/* * Copyright 2000 Brian S. Dean <bsd@bsdhome.com> * All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY BRIAN S. DEAN ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BRIAN S. DEAN BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * */ /* $Id$ */ /* * Code to program an Atmel AVR AT90S device using the parallel port. * * Make the following connections: * * Parallel Port Atmel AVR * ------------- ---------------------------- * Pin 2 -> Vcc (see NOTE below) * Pin 3 -> SCK CLOCK IN * Pin 4 -> MOSI Instruction input * Pin 5 -> /RESET * Pin 6,7,8,9 -> Vcc (Can be tied together with Schottky diodes) * Pin 10 <- MISO Data out * Pin 18 <- GND * * NOTE on Vcc connection: make sure your parallel port can supply an * adequate amount of current to power your device. 6-10 mA is * common for parallel port signal lines, but is not guaranteed, * especially for notebook computers. Optionally, you can tie pins * 6, 7, 8, and 9 also to Vcc with Schottky diodes to supply * additional current. If in doubt, don't risk damaging your * parallel port, use an external power supply. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <errno.h> #include <fcntl.h> #include <unistd.h> #include <sys/ioctl.h> #include <stdarg.h> #include <sys/stat.h> #include </sys/dev/ppbus/ppi.h> #include <limits.h> #include <ctype.h> #include <readline/readline.h> #include <readline/history.h> #define DEFAULT_PARALLEL "/dev/ppi0" char * version = "$Id$"; char * progname; char progbuf[PATH_MAX]; /* temporary buffer of spaces the same length as progname; used for lining up multiline messages */ /* * bit definitions for AVR device connections */ #define AVR_POWER 0xf1 /* bit 0 and 4...7 of data register */ #define AVR_CLOCK 0x02 /* bit 1 of data register */ #define AVR_INSTR 0x04 /* bit 2 of data register */ #define AVR_RESET 0x08 /* bit 3 of data register */ #define AVR_DATA 0x40 /* bit 6 of status register */ /* * PPI registers */ enum { PPIDATA, PPICTRL, PPISTATUS }; /* * AVR memory designations */ typedef enum { AVR_EEPROM, AVR_FLASH, AVR_FLASH_LO, AVR_FLASH_HI } AVRMEM; typedef enum { FMT_AUTO, FMT_SREC, FMT_IHEX, FMT_RBIN } FILEFMT; struct avrpart { char * partdesc; /* long part name */ char * optiontag; /* short part name */ int flash_size; /* size in bytes of flash */ int eeprom_size; /* size in bytes of eeprom */ unsigned char f_readback; /* flash write polled readback value */ unsigned char e_readback[2]; /* eeprom write polled readback values */ int min_write_delay; /* microseconds */ int max_write_delay; /* microseconds */ int chip_erase_delay; /* microseconds */ unsigned char * flash; unsigned char * eeprom; }; /* Need to add information for 2323, 2343, and 4414 */ struct avrpart parts[] = { { "AT90S1200", "1200", 1024, 64, 0xff, { 0x00, 0xff }, 9000, 20000, 20000, NULL, NULL }, { "AT90S2313", "2313", 2048, 128, 0x7f, { 0x80, 0x7f }, 9000, 20000, 20000, NULL, NULL }, { "AT90S2333", "2333", 2048, 128, 0xff, { 0x00, 0xff }, 9000, 20000, 20000, NULL, NULL }, { "AT90S4433", "4433", 4096, 256, 0xff, { 0x00, 0xff }, 9000, 20000, 20000, NULL, NULL }, { "AT90S4434", "4434", 4096, 256, 0xff, { 0x00, 0xff }, 9000, 20000, 20000, NULL, NULL }, { "AT90S8515", "8515", 8192, 512, 0x7f, { 0x80, 0x7f }, 9000, 20000, 20000, NULL, NULL }, { "AT90S8535", "8535", 8192, 512, 0xff, { 0x00, 0xff }, 9000, 20000, 20000, NULL, NULL }, }; #define N_AVRPARTS (sizeof(parts)/sizeof(struct avrpart)) struct fioparms { int op; char * mode; char * iodesc; char * dir; char * rw; }; enum { FIO_READ, FIO_WRITE }; int cmd_dump(int fd, struct avrpart * p, int argc, char *argv[]); int cmd_write(int fd, struct avrpart * p, int argc, char *argv[]); int cmd_erase(int fd, struct avrpart * p, int argc, char *argv[]); int cmd_sig(int fd, struct avrpart * p, int argc, char *argv[]); int cmd_part(int fd, struct avrpart * p, int argc, char *argv[]); int cmd_help(int fd, struct avrpart * p, int argc, char *argv[]); int cmd_quit(int fd, struct avrpart * p, int argc, char *argv[]); struct command { char * name; int (*func)(int fd, struct avrpart * p, int argc, char *argv[]); char * desc; }; struct command cmd[] = { { "dump", cmd_dump, "dump memory : %s [eeprom|flash] <addr> <N-Bytes>" }, { "write", cmd_write, "write memory : %s [eeprom|flash] <addr> <b1> <b2> ... <bN>" }, { "erase", cmd_erase, "perform a chip erase" }, { "sig", cmd_sig, "display device signature bytes" }, { "part", cmd_part, "display the current part settings" }, { "help", cmd_help, "help" }, { "?", cmd_help, "help" }, { "quit", cmd_quit, "quit" } }; #define NCMDS (sizeof(cmd)/sizeof(struct command)) #define MAX_LINE_LEN 256 /* max line length for ASCII format input files */ char * usage_text = "\n" "Usage: avrprog [options]\n" "\n" " Available Options:\n" "\n" " -m MemType : select memory type for reading or writing\n" " \"e\", \"eeprom\" = EEPROM\n" " \"f\", \"flash\" = FLASH (default)\n" "\n" " -i Filename : select input file, \"-\" = stdin\n" "\n" " -o Filename : select output file, \"-\" = stdout\n" "\n" " -f Format : select input / output file format\n" " \"i\" = Intel Hex\n" " \"s\" = Motorola S-Record\n" " \"r\" = Raw binary (default for output)\n" " \"a\" = Auto detect (default for input)\n" " (valid for input only)\n" " \n" "\n" " -p Part : select Atmel part number (see below for valid parts)\n" "\n" " -P Parallel : select parallel port device name (default = /dev/ppi0)\n" "\n" " -F : override invalid device signature check\n" "\n" " -t : enter terminal mode (or read commands from stdin)\n" "\n" " -E exitspec[,...]: specify which bits to set/reset on exit\n" " \"[no]reset\" = [don't] activate /RESET\n" " \"[no]vcc\" = [don't] activate Vcc\n" "\n" " -e : perform a chip erase (required before programming)\n" "\n"; int avr_txrx_bit ( int fd, int bit ); unsigned char avr_txrx ( int fd, unsigned char byte ); int avr_cmd ( int fd, unsigned char cmd[4], unsigned char res[4] ); unsigned char avr_read_byte ( int fd, struct avrpart * p, AVRMEM memtype, unsigned short addr ); int avr_read ( int fd, struct avrpart * p, AVRMEM memtype ); int avr_write_byte ( int fd, struct avrpart * p, AVRMEM memtype, unsigned short addr, unsigned char data ); int avr_write ( int fd, struct avrpart * p, AVRMEM memtype ); int avr_program_enable ( int fd ); int avr_chip_erase ( int fd, struct avrpart * p ); int avr_signature ( int fd, unsigned char sig[4] ); void avr_powerup ( int fd ); void avr_powerdown ( int fd ); int avr_initialize ( int fd, struct avrpart * p ); int avr_initmem ( struct avrpart * p ); void display_part ( FILE * f, struct avrpart * p, char * prefix ); int list_valid_parts ( FILE * f, char * prefix ) { int i; for (i=0; i<N_AVRPARTS; i++) { fprintf(f, "%s%s = %s\n", prefix, parts[i].optiontag, parts[i].partdesc); } return i; } /* * set 'get' and 'set' appropriately for subsequent passage to ioctl() * to get/set the specified PPI registers. */ int ppi_getops ( int reg, unsigned long * get, unsigned long * set ) { switch (reg) { case PPIDATA: *set = PPISDATA; *get = PPIGDATA; break; case PPICTRL: *set = PPISCTRL; *get = PPIGCTRL; break; case PPISTATUS: *set = PPISSTATUS; *get = PPIGSTATUS; break; default: fprintf ( stderr, "%s: avr_set(): invalid register=%d\n", progname, reg ); return -1; break; } return 0; } /* * set the indicated bit of the specified register. */ int ppi_set ( int fd, int reg, int bit ) { unsigned char v; unsigned long get, set; int rc; rc = ppi_getops ( reg, &get, &set ); if (rc) return -1; ioctl(fd, get, &v); v |= bit; ioctl(fd, set, &v); return 0; } /* * clear the indicated bit of the specified register. */ int ppi_clr ( int fd, int reg, int bit ) { unsigned char v; unsigned long get, set; int rc; rc = ppi_getops ( reg, &get, &set ); if (rc) return -1; ioctl(fd, get, &v); v &= ~bit; ioctl(fd, set, &v); return 0; } /* * get the indicated bit of the specified register. */ int ppi_get ( int fd, int reg, int bit ) { unsigned char v; unsigned long get, set; int rc; rc = ppi_getops ( reg, &get, &set ); if (rc) return -1; ioctl(fd, get, &v); v &= bit; return (v == bit); } /* * toggle the indicated bit of the specified register. */ int ppi_toggle ( int fd, int reg, int bit ) { unsigned char v; unsigned long get, set; int rc; rc = ppi_getops ( reg, &get, &set ); if (rc) return -1; ioctl(fd, get, &v); v ^= bit; ioctl(fd, set, &v); return 0; } /* * get all bits of the specified register. */ int ppi_getall ( int fd, int reg ) { unsigned char v; unsigned long get, set; int rc; rc = ppi_getops ( reg, &get, &set ); if (rc) return -1; ioctl(fd, get, &v); return (int)v; } /* * set all bits of the specified register to val. */ int ppi_setall ( int fd, int reg, int val ) { unsigned char v; unsigned long get, set; int rc; rc = ppi_getops ( reg, &get, &set ); if (rc) return -1; v = val; ioctl(fd, set, &v); return 0; } /* * pulse the indicated bit of the specified register. */ int ppi_pulse ( int fd, int reg, int bit ) { ppi_toggle(fd, reg, bit); ppi_toggle(fd, reg, bit); return 0; } /* * transmit and receive a bit of data to/from the AVR device */ int avr_txrx_bit ( int fd, int bit ) { int r; /* * read the result bit (it is either valid from a previous clock * pulse or it is ignored in the current context) */ r = ppi_get(fd, PPISTATUS, AVR_DATA); /* set the data input line as desired */ if (bit) ppi_set(fd, PPIDATA, AVR_INSTR); else ppi_clr(fd, PPIDATA, AVR_INSTR); /* * pulse the clock line, clocking in the MOSI data, and clocking out * the next result bit */ ppi_pulse(fd, PPIDATA, AVR_CLOCK); return r; } /* * transmit and receive a byte of data to/from the AVR device */ unsigned char avr_txrx ( int fd, unsigned char byte ) { int i; unsigned char r, b, rbyte; rbyte = 0; for (i=0; i<8; i++) { b = (byte >> (7-i)) & 0x01; r = avr_txrx_bit ( fd, b ); rbyte = rbyte | (r << (7-i)); } return rbyte; } /* * transmit an AVR device command and return the results; 'cmd' and * 'res' must point to at least a 4 byte data buffer */ int avr_cmd ( int fd, unsigned char cmd[4], unsigned char res[4] ) { int i; for (i=0; i<4; i++) { res[i] = avr_txrx(fd, cmd[i]); } return 0; } /* * read a byte of data from the indicated memory region */ unsigned char avr_read_byte ( int fd, struct avrpart * p, AVRMEM memtype, unsigned short addr ) { unsigned char cmd[4]; unsigned char res[4]; switch (memtype) { case AVR_FLASH_LO: cmd[0] = 0x20; break; case AVR_FLASH_HI: cmd[0] = 0x28; break; case AVR_EEPROM: cmd[0] = 0xa0; break; default: fprintf(stderr, "%s: avr_read_byte(); internal error: invalid memtype=%d\n", progname, memtype); exit(1); break; } cmd[1] = addr >> 8; /* high order bits of address */ cmd[2] = addr & 0x0ff; /* low order bits of address */ cmd[3] = 0; /* don't care */ avr_cmd(fd, cmd, res); return res[3]; } /* * read the entirety of the specified memory type into the * corresponding buffer of the avrpart pointed to by 'p'. */ int avr_read ( int fd, struct avrpart * p, AVRMEM memtype ) { unsigned char rbyte, memt; unsigned short n, start, end, i, bi; unsigned char * buf; int bufsize; start = 0; switch (memtype) { case AVR_FLASH : memt = AVR_FLASH_LO; buf = p->flash; n = p->flash_size/2; bufsize = p->flash_size; break; case AVR_EEPROM : memt = memtype; buf = p->eeprom; n = p->eeprom_size; bufsize = p->eeprom_size; break; default: fprintf(stderr, "%s: avr_read(); internal error: invalid memtype=%d\n", progname, memtype); exit(1); break; } end = start+n; bi = 0; for (i=start; i<end; i++) { /* eeprom or low byte of flash */ rbyte = avr_read_byte(fd, p, memt, i); fprintf ( stderr, " \r%4u 0x%02x", i, rbyte ); if (bi < bufsize) { buf[bi++] = rbyte; } if (memtype == AVR_FLASH) { /* flash high byte */ rbyte = avr_read_byte(fd, p, AVR_FLASH_HI, i); fprintf ( stderr, " 0x%02x", rbyte ); if (bi < bufsize) { buf[bi++] = rbyte; } } } fprintf ( stderr, "\n" ); return 0; } /* * write a byte of data to the indicated memory region */ int avr_write_byte ( int fd, struct avrpart * p, AVRMEM memtype, unsigned short addr, unsigned char data ) { unsigned char cmd[4], res[4]; unsigned char r; int ready; int tries; unsigned char b; /* * check to see if the write is necessary by reading the existing * value and only write if we are changing the value */ b = avr_read_byte(fd, p, memtype, addr); if (b == data) { return 0; } switch (memtype) { case AVR_FLASH_LO: cmd[0] = 0x40; break; case AVR_FLASH_HI: cmd[0] = 0x48; break; case AVR_EEPROM: cmd[0] = 0xc0; break; default: fprintf(stderr, "%s: avr_write_byte(); internal error: invalid memtype=%d\n", progname, memtype); exit(1); break; } cmd[1] = addr >> 8; /* high order bits of address */ cmd[2] = addr & 0x0ff; /* low order bits of address */ cmd[3] = data; /* data */ avr_cmd(fd, cmd, res); tries = 0; ready = 0; while (!ready) { usleep(p->min_write_delay); /* typical flash/eeprom write delay */ r = avr_read_byte(fd, p, memtype, addr); if ((data == p->f_readback) || (data == p->e_readback[0]) || (data == p->e_readback[1])) { /* * use an extra long delay when we happen to be writing values * used for polled data read-back. In this case, polling * doesn't work, and we need to delay the worst case write time * specified for the chip. */ usleep(p->max_write_delay); ready = 1; } else if (r == data) { ready = 1; } tries++; if (!ready && tries > 10) { /* * we couldn't write the data, indicate our displeasure by * returning an error code */ return -1; } } return 0; } /* * Write the whole memory region (flash or eeprom, specified by * 'memtype') from the corresponding buffer of the avrpart pointed to * by 'p'. All of the memory is updated, however, input data of 0xff * is not actually written out, because empty flash and eeprom * contains 0xff, and you can't actually write 1's, only 0's. */ int avr_write ( int fd, struct avrpart * p, AVRMEM memtype ) { unsigned char data, memt; unsigned short start, end, i, bi; int nl; int rc; unsigned char * buf; int bufsize; start = 0; switch (memtype) { case AVR_FLASH : buf = p->flash; bufsize = p->flash_size; end = start+bufsize/2; memt = AVR_FLASH_LO; break; case AVR_EEPROM : buf = p->eeprom; bufsize = p->eeprom_size; end = start+bufsize; memt = memtype; break; default: fprintf(stderr, "%s: avr_write(); internal error: invalid memtype=%d\n", progname, memtype); exit(1); break; } bi = 0; for (i=start; i<end; i++) { /* eeprom or low byte of flash */ data = buf[bi++]; nl = 0; rc = avr_write_byte(fd, p, memt, i, data ); fprintf(stderr, " \r%4u 0x%02x", i, data); if (rc) { fprintf(stderr, " ***failed; "); nl = 1; } if (memtype == AVR_FLASH) { /* high byte of flash */ data = buf[bi++]; rc = avr_write_byte(fd, p, AVR_FLASH_HI, i, data ); fprintf(stderr, " 0x%02x", data); if (rc) { fprintf(stderr, " ***failed; " ); nl = 1; } } if (nl) fprintf(stderr, "\n"); } fprintf ( stderr, "\n" ); return 0; } /* * issue the 'program enable' command to the AVR device */ int avr_program_enable ( int fd ) { unsigned char cmd[4] = {0xac, 0x53, 0x00, 0x00}; unsigned char res[4]; avr_cmd(fd, cmd, res); if (res[2] != cmd[1]) return -1; return 0; } /* * issue the 'chip erase' command to the AVR device */ int avr_chip_erase ( int fd, struct avrpart * p ) { unsigned char data[4] = {0xac, 0x80, 0x00, 0x00}; unsigned char res[4]; avr_cmd(fd, data, res); usleep(p->chip_erase_delay); avr_initialize(fd, p); return 0; } /* * read the AVR device's signature bytes */ int avr_signature ( int fd, unsigned char sig[4] ) { unsigned char cmd[4] = {0x30, 0x00, 0x00, 0x00}; unsigned char res[4]; int i; for (i=0; i<4; i++) { cmd[2] = i; avr_cmd(fd, cmd, res); sig[i] = res[3]; } return 0; } /* * apply power to the AVR processor */ void avr_powerup ( int fd ) { ppi_set(fd, PPIDATA, AVR_POWER); /* power up */ usleep(100000); } /* * remove power from the AVR processor */ void avr_powerdown ( int fd ) { ppi_clr(fd, PPIDATA, AVR_POWER); /* power down */ } /* * initialize the AVR device and prepare it to accept commands */ int avr_initialize ( int fd, struct avrpart * p ) { int rc; int tries; avr_powerup(fd); ppi_clr(fd, PPIDATA, AVR_CLOCK); ppi_clr(fd, PPIDATA, AVR_RESET); ppi_pulse(fd, PPIDATA, AVR_RESET); usleep(20000); /* 20 ms XXX should be a per-chip parameter */ /* * Enable programming mode. If we are programming an AT90S1200, we * can only issue the command and hope it worked. If we are using * one of the other chips, the chip will echo 0x53 when issuing the * third byte of the command. In this case, try up to 32 times in * order to possibly get back into sync with the chip if we are out * of sync. */ if (strcmp(p->partdesc, "AT90S1200")==0) { avr_program_enable ( fd ); } else { tries = 0; do { rc = avr_program_enable ( fd ); if (rc == 0) break; ppi_pulse(fd, PPIDATA, AVR_CLOCK); tries++; } while (tries < 32); /* * can't sync with the device, maybe it's not attached? */ if (tries == 32) { fprintf ( stderr, "%s: AVR device not responding\n", progname ); return -1; } } return 0; } /* * infinite loop, sensing on the pin that we use to read data out of * the device; this is a debugging aid, you can insert a call to this * function in 'main()' and can use it to determine whether your sense * pin is actually sensing. */ int ppi_sense_test ( int fd ) { unsigned char v, pv; pv = 1; do { usleep(100000); /* check every 100 ms */ v = ppi_get(fd, PPISTATUS, AVR_DATA); if (v != pv) { fprintf ( stderr, "sense bit = %d\n", v ); } pv = v; } while(1); return 0; } /* * usage message */ void usage ( void ) { fprintf ( stderr, "%s", usage_text ); fprintf(stderr, " Valid Parts for the -p option are:\n"); list_valid_parts(stderr, " "); fprintf(stderr, "\n"); } char * fmtstr ( FILEFMT format ) { switch (format) { case FMT_AUTO : return "auto-detect"; break; case FMT_SREC : return "Motorola S-Record"; break; case FMT_IHEX : return "Intel Hex"; break; case FMT_RBIN : return "raw binary"; break; default : return "invalid format"; break; }; } int b2ihex ( unsigned char * inbuf, int bufsize, int recsize, int startaddr, char * outfile, FILE * outf ) { unsigned char * buf; unsigned int nextaddr; int n; int i; unsigned char cksum; if (recsize > 255) { fprintf ( stderr, "%s: recsize=%d, must be < 256\n", progname, recsize ); return -1; } nextaddr = startaddr; buf = inbuf; while (bufsize) { n = recsize; if (n > bufsize) n = bufsize; if (n) { cksum = 0; fprintf ( outf, ":%02X%04X00", n, nextaddr ); cksum += n + ((nextaddr >> 8) & 0x0ff) + (nextaddr & 0x0ff); for (i=0; i<n; i++) { fprintf ( outf, "%02X", buf[i] ); cksum += buf[i]; } cksum = -cksum; fprintf ( outf, "%02X\n", cksum ); nextaddr += n; } /* advance to next 'recsize' bytes */ buf += n; bufsize -= n; } /*----------------------------------------------------------------- add the end of record data line -----------------------------------------------------------------*/ cksum = 0; n = 0; nextaddr = 0; fprintf ( outf, ":%02X%04X01", n, nextaddr ); cksum += n + ((nextaddr >> 8) & 0x0ff) + (nextaddr & 0x0ff); cksum = -cksum; fprintf ( outf, "%02X\n", cksum ); return 0; } int ihex2b ( char * infile, FILE * inf, unsigned char * outbuf, int bufsize ) { unsigned char buffer [ MAX_LINE_LEN ]; unsigned char * buf; unsigned int prevaddr, nextaddr; unsigned int b; int n; int i, j; unsigned int cksum, rectype; int lineno; lineno = 0; prevaddr = 0; buf = outbuf; while (fgets((char *)buffer,MAX_LINE_LEN,inf)!=NULL) { lineno++; if (buffer[0] != ':') continue; if (sscanf((char *)&buffer[1], "%02x%04x%02x", &n, &nextaddr, &rectype) != 3) { fprintf(stderr, "%s: invalid record at line %d of \"%s\"\n", progname, lineno, infile); exit(1); } if ((rectype != 0) && (rectype != 1)) { fprintf(stderr, "%s: don't know how to deal with rectype=%d " "at line %d of %s\n", progname, rectype, lineno, infile); exit(1); } if (n && ((nextaddr + n) > bufsize)) { fprintf(stderr, "%s: address 0x%04x out of range at line %d of %s\n", progname, nextaddr+n, lineno, infile); return -1; } /* start computing a checksum */ cksum = n + ((nextaddr >> 8 ) & 0x0ff) + (nextaddr & 0x0ff); for (i=0; i<n; i++) { if (sscanf((char *)&buffer[i*2+9], "%02x", &b) != 1) { fprintf(stderr, "%s: can't scan byte number %d at line %d of %s\n", progname, i, lineno, infile); /* display the buffer and the position of the scan error */ fprintf(stderr, "%s", buffer); for (j=0; j<9+2*i; j++) { fprintf(stderr, " "); } fprintf(stderr, "^\n"); return -1; } buf[nextaddr + i] = b; cksum += b; } /*----------------------------------------------------------------- read the cksum value from the record and compare it with our computed value -----------------------------------------------------------------*/ if (sscanf((char *)&buffer[n*2+9], "%02x", &b) != 1) { fprintf(stderr, "%s: can't scan byte number %d at line %d of %s\n", progname, i, lineno, infile); /* display the buffer and the position of the scan error */ fprintf(stderr, "%s", buffer); for (j=0; j<9+2*i; j++) { fprintf(stderr, " "); } fprintf(stderr, "^\n"); return -1; } cksum = -cksum & 0xff; if (cksum != b) { fprintf(stderr, "%s: WARNING: cksum error for line %d of \"%s\": computed=%02x " "found=%02x\n", progname, lineno, infile, cksum, b); /* return -1; */ } if (rectype == 1) { /* end of record */ return 0; } prevaddr = nextaddr + n; } return 0; } int fileio_rbin ( struct fioparms * fio, char * filename, FILE * f, unsigned char * buf, int size ) { int rc; switch (fio->op) { case FIO_READ: rc = fread(buf, 1, size, f); break; case FIO_WRITE: rc = fwrite(buf, 1, size, f); break; default: fprintf(stderr, "%s: fileio: invalid operation=%d\n", progname, fio->op); return -1; } if (rc < size) { fprintf(stderr, "%s: %s error %s %s: %s; %s %d of the expected %d bytes\n", progname, fio->iodesc, fio->dir, filename, strerror(errno), fio->rw, rc, size); return -1; } return rc; } int fileio_ihex ( struct fioparms * fio, char * filename, FILE * f, unsigned char * buf, int size ) { int rc; switch (fio->op) { case FIO_WRITE: rc = b2ihex(buf, size, 32, 0, filename, f); if (rc) { return -1; } break; case FIO_READ: rc = ihex2b(filename, f, buf, size); if (rc) return -1; break; default: fprintf(stderr, "%s: invalid Intex Hex file I/O operation=%d\n", progname, fio->op); return -1; break; } return 0; } int fileio_srec ( struct fioparms * fio, char * filename, FILE * f, unsigned char * buf, int size ) { fprintf(stderr, "%s: Motorola S-Record %s format not yet supported\n", progname, fio->iodesc); return -1; } int fileio_setparms ( int op, struct fioparms * fp ) { fp->op = op; switch (op) { case FIO_READ: fp->mode = "r"; fp->iodesc = "input"; fp->dir = "from"; fp->rw = "read"; break; case FIO_WRITE: fp->mode = "w"; fp->iodesc = "output"; fp->dir = "to"; fp->rw = "wrote"; break; default: fprintf(stderr, "%s: invalid I/O operation %d\n", progname, op); return -1; break; } return 0; } int fmt_autodetect ( char * fname ) { FILE * f; unsigned char buf[MAX_LINE_LEN]; int i; int len; int found; f = fopen(fname, "r"); if (f == NULL) { fprintf(stderr, "%s: error opening %s: %s\n", progname, fname, strerror(errno)); return -1; } while (fgets((char *)buf, MAX_LINE_LEN, f)!=NULL) { buf[MAX_LINE_LEN-1] = 0; len = strlen((char *)buf); if (buf[len-1] == '\n') buf[--len] = 0; /* check for binary data */ found = 0; for (i=0; i<len; i++) { if (buf[i] > 127) { found = 1; break; } } if (found) return FMT_RBIN; /* check for lines that look like intel hex */ if ((buf[0] == ':') && (len >= 11)) { found = 1; for (i=1; i<len; i++) { if (!isxdigit(buf[1])) { found = 0; break; } } if (found) return FMT_IHEX; } /* check for lines that look like motorola s-record */ if ((buf[0] == 'S') && (len >= 10) && isdigit(buf[1])) { found = 1; for (i=1; i<len; i++) { if (!isxdigit(buf[1])) { found = 0; break; } } if (found) return FMT_SREC; } } return -1; } int fileio ( int op, char * filename, FILEFMT format, struct avrpart * p, AVRMEM memtype ) { int rc; FILE * f; char * fname; unsigned char * buf; int size; struct fioparms fio; int i; rc = fileio_setparms(op, &fio); if (rc < 0) return -1; if (strcmp(filename, "-")==0) { if (fio.op == FIO_READ) { fname = "<stdin>"; f = stdin; } else { fname = "<stdout>"; f = stdout; } } else { fname = filename; f = fopen(fname, fio.mode); if (f == NULL) { fprintf(stderr, "%s: can't open %s file %s: %s\n", progname, fio.iodesc, fname, strerror(errno)); return -1; } } switch (memtype) { case AVR_EEPROM: buf = p->eeprom; size = p->eeprom_size; break; case AVR_FLASH: buf = p->flash; size = p->flash_size; break; default: fprintf(stderr, "%s: invalid memory type for %s: %d\n", progname, fio.iodesc, memtype); return -1; } if (fio.op == FIO_READ) { /* 0xff fill unspecified memory */ for (i=0; i<size; i++) { buf[i] = 0xff; } } if (format == FMT_AUTO) { format = fmt_autodetect(fname); if (format < 0) { fprintf(stderr, "%s: can't determine file format for %s, specify explicitly\n", progname, fname); return -1; } fprintf(stderr, "%s: %s file %s auto detected as %s\n\n", progname, fio.iodesc, fname, fmtstr(format)); } switch (format) { case FMT_IHEX: rc = fileio_ihex(&fio, fname, f, buf, size); break; case FMT_SREC: rc = fileio_srec(&fio, fname, f, buf, size); break; case FMT_RBIN: rc = fileio_rbin(&fio, fname, f, buf, size); break; default: fprintf(stderr, "%s: invalid %s file format: %d\n", progname, fio.iodesc, format); return -1; } return rc; } char * memtypestr ( AVRMEM memtype ) { switch (memtype) { case AVR_EEPROM : return "eeprom"; break; case AVR_FLASH : return "flash"; break; default : return "unknown-memtype"; break; } } int nexttok ( char * buf, char ** tok, char ** next ) { char * q, * n; q = buf; while (isspace(*q)) q++; /* isolate first token */ n = q+1; while (*n && !isspace(*n)) n++; if (*n) { *n = 0; n++; } /* find start of next token */ while (isspace(*n)) n++; *tok = q; *next = n; return 0; } int hexdump_line ( char * buffer, unsigned char * p, int n, int pad ) { char * hexdata = "0123456789abcdef"; char * b; int i, j; b = buffer; j = 0; for (i=0; i<n; i++) { if (i && ((i % 8) == 0)) b[j++] = ' '; b[j++] = hexdata[(p[i] & 0xf0) >> 4]; b[j++] = hexdata[(p[i] & 0x0f)]; if (i < 15) b[j++] = ' '; } for (i=j; i<pad; i++) b[i] = ' '; b[i] = 0; for (i=0; i<pad; i++) { if (!((b[i] == '0') || (b[i] == ' '))) return 0; } return 1; } int chardump_line ( char * buffer, unsigned char * p, int n, int pad ) { int i; char b [ 128 ]; for (i=0; i<n; i++) { memcpy ( b, p, n ); buffer[i] = '.'; if (isalpha(b[i]) || isdigit(b[i]) || ispunct(b[i])) buffer[i] = b[i]; else if (isspace(b[i])) buffer[i] = ' '; } for (i=n; i<pad; i++) buffer[i] = ' '; buffer[i] = 0; return 0; } int hexdump_buf ( FILE * f, int startaddr, char * buf, int len ) { int addr; int i, n; unsigned char * p; char dst1[80]; char dst2[80]; addr = startaddr; i = 0; p = (unsigned char *)buf; while (len) { n = 16; if (n > len) n = len; hexdump_line(dst1, p, n, 48); chardump_line(dst2, p, n, 16); fprintf(stdout, "%04x %s |%s|\n", addr, dst1, dst2); len -= n; addr += n; p += n; } return 0; } int cmd_dump ( int fd, struct avrpart * p, int argc, char * argv[] ) { char * e; int i, j; int len, maxsize; AVRMEM memtype; unsigned short addr, daddr; char * buf; if (argc != 4) { fprintf(stderr, "Usage: dump flash|eeprom <addr> <len>\n"); return -1; } if (strcmp(argv[1],"flash")==0) { memtype = AVR_FLASH; maxsize = p->flash_size; } else if (strcmp(argv[1],"eeprom")==0) { memtype = AVR_EEPROM; maxsize = p->eeprom_size; } else { fprintf(stderr, "%s (dump): invalid memory type \"%s\"\n", progname, argv[1]); return -1; } addr = strtoul(argv[2], &e, 0); if (*e || (e == argv[2])) { fprintf(stderr, "%s (dump): can't parse address \"%s\"\n", progname, argv[2]); return -1; } len = strtol(argv[3], &e, 0); if (*e || (e == argv[3])) { fprintf(stderr, "%s (dump): can't parse length \"%s\"\n", progname, argv[3]); return -1; } if (addr > maxsize) { fprintf(stderr, "%s (dump): address 0x%04x is out of range for %s memory\n", progname, addr, memtypestr(memtype)); return -1; } if ((addr + len) > maxsize) { fprintf(stderr, "%s (dump): selected address and length exceed " "range for %s memory\n", progname, memtypestr(memtype)); return -1; } buf = malloc(len); if (buf == NULL) { fprintf(stderr, "%s (dump): out of memory\n", progname); return -1; } j = 0; daddr = addr; if (memtype == AVR_FLASH) { daddr = addr / 2; if (addr & 0x01) { buf[j++] = avr_read_byte( fd, p, AVR_FLASH_HI, daddr); daddr++; } } i = daddr; while (j < len) { if (memtype == AVR_FLASH) { buf[j++] = avr_read_byte( fd, p, AVR_FLASH_LO, i); if (j < len) { buf[j++] = avr_read_byte( fd, p, AVR_FLASH_HI, i); } } else { buf[j++] = avr_read_byte( fd, p, AVR_EEPROM, i); } i++; } hexdump_buf(stdout, addr, buf, len); fprintf(stdout, "\n"); free(buf); return 0; } int cmd_write ( int fd, struct avrpart * p, int argc, char * argv[] ) { char * e; int i, j; int len, maxsize; AVRMEM memtype; unsigned short addr, daddr; char * buf; int rc; if (argc < 4) { fprintf(stderr, "Usage: write flash|eeprom <addr> <byte1> <byte2> ... byteN>\n"); return -1; } if (strcmp(argv[1],"flash")==0) { memtype = AVR_FLASH; maxsize = p->flash_size; } else if (strcmp(argv[1],"eeprom")==0) { memtype = AVR_EEPROM; maxsize = p->eeprom_size; } else { fprintf(stderr, "%s (write): invalid memory type \"%s\"\n", progname, argv[1]); return -1; } addr = strtoul(argv[2], &e, 0); if (*e || (e == argv[2])) { fprintf(stderr, "%s (write): can't parse address \"%s\"\n", progname, argv[2]); return -1; } if (addr > maxsize) { fprintf(stderr, "%s (write): address 0x%04x is out of range for %s memory\n", progname, addr, memtypestr(memtype)); return -1; } /* number of bytes to write at the specified address */ len = argc - 3; if ((addr + len) > maxsize) { fprintf(stderr, "%s (write): selected address and # bytes exceed " "range for %s memory\n", progname, memtypestr(memtype)); return -1; } buf = malloc(len); if (buf == NULL) { fprintf(stderr, "%s (write): out of memory\n", progname); return -1; } for (i=3; i<argc; i++) { buf[i-3] = strtoul(argv[i], &e, 0); if (*e || (e == argv[i])) { fprintf(stderr, "%s (write): can't parse byte \"%s\"\n", progname, argv[i]); return -1; } } j = 0; daddr = addr; if (memtype == AVR_FLASH) { daddr = addr / 2; if (addr & 0x01) { /* handle odd numbered memory locations in the flash area */ rc = avr_write_byte(fd, p, AVR_FLASH_HI, daddr, buf[j++]); if (rc) { fprintf(stderr, "%s (write): error writing 0x%02x at 0x%04x\n", progname, buf[j-1], daddr*2+1); } daddr++; } } i = daddr; while (j < len) { if (memtype == AVR_FLASH) { rc = avr_write_byte( fd, p, AVR_FLASH_LO, i, buf[j++]); if (rc) { fprintf(stderr, "%s (write): error writing 0x%02x at 0x%04x\n", progname, buf[j-1], i*2); } if (j < len) { rc = avr_write_byte( fd, p, AVR_FLASH_HI, i, buf[j++]); if (rc) { fprintf(stderr, "%s (write): error writing 0x%02x at 0x%04x\n", progname, buf[j-1], i*2+1); } } } else { rc = avr_write_byte( fd, p, AVR_EEPROM, i, buf[j++]); if (rc) { fprintf(stderr, "%s (write): error writing 0x%02x at 0x%04x\n", progname, buf[j-1], i); } } i++; } free(buf); fprintf(stdout, "\n"); return 0; } int cmd_erase ( int fd, struct avrpart * p, int argc, char * argv[] ) { fprintf(stderr, "%s: erasing chip\n", progname ); avr_chip_erase(fd,p); return 0; } int cmd_part ( int fd, struct avrpart * p, int argc, char * argv[] ) { fprintf(stdout, "\n"); display_part(stdout, p, ""); fprintf(stdout, "\n"); return 0; } int cmd_sig ( int fd, struct avrpart * p, int argc, char * argv[] ) { unsigned char sig[4]; /* AVR signature bytes */ int i; avr_signature(fd, sig); fprintf(stdout, "\nDevice signature = 0x"); for (i=0; i<4; i++) fprintf(stdout, "%02x", sig[i]); fprintf(stdout, "\n\n"); return 0; } int cmd_quit ( int fd, struct avrpart * p, int argc, char * argv[] ) { return 1; } int cmd_help ( int fd, struct avrpart * p, int argc, char * argv[] ) { int i; fprintf(stdout, "Valid commands:\n\n" ); for (i=0; i<NCMDS; i++) { fprintf(stdout, " %-6s : ", cmd[i].name ); fprintf(stdout, cmd[i].desc, cmd[i].name); fprintf(stdout, "\n"); } fprintf(stdout, "\n"); return 0; } int tokenize ( char * s, char *** argv ) { int i, n, l, nargs, offset; int len, slen; char * buf; int bufsize; char ** bufv; char * q, * r; char * nbuf; char ** av; slen = strlen(s); /* * initialize allow for 20 arguments, use realloc to grow this if * necessary */ nargs = 20; bufsize = slen + 20; buf = malloc(bufsize); bufv = (char **) malloc(nargs*sizeof(char *)); for (i=0; i<nargs; i++) { bufv[i] = NULL; } buf[0] = 0; n = 0; l = 0; nbuf = buf; r = s; while (*r) { nexttok(r, &q, &r); strcpy(nbuf, q); bufv[n] = nbuf; len = strlen(q); l += len + 1; nbuf += len + 1; nbuf[0] = 0; n++; if ((n % 20) == 0) { /* realloc space for another 20 args */ bufsize += 20; nargs += 20; buf = realloc(buf, bufsize); bufv = realloc(bufv, nargs*sizeof(char *)); nbuf = &buf[l]; for (i=n; i<nargs; i++) bufv[i] = NULL; } } /* * We have parsed all the args, n == argc, bufv contains an array of * pointers to each arg, and buf points to one memory block that * contains all the args, back to back, seperated by a nul * terminator. Consilidate bufv and buf into one big memory block * so that the code that calls us, will have an easy job of freeing * this memory. */ av = (char **) malloc(slen + n + (n+1)*sizeof(char *)); q = (char *)&av[n+1]; memcpy(q, buf, l); for (i=0; i<n; i++) { offset = bufv[i] - buf; av[i] = q + offset; } av[i] = NULL; free(buf); free(bufv); *argv = av; return n; } int do_cmd ( int fd, struct avrpart * p, int argc, char * argv[] ) { int i; for (i=0; i<NCMDS; i++) { if (strcasecmp(argv[0], cmd[i].name) == 0) { return cmd[i].func(fd, p, argc, argv); } } fprintf(stderr, "%s: invalid command \"%s\"\n", progname, argv[0]); return -1; } int go_interactive ( int fd, struct avrpart * p ) { char * cmdbuf; int i, len; char * q; int rc; int argc; char ** argv; rc = 0; while ((cmdbuf = readline("avrprog> ")) != NULL) { len = strlen(cmdbuf); if (len > 1) add_history(cmdbuf); /* * find the start of the command, skipping any white space */ q = cmdbuf; while (*q && isspace(*q)) q++; /* skip blank lines and comments */ if (!*q || (*q == '#')) continue; /* tokenize command line */ argc = tokenize(q, &argv); fprintf(stdout, ">>> "); for (i=0; i<argc; i++) fprintf(stdout, "%s ", argv[i]); fprintf(stdout, "\n"); /* run the command */ rc = do_cmd(fd, p, argc, argv); free(argv); if (rc > 0) { rc = 0; break; } free(cmdbuf); } return rc; } int avr_initmem ( struct avrpart * p ) { p->flash = (unsigned char *) malloc(p->flash_size); if (p->flash == NULL) { fprintf(stderr, "%s: can't alloc buffer for flash size of %d bytes\n", progname, p->flash_size); exit(1); } p->eeprom = (unsigned char *) malloc(p->eeprom_size); if (p->eeprom == NULL) { fprintf(stderr, "%s: can't alloc buffer for eeprom size of %d bytes\n", progname, p->eeprom_size); exit(1); } return 0; } int verify_data(struct avrpart * p, struct avrpart * v, AVRMEM memtype) { int i; unsigned char * buf1, * buf2; int size; switch (memtype) { case AVR_FLASH: buf1 = p->flash; buf2 = v->flash; size = p->flash_size; break; case AVR_EEPROM: buf1 = p->eeprom; buf2 = v->eeprom; size = p->eeprom_size; break; default: fprintf(stderr, "%s: invalid memory type = %d for data verification\n", progname, memtype); return -1; } for (i=0; i<size; i++) { if (buf1[i] != buf2[i]) { fprintf(stderr, "%s: verification error, first mismatch at byte %d\n" "%s0x%02x != 0x%02x\n", progname, i, progbuf, buf1[i], buf2[i]); return -1; } } return 0; } void display_part ( FILE * f, struct avrpart * p, char * prefix ) { fprintf(f, "%sAVR Part = %s\n" "%sFlash memory size = %d bytes\n" "%sEEPROM memory size = %d bytes\n" "%sMin/Max program delay = %d/%d us\n" "%sChip Erase delay = %d us\n" "%sFlash Polled Readback = 0x%02x\n" "%sEEPROM Polled Readback = 0x%02x, 0x%02x\n", prefix, p->partdesc, prefix, p->flash_size, prefix, p->eeprom_size, prefix, p->min_write_delay, p->max_write_delay, prefix, p->chip_erase_delay, prefix, p->f_readback, prefix, p->e_readback[0], p->e_readback[1]); } /* * parse the -E string */ int getexitspecs ( char *s, int *set, int *clr ) { char *cp; while ((cp = strtok(s, ","))) { if (strcmp(cp, "reset") == 0) { *clr |= AVR_RESET; } else if (strcmp(cp, "noreset") == 0) { *set |= AVR_RESET; } else if (strcmp(cp, "vcc") == 0) { *set |= AVR_POWER; } else if (strcmp(cp, "novcc") == 0) { *clr |= AVR_POWER; } else return -1; s = 0; /* strtok() should be called with the actual string only once */ } return 0; } /* * main routine */ int main ( int argc, char * argv [] ) { int fd; /* file descriptor for parallel port */ int rc; /* general return code checking */ int exitrc; /* exit code for main() */ int i; /* general loop counter */ int ch; /* options flag */ int size; /* size of memory region */ int len; /* length for various strings */ char * p1; /* used to parse CVS Id */ char * p2; /* used to parse CVS Ed */ unsigned char sig[4]; /* AVR signature bytes */ unsigned char nulldev[4]; /* 0xff signature bytes for comparison */ struct avrpart * p, ap1; /* which avr part we are programming */ struct avrpart * v, ap2; /* used for verify */ int readorwrite; /* true if a chip read/write op was selected */ int ppidata; /* cached value of the ppi data register */ /* options / operating mode variables */ int memtype; /* AVR_FLASH or AVR_EEPROM */ int doread; /* 0=reading, 1=writing */ int erase; /* 1=erase chip, 0=don't */ char * outputf; /* output file name */ char * inputf; /* input file name */ int ovsigck; /* 1=override sig check, 0=don't */ char * parallel; /* parallel port device */ int terminal; /* 1=enter terminal mode, 0=don't */ FILEFMT filefmt; /* FMT_AUTO, FMT_IHEX, FMT_SREC, FMT_RBIN */ int nowrite; /* don't actually write anything to the chip */ int verify; /* perform a verify operation */ int ppisetbits; /* bits to set in ppi data register at exit */ int ppiclrbits; /* bits to clear in ppi data register at exit */ readorwrite = 0; parallel = DEFAULT_PARALLEL; outputf = NULL; inputf = NULL; doread = 1; memtype = AVR_FLASH; erase = 0; p = NULL; ovsigck = 0; terminal = 0; filefmt = FMT_AUTO; nowrite = 0; verify = 1; /* on by default; XXX can't turn it off */ ppisetbits = ppiclrbits = 0; progname = rindex(argv[0],'/'); if (progname) progname++; else progname = argv[0]; len = strlen(progname) + 2; for (i=0; i<len; i++) progbuf[i] = ' '; progbuf[i] = 0; /* * Print out an identifying string so folks can tell what version * they are running */ p1 = strchr(version,','); if (p1 == NULL) p1 = version; else p1 += 3; p2 = strrchr(p1,':'); if (p2 == NULL) p2 = &p1[strlen(p1)]; else p2 += 3; fprintf(stderr, "\n"); fprintf(stderr, "%s: Copyright 2000 Brian Dean, bsd@bsdhome.com\n" "%sRevision ", progname, progbuf); for (i=0; i<p2-p1; i++) fprintf(stderr, "%c", p1[i]); fprintf(stderr, "\n\n"); /* * check for no arguments */ if (argc == 1) { usage(); return 0; } /* * process command line arguments */ while ((ch = getopt(argc,argv,"?eE:f:Fi:m:no:p:P:tv")) != -1) { switch (ch) { case 'm': /* select memory type to operate on */ if ((strcasecmp(optarg,"e")==0)||(strcasecmp(optarg,"eeprom")==0)) { memtype = AVR_EEPROM; } else if ((strcasecmp(optarg,"f")==0)|| (strcasecmp(optarg,"flash")==0)) { memtype = AVR_FLASH; } else { fprintf(stderr, "%s: invalid memory type \"%s\"\n\n", progname, optarg); usage(); exit(1); } readorwrite = 1; break; case 'F': /* override invalid signature check */ ovsigck = 1; break; case 'n': nowrite = 1; break; case 'o': /* specify output file */ if (inputf || terminal) { fprintf(stderr,"%s: -i, -o, and -t are incompatible\n\n", progname); return 1; } doread = 1; outputf = optarg; if (filefmt == FMT_AUTO) filefmt = FMT_RBIN; break; case 'p' : /* specify AVR part */ p = NULL; for (i=0; i<N_AVRPARTS; i++) { if (strcmp(parts[i].optiontag, optarg)==0) { p = &parts[i]; break; } } if (p == NULL) { fprintf(stderr, "%s: AVR Part \"%s\" not found. Valid parts are:\n\n", progname, optarg ); list_valid_parts(stderr," "); fprintf(stderr, "\n"); return 1; } break; case 'e': /* perform a chip erase */ erase = 1; break; case 'E': if (getexitspecs(optarg, &ppisetbits, &ppiclrbits) < 0) { usage(); exit(1); } break; case 'i': /* specify input file */ if (outputf || terminal) { fprintf(stderr,"%s: -o, -i, and -t are incompatible\n\n", progname); return 1; } doread = 0; inputf = optarg; break; case 'f': /* specify file format */ if (strlen(optarg) != 1) { fprintf(stderr, "%s: invalid file format \"%s\"\n", progname, optarg); usage(); exit(1); } switch (optarg[0]) { case 'a' : filefmt = FMT_AUTO; break; case 'i' : filefmt = FMT_IHEX; break; case 'r' : filefmt = FMT_RBIN; break; case 's' : fprintf(stderr, "%s: Motorola S-Record format not yet supported\n\n", progname); exit(1); break; default : fprintf(stderr, "%s: invalid file format \"%s\"\n\n", progname, optarg); usage(); exit(1); } break; case 't': /* enter terminal mode */ if (!((inputf == NULL)||(outputf == NULL))) { fprintf(stderr, "%s: terminal mode is not compatible with -i or -o\n\n", progname); usage(); exit(1); } terminal = 1; break; case 'P': parallel = optarg; break; case 'v': verify = 1; break; case '?': /* help */ usage(); exit(0); break; default: fprintf(stderr, "%s: invalid option -%c\n\n", progname, ch); usage(); exit(1); break; } } if (p == NULL) { fprintf(stderr, "%s: No AVR part has been specified, use \"-p Part\"\n\n" " Valid Parts are:\n\n", progname ); list_valid_parts(stderr, " "); fprintf(stderr,"\n"); return 1; } /* * set up seperate instances of the avr part, one for use in * programming, one for use in verifying. These are separate * because they need separate flash and eeprom buffer space */ ap1 = *p; v = p; p = &ap1; ap2 = *v; v = &ap2; avr_initmem(p); avr_initmem(v); display_part(stderr, p, progbuf); fprintf(stderr, "\n"); /* * open the parallel port */ fd = open ( parallel, O_RDWR ); if (fd < 0) { fprintf ( stderr, "%s: can't open device \"%s\": %s\n\n", progname, parallel, strerror(errno) ); return 1; } exitrc = 0; ppidata = ppi_getall(fd, PPIDATA); if (ppidata < 0) { fprintf ( stderr, "%s: error reading status of ppi data port\n", progname); exitrc = 1; ppidata = 0; /* clear all bits at exit */ goto main_exit; } ppidata &= ~ppiclrbits; ppidata |= ppisetbits; /* * initialize the chip in preperation for accepting commands */ rc = avr_initialize(fd,p); if (rc < 0) { fprintf ( stderr, "%s: initialization failed, rc=%d\n", progname, rc ); exitrc = 1; goto main_exit; } fprintf ( stderr, "%s: AVR device initialized and ready to accept instructions\n", progname ); /* * Let's read the signature bytes to make sure there is at least a * chip on the other end that is responding correctly. A check * against 0xffffffff should ensure that the signature bytes are * valid. */ avr_signature(fd, sig); fprintf(stderr, "%s: Device signature = 0x", progname); for (i=0; i<4; i++) fprintf(stderr, "%02x", sig[i]); fprintf(stderr, "\n"); memset(nulldev,0xff,4); if (memcmp(sig,nulldev,4)==0) { fprintf(stderr, "%s: Yikes! Invalid device signature.\n", progname); if (!ovsigck) { fprintf(stderr, "%sDouble check connections and try again, or use -F to override\n" "%sthis check.\n\n", progbuf, progbuf ); exit(1); } } fprintf(stderr, "\n"); if (erase) { /* * erase the chip's flash and eeprom memories, this is required * before the chip can accept new programming */ fprintf(stderr, "%s: erasing chip\n", progname ); avr_chip_erase(fd,p); fprintf(stderr, "%s: done.\n", progname ); } if (!terminal && ((inputf==NULL) && (outputf==NULL))) { /* * Check here to see if any other operations were selected and * generate an error message because if they were, we need either * an input or and output file, but one was not selected. * Otherwise, we just shut down. */ if (readorwrite) { fprintf(stderr, "%s: you must specify an input or an output file\n", progname); exitrc = 1; } goto main_exit; } if (terminal) { /* * terminal mode */ exitrc = go_interactive(fd, p); } else if (doread) { /* * read out the specified device memory and write it to a file */ fprintf(stderr, "%s: reading %s memory:\n", progname, memtypestr(memtype)); rc = avr_read ( fd, p, memtype ); if (rc) { fprintf(stderr, "%s: failed to read all of %s memory, rc=%d\n", progname, memtypestr(memtype), rc); exitrc = 1; goto main_exit; } fprintf(stderr, "%s: writing output file \"%s\"\n", progname, outputf); rc = fileio(FIO_WRITE, outputf, filefmt, p, memtype); if (rc < 0) { fprintf(stderr, "%s: terminating\n", progname); exitrc = 1; goto main_exit; } } else { /* * write the selected device memory using data from a file; first * read the data from the specified file */ fprintf(stderr, "%s: reading input file \"%s\"\n", progname, inputf); rc = fileio(FIO_READ, inputf, filefmt, p, memtype ); if (rc < 0) { fprintf(stderr, "%s: terminating\n", progname); exitrc = 1; goto main_exit; } size = rc; /* * write the buffer contents to the selected memory type */ fprintf(stderr, "%s: writing %s:\n", progname, memtypestr(memtype)); if (!nowrite) { rc = avr_write ( fd, p, memtype ); } else { /* * test mode, don't actually write to the chip, output the buffer * to stdout in intel hex instead */ rc = fileio(FIO_WRITE, "-", FMT_IHEX, p, memtype); } if (rc) { fprintf ( stderr, "%s: failed to write flash memory, rc=%d\n", progname, rc ); exitrc = 1; goto main_exit; } } if (!doread && verify) { /* * verify that the in memory file (p->flash or p->eeprom) is the * same as what is on the chip */ fprintf(stderr, "%s: verifying %s memory against %s:\n", progname, memtypestr(memtype), inputf); fprintf(stderr, "%s: reading on-chip %s data:\n", progname, memtypestr(memtype)); rc = avr_read ( fd, v, memtype ); if (rc) { fprintf(stderr, "%s: failed to read all of %s memory, rc=%d\n", progname, memtypestr(memtype), rc); exitrc = 1; goto main_exit; } fprintf(stderr, "%s: verifying\n", progname); rc = verify_data(p, v, memtype); if (rc) { fprintf(stderr, "%s: verification error; content mismatch\n", progname); exitrc = 1; goto main_exit; } fprintf(stderr, "%s: data verified\n", progname); } main_exit: /* * program complete */ avr_powerdown(fd); ppi_setall(fd, PPIDATA, ppidata); close(fd); fprintf(stderr, "\n%s done. Thank you.\n\n", progname); return exitrc; }