFFFF, ptr, read_size); if (result != 0) { fprintf(stderr, "%s: Error: Failed to read 0x%04X bytes at 0x%04lX\n", progname, read_size, (unsigned long) addr); return -1; } ptr += read_size; addr += read_size; size -= read_size; } return 0; #endif } int flip1_write_memory(struct dfu_dev *dfu, enum flip1_mem_unit mem_unit, uint32_t addr, const void *ptr, int size) { #if 0 unsigned short prev_page_addr; unsigned short page_addr; const char * mem_name; int write_size; int result; if (verbose > 1) fprintf(stderr, "%s: flip_write_memory(%s, 0x%04x, %d)\n", progname, flip1_mem_unit_str(mem_unit), addr, size); result = flip1_set_mem_unit(dfu, mem_unit); if (result != 0) { if ((mem_name = flip1_mem_unit_str(mem_unit)) != NULL) fprintf(stderr, "%s: Error: Failed to set memory unit 0x%02X (%s)\n", progname, (int) mem_unit, mem_name); else fprintf(stderr, "%s: Error: Failed to set memory unit 0x%02X\n", progname, (int) mem_unit); return -1; } page_addr = addr >> 16; result = flip1_set_mem_page(dfu, page_addr); if (result != 0) { fprintf(stderr, "%s: Error: Failed to set memory page 0x%04hX\n", progname, page_addr); return -1; } while (size > 0) { prev_page_addr = page_addr; page_addr = addr >> 16; if (page_addr != prev_page_addr) { result = flip1_set_mem_page(dfu, page_addr); if (result != 0) { fprintf(stderr, "%s: Error: Failed to set memory page 0x%04hX\n", progname, page_addr); return -1; } } write_size = (size > 0x800) ? 0x800 : size; result = flip1_write_max1k(dfu, addr & 0xFFFF, ptr, write_size); if (result != 0) { fprintf(stderr, "%s: Error: Failed to write 0x%04X bytes at 0x%04lX\n", progname, write_size, (unsigned long) addr); return -1; } ptr += write_size; addr += write_size; size -= write_size; } return 0; #endif } int flip1_read_max1k(struct dfu_dev *dfu, unsigned short offset, void *ptr, unsigned short size) { #if 0 struct dfu_status status; int cmd_result = 0; int aux_result; struct flip1_cmd cmd = { FLIP1_CMD_GROUP_UPLOAD, FLIP1_CMD_READ_MEMORY, { 0, 0, 0, 0 } }; cmd.args[0] = (offset >> 8) & 0xFF; cmd.args[1] = (offset >> 0) & 0xFF; cmd.args[2] = ((offset+size-1) >> 8) & 0xFF; cmd.args[3] = ((offset+size-1) >> 0) & 0xFF; cmd_result = dfu_dnload(dfu, &cmd, sizeof(cmd)); if (cmd_result != 0) goto flip1_read_max1k_status; cmd_result = dfu_upload(dfu, (char*) ptr, size); flip1_read_max1k_status: aux_result = dfu_getstatus(dfu, &status); if (aux_result != 0) return aux_result; if (status.bStatus != DFU_STATUS_OK) { if (status.bStatus == ((FLIP1_STATUS_OUTOFRANGE >> 8) & 0xFF) && status.bState == ((FLIP1_STATUS_OUTOFRANGE >> 0) & 0xFF)) { fprintf(stderr, "%s: Error: Address out of range [0x%04hX,0x%04hX]\n", progname, offset, offset+size-1); } else fprintf(stderr, "%s: Error: DFU status %s\n", progname, flip1_status_str(&status)); dfu_clrstatus(dfu); } return cmd_result; #endif } int flip1_write_max1k(struct dfu_dev *dfu, unsigned short offset, const void *ptr, unsigned short size) { #if 0 char buffer[64+64+0x400]; unsigned short data_offset; struct dfu_status status; int cmd_result = 0; int aux_result; struct flip1_cmd cmd = { FLIP1_CMD_GROUP_DOWNLOAD, FLIP1_CMD_PROG_START, { 0, 0, 0, 0 } }; cmd.args[0] = (offset >> 8) & 0xFF; cmd.args[1] = (offset >> 0) & 0xFF; cmd.args[2] = ((offset+size-1) >> 8) & 0xFF; cmd.args[3] = ((offset+size-1) >> 0) & 0xFF; if (size > 0x400) { fprintf(stderr, "%s: Error: Write block too large (%hu > 1024)\n", progname, size); exit(1); } /* There are some special padding requirements for writes. The first packet * must consist only of the FLIP1 command data, which must be padded to * fill out the USB packet (the packet size is given by bMaxPacketSize0 in * the device descriptor). In addition, the data must be padded so that the * first byte of data to be written is at located at position (offset mod * bMaxPacketSize0) within the packet. */ data_offset = dfu->dev_desc.bMaxPacketSize0; data_offset += offset % dfu->dev_desc.bMaxPacketSize0; memcpy(buffer, &cmd, sizeof(cmd)); memset(buffer + sizeof(cmd), 0, data_offset - sizeof(cmd)); memcpy(buffer + data_offset, ptr, size); cmd_result = dfu_dnload(dfu, buffer, data_offset + size); aux_result = dfu_getstatus(dfu, &status); if (aux_result != 0) return aux_result; if (status.bStatus != DFU_STATUS_OK) { if (status.bStatus == ((FLIP1_STATUS_OUTOFRANGE >> 8) & 0xFF) && status.bState == ((FLIP1_STATUS_OUTOFRANGE >> 0) & 0xFF)) { fprintf(stderr, "%s: Error: Address out of range [0x%04hX,0x%04hX]\n", progname, offset, offset+size-1); } else fprintf(stderr, "%s: Error: DFU status %s\n", progname, flip1_status_str(&status)); dfu_clrstatus(dfu); } return cmd_result; #endif } const char * flip1_status_str(const struct dfu_status *status) { // XXX } const char * flip1_mem_unit_str(enum flip1_mem_unit mem_unit) { switch (mem_unit) { case FLIP1_MEM_UNIT_FLASH: return "Flash"; case FLIP1_MEM_UNIT_EEPROM: return "EEPROM"; default: return "unknown"; } } enum flip1_mem_unit flip1_mem_unit(const char *name) { if (strcasecmp(name, "flash") == 0) return FLIP1_MEM_UNIT_FLASH; if (strcasecmp(name, "eeprom") == 0) return FLIP1_MEM_UNIT_EEPROM; }