/* * Copyright 2001 Brian S. Dean * All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY BRIAN S. DEAN ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BRIAN S. DEAN BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * */ /* $Id$ */ #include #include #include #include #include "avr.h" #include "config.h" #include "lists.h" #include "pindefs.h" #include "ppi.h" extern char * progname; extern char progbuf[]; extern PROGRAMMER * pgm; char * avr_version = "$Id$"; AVRPART * avr_new_part(void) { AVRPART * p; p = (AVRPART *)malloc(sizeof(AVRPART)); if (p == NULL) { fprintf(stderr, "new_part(): out of memory\n"); exit(1); } memset(p, 0, sizeof(*p)); p->id[0] = 0; p->desc[0] = 0; p->mem = lcreat(NULL, 0); return p; } OPCODE * avr_new_opcode(void) { OPCODE * m; m = (OPCODE *)malloc(sizeof(*m)); if (m == NULL) { fprintf(stderr, "avr_new_opcode(): out of memory\n"); exit(1); } memset(m, 0, sizeof(*m)); return m; } AVRMEM * avr_new_memtype(void) { AVRMEM * m; m = (AVRMEM *)malloc(sizeof(*m)); if (m == NULL) { fprintf(stderr, "avr_new_memtype(): out of memory\n"); exit(1); } memset(m, 0, sizeof(*m)); return m; } AVRMEM * avr_dup_mem(AVRMEM * m) { AVRMEM * n; n = avr_new_memtype(); *n = *m; n->buf = (unsigned char *)malloc(n->size); if (n->buf == NULL) { fprintf(stderr, "avr_dup_mem(): out of memory (memsize=%d)\n", n->size); exit(1); } memset(n->buf, 0, n->size); return n; } AVRPART * avr_dup_part(AVRPART * d) { AVRPART * p; LISTID save; LNODEID ln; p = avr_new_part(); save = p->mem; *p = *d; p->mem = save; for (ln=lfirst(d->mem); ln; ln=lnext(ln)) { ladd(p->mem, avr_dup_mem(ldata(ln))); } return p; } AVRMEM * avr_locate_mem(AVRPART * p, char * desc) { AVRMEM * m, * match; LNODEID ln; int matches; int l; l = strlen(desc); matches = 0; match = NULL; for (ln=lfirst(p->mem); ln; ln=lnext(ln)) { m = ldata(ln); if (strncmp(desc, m->desc, l) == 0) { match = m; matches++; } } if (matches == 1) return match; return NULL; } /* * transmit and receive a bit of data to/from the AVR device */ int avr_txrx_bit(int fd, int bit) { int r; /* * read the result bit (it is either valid from a previous clock * pulse or it is ignored in the current context) */ r = ppi_getpin(fd, pgm->pinno[PIN_AVR_MISO]); /* set the data input line as desired */ ppi_setpin(fd, pgm->pinno[PIN_AVR_MOSI], bit); /* * pulse the clock line, clocking in the MOSI data, and clocking out * the next result bit */ ppi_pulsepin(fd, pgm->pinno[PIN_AVR_SCK]); return r; } /* * transmit and receive a byte of data to/from the AVR device */ unsigned char avr_txrx(int fd, unsigned char byte) { int i; unsigned char r, b, rbyte; rbyte = 0; for (i=0; i<8; i++) { b = (byte >> (7-i)) & 0x01; r = avr_txrx_bit(fd, b); rbyte = rbyte | (r << (7-i)); } return rbyte; } /* * transmit an AVR device command and return the results; 'cmd' and * 'res' must point to at least a 4 byte data buffer */ int avr_cmd(int fd, unsigned char cmd[4], unsigned char res[4]) { int i; for (i=0; i<4; i++) { res[i] = avr_txrx(fd, cmd[i]); } #if 0 fprintf(stderr, "avr_cmd(): [ "); for (i=0; i<4; i++) fprintf(stderr, "%02x ", cmd[i]); fprintf(stderr, "] [ "); for (i=0; i<4; i++) fprintf(stderr, "%02x ", res[i]); fprintf(stderr, "]\n"); #endif return 0; } int avr_set_bits(OPCODE * op, unsigned char * cmd) { int i, j, bit; unsigned char mask; for (i=0; i<32; i++) { if (op->bit[i].type == AVR_CMDBIT_VALUE) { j = 3 - i / 8; bit = i % 8; mask = 1 << bit; if (op->bit[i].value) cmd[j] = cmd[j] | mask; else cmd[j] = cmd[j] & ~mask; } } return 0; } int avr_set_addr(OPCODE * op, unsigned char * cmd, unsigned long addr) { int i, j, bit; unsigned long value; unsigned char mask; for (i=0; i<32; i++) { if (op->bit[i].type == AVR_CMDBIT_ADDRESS) { j = 3 - i / 8; bit = i % 8; mask = 1 << bit; value = addr >> op->bit[i].bitno & 0x01; if (value) cmd[j] = cmd[j] | mask; else cmd[j] = cmd[j] & ~mask; } } return 0; } int avr_set_input(OPCODE * op, unsigned char * cmd, unsigned char data) { int i, j, bit; unsigned char value; unsigned char mask; for (i=0; i<32; i++) { if (op->bit[i].type == AVR_CMDBIT_INPUT) { j = 3 - i / 8; bit = i % 8; mask = 1 << bit; value = data >> op->bit[i].bitno & 0x01; if (value) cmd[j] = cmd[j] | mask; else cmd[j] = cmd[j] & ~mask; } } return 0; } int avr_get_output(OPCODE * op, unsigned char * cmd, unsigned char * data) { int i, j, bit; unsigned char value; unsigned char mask; for (i=0; i<32; i++) { if (op->bit[i].type == AVR_CMDBIT_OUTPUT) { j = 3 - i / 8; bit = i % 8; mask = 1 << bit; value = ((cmd[j] & mask) >> bit) & 0x01; value = value << op->bit[i].bitno; if (value) *data = *data | value; else *data = *data & ~value; } } return 0; } /* * read a byte of data from the indicated memory region */ int avr_read_byte(int fd, AVRPART * p, AVRMEM * mem, unsigned long addr, unsigned char * value) { unsigned char cmd[4]; unsigned char res[4]; unsigned char data; OPCODE * readop; LED_ON(fd, pgm->pinno[PIN_LED_PGM]); LED_OFF(fd, pgm->pinno[PIN_LED_ERR]); if (mem->op[AVR_OP_READ_LO]) { if (addr & 0x00000001) readop = mem->op[AVR_OP_READ_HI]; else readop = mem->op[AVR_OP_READ_LO]; addr = addr / 2; } else { readop = mem->op[AVR_OP_READ]; } if (readop == NULL) { fprintf(stderr, "avr_read_byte(): operation not supported on memory type \"%s\"\n", p->desc); return -1; } memset(cmd, 0, sizeof(cmd)); avr_set_bits(readop, cmd); avr_set_addr(readop, cmd, addr); avr_cmd(fd, cmd, res); data = 0; avr_get_output(readop, res, &data); LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); *value = data; return 0; } /* * Read the entirety of the specified memory type into the * corresponding buffer of the avrpart pointed to by 'p'. If size = * 0, read the entire contents, otherwise, read 'size' bytes. * * Return the number of bytes read, or -1 if an error occurs. */ int avr_read(int fd, AVRPART * p, char * memtype, int size, int verbose) { unsigned char rbyte; unsigned long i; unsigned char * buf; AVRMEM * mem; int rc; mem = avr_locate_mem(p, memtype); if (mem == NULL) { fprintf(stderr, "No \"%s\" memory for part %s\n", memtype, p->desc); return -1; } buf = mem->buf; if (size == 0) { size = mem->size; } for (i=0; iop[AVR_OP_WRITEPAGE]; if (wp == NULL) { fprintf(stderr, "avr_write_page(): memory \"%s\" not configured for page writes\n", mem->desc); return -1; } if (mem->op[AVR_OP_LOADPAGE_LO]) addr = addr / 2; LED_ON(fd, pgm->pinno[PIN_LED_PGM]); LED_OFF(fd, pgm->pinno[PIN_LED_ERR]); memset(cmd, 0, sizeof(cmd)); avr_set_bits(wp, cmd); avr_set_addr(wp, cmd, addr); avr_cmd(fd, cmd, res); /* * since we don't know what voltage the target AVR is powered by, be * conservative and delay the max amount the spec says to wait */ usleep(mem->max_write_delay); LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); return 0; } /* * write a byte of data to the indicated memory region */ int avr_write_byte(int fd, AVRPART * p, AVRMEM * mem, unsigned long addr, unsigned char data) { unsigned char cmd[4]; unsigned char res[4]; unsigned char r; int ready; int tries; unsigned char b; unsigned short caddr; OPCODE * writeop; int rc; if (!mem->paged) { /* * check to see if the write is necessary by reading the existing * value and only write if we are changing the value; we can't * use this optimization for paged addressing. */ rc = avr_read_byte(fd, p, mem, addr, &b); if (rc != 0) return -1; if (b == data) { return 0; } } /* * determine which memory opcode to use */ if (mem->op[AVR_OP_WRITE_LO]) { if (addr & 0x01) writeop = mem->op[AVR_OP_WRITE_HI]; else writeop = mem->op[AVR_OP_WRITE_LO]; caddr = addr / 2; } else if (mem->op[AVR_OP_LOADPAGE_LO]) { if (addr & 0x01) writeop = mem->op[AVR_OP_LOADPAGE_HI]; else writeop = mem->op[AVR_OP_LOADPAGE_LO]; caddr = addr / 2; } else { writeop = mem->op[AVR_OP_WRITE]; caddr = addr; } if (writeop == NULL) { fprintf(stderr, "avr_write_byte(): write not support for memory type \"%s\"\n", mem->desc); return -1; } LED_ON(fd, pgm->pinno[PIN_LED_PGM]); LED_OFF(fd, pgm->pinno[PIN_LED_ERR]); memset(cmd, 0, sizeof(cmd)); avr_set_bits(writeop, cmd); avr_set_addr(writeop, cmd, caddr); avr_set_input(writeop, cmd, data); avr_cmd(fd, cmd, res); if (mem->paged) { /* * in paged addressing, single bytes to written to the memory * page complete immediately, we only need to delay when we commit * the whole page via the avr_write_page() routine. */ LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); return 0; } tries = 0; ready = 0; while (!ready) { usleep(mem->min_write_delay); /* typical write delay */ rc = avr_read_byte(fd, p, mem, addr, &r); if (rc != 0) { return -1; } if ((data == mem->readback[0]) || (data == mem->readback[1])) { /* * use an extra long delay when we happen to be writing values * used for polled data read-back. In this case, polling * doesn't work, and we need to delay the worst case write time * specified for the chip. */ usleep(mem->max_write_delay); rc = avr_read_byte(fd, p, mem, addr, &r); if (rc != 0) { return -1; } } if (r == data) { ready = 1; } tries++; if (!ready && tries > 5) { /* * we couldn't write the data, indicate our displeasure by * returning an error code */ LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); LED_ON(fd, pgm->pinno[PIN_LED_ERR]); return -1; } } LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); return 0; } /* * Write the whole memory region (flash or eeprom, specified by * 'memtype') from the corresponding buffer of the avrpart pointed to * by 'p'. Write up to 'size' bytes from the buffer. Data is only * written if the new data value is different from the existing data * value. Data beyond 'size' bytes is not affected. * * Return the number of bytes written, or -1 if an error occurs. */ int avr_write(int fd, AVRPART * p, char * memtype, int size, int verbose) { int rc; int wsize; unsigned long i; unsigned char data; int werror; AVRMEM * m; m = avr_locate_mem(p, memtype); if (m == NULL) { fprintf(stderr, "No \"%s\" memory for part %s\n", memtype, p->desc); return -1; } LED_OFF(fd, pgm->pinno[PIN_LED_ERR]); werror = 0; wsize = m->size; if (size < wsize) { wsize = size; } else if (size > wsize) { fprintf(stderr, "%s: WARNING: %d bytes requested, but memory region is only %d bytes\n" "%sOnly %d bytes will actually be written\n", progname, size, wsize, progbuf, wsize); } for (i=0; ibuf[i]; if (verbose) { if (i % 16 == 0) fprintf(stderr, " \r%4lu 0x%02x ", i, data); } rc = avr_write_byte(fd, p, m, i, data); if (rc) { fprintf(stderr, " ***failed; "); fprintf(stderr, "\n"); LED_ON(fd, pgm->pinno[PIN_LED_ERR]); werror = 1; } if (m->paged) { if (((i % m->page_size) == m->page_size-1) || (i == wsize-1)) { rc = avr_write_page(fd, p, m, i); if (rc) { fprintf(stderr, " *** page %ld (addresses 0x%04lx - 0x%04lx) failed " "to write\n", i % m->page_size, i - m->page_size + 1, i); fprintf(stderr, "\n"); LED_ON(fd, pgm->pinno[PIN_LED_ERR]); werror = 1; } } } if (werror) { /* * make sure the error led stay on if there was a previous write * error, otherwise it gets cleared in avr_write_byte() */ LED_ON(fd, pgm->pinno[PIN_LED_ERR]); } } fprintf(stderr, "\n"); return i; } /* * issue the 'program enable' command to the AVR device */ int avr_program_enable(int fd, AVRPART * p) { unsigned char cmd[4]; unsigned char res[4]; if (p->op[AVR_OP_PGM_ENABLE] == NULL) { fprintf(stderr, "program enable instruction not defined for part \"%s\"\n", p->desc); return -1; } memset(cmd, 0, sizeof(cmd)); avr_set_bits(p->op[AVR_OP_PGM_ENABLE], cmd); avr_cmd(fd, cmd, res); if (res[2] != cmd[1]) return -2; return 0; } /* * issue the 'chip erase' command to the AVR device */ int avr_chip_erase(int fd, AVRPART * p) { unsigned char cmd[4]; unsigned char res[4]; if (p->op[AVR_OP_CHIP_ERASE] == NULL) { fprintf(stderr, "chip erase instruction not defined for part \"%s\"\n", p->desc); return -1; } LED_ON(fd, pgm->pinno[PIN_LED_PGM]); memset(cmd, 0, sizeof(cmd)); avr_set_bits(p->op[AVR_OP_CHIP_ERASE], cmd); avr_cmd(fd, cmd, res); usleep(p->chip_erase_delay); avr_initialize(fd, p); LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); return 0; } /* * read the AVR device's signature bytes */ int avr_signature(int fd, AVRPART * p) { int rc; rc = avr_read(fd, p, "signature", 0, 0); if (rc < 0) { fprintf(stderr, "%s: error reading signature data for part \"%s\", rc=%d\n", progname, p->desc, rc); return -1; } return 0; } /* * apply power to the AVR processor */ void avr_powerup(int fd) { ppi_set(fd, PPIDATA, PPI_AVR_VCC); /* power up */ usleep(100000); } /* * remove power from the AVR processor */ void avr_powerdown(int fd) { ppi_clr(fd, PPIDATA, PPI_AVR_VCC); /* power down */ } /* * initialize the AVR device and prepare it to accept commands */ int avr_initialize(int fd, AVRPART * p) { int rc; int tries; avr_powerup(fd); ppi_setpin(fd, pgm->pinno[PIN_AVR_SCK], 0); ppi_setpin(fd, pgm->pinno[PIN_AVR_RESET], 0); ppi_pulsepin(fd, pgm->pinno[PIN_AVR_RESET]); usleep(20000); /* 20 ms XXX should be a per-chip parameter */ /* * Enable programming mode. If we are programming an AT90S1200, we * can only issue the command and hope it worked. If we are using * one of the other chips, the chip will echo 0x53 when issuing the * third byte of the command. In this case, try up to 32 times in * order to possibly get back into sync with the chip if we are out * of sync. */ if (strcmp(p->desc, "AT90S1200")==0) { avr_program_enable(fd, p); } else { tries = 0; do { rc = avr_program_enable(fd, p); if (rc == 0) break; ppi_pulsepin(fd, pgm->pinno[PIN_AVR_SCK]); tries++; } while (tries < 32); /* * can't sync with the device, maybe it's not attached? */ if (tries == 32) { fprintf(stderr, "%s: AVR device not responding\n", progname); return -1; } } return 0; } int avr_initmem(AVRPART * p) { LNODEID ln; AVRMEM * m; for (ln=lfirst(p->mem); ln; ln=lnext(ln)) { m = ldata(ln); m->buf = (unsigned char *) malloc(m->size); if (m->buf == NULL) { fprintf(stderr, "%s: can't alloc buffer for %s size of %d bytes\n", progname, m->desc, m->size); return -1; } } return 0; } /* * Verify the memory buffer of p with that of v. The byte range of v, * may be a subset of p. The byte range of p should cover the whole * chip's memory size. * * Return the number of bytes verified, or -1 if they don't match. */ int avr_verify(AVRPART * p, AVRPART * v, char * memtype, int size) { int i; unsigned char * buf1, * buf2; int vsize; AVRMEM * a, * b; a = avr_locate_mem(p, memtype); if (a == NULL) { fprintf(stderr, "avr_verify(): memory type \"%s\" not defined for part %s\n", memtype, p->desc); return -1; } b = avr_locate_mem(v, memtype); if (b == NULL) { fprintf(stderr, "avr_verify(): memory type \"%s\" not defined for part %s\n", memtype, v->desc); return -1; } buf1 = a->buf; buf2 = b->buf; vsize = a->size; if (vsize < size) { fprintf(stderr, "%s: WARNING: requested verification for %d bytes\n" "%s%s memory region only contains %d bytes\n" "%sOnly %d bytes will be verified.\n", progname, size, progbuf, memtype, vsize, progbuf, vsize); size = vsize; } for (i=0; idesc, m->paged ? "yes" : "no", m->size, m->page_size, m->num_pages, m->min_write_delay, m->max_write_delay, m->readback[0], m->readback[1]); } } void avr_display(FILE * f, AVRPART * p, char * prefix) { int i; char * buf; char * px; LNODEID ln; AVRMEM * m; fprintf(f, "%sAVR Part : %s\n" "%sChip Erase delay : %d us\n" "%sMemory Detail :\n\n", prefix, p->desc, prefix, p->chip_erase_delay, prefix); px = prefix; i = strlen(prefix) + 5; buf = (char *)malloc(i); if (buf == NULL) { /* ugh, this is not important enough to bail, just ignore it */ } else { strcpy(buf, prefix); strcat(buf, " "); px = buf; } avr_mem_display(px, f, NULL, 0); for (ln=lfirst(p->mem); ln; ln=lnext(ln)) { m = ldata(ln); avr_mem_display(px, f, m, i); } if (buf) free(buf); }