
8-bit
RISC
Microcontroller

Application
Note

Rev. 1644G–AVR–06/04
AVR109: Self Programming

Features
• C-code sample application for Self Programming
• Read and Write Both Flash and EEPROM Memories
• Read and Write Lock Bits
• Read Fuse Bits
• Designed to work with AVR911 Open Source Programmer
• Compatible with AVRProg
• Protocol optimized for efficient programming

Introduction
This application note describes how an AVR with the Store Program Memory (SPM)
instruction can be configured for Self-programming. The sample application communi-
cates via the UART with a PC running the AVR Open Source Programmer (AVROSP)
from Application note AVR911. This enables Flash and EEPROM programming with-
out the need for an external programmer. The code is also compatible with AVRProg
(only for devices supported by AVRProg).

A Boot Loader program is placed inside the Boot Section of the Flash memory. This
program handles communication with the host PC, and facilitates programming of
both Flash and EEPROM. Once programmed, different levels of protection can be
individually applied to both the boot and application portion of the Flash memory. The
AVR thus offers a unique flexibility, allowing the user extensive degrees of memory
protection.

SPM Explained To get a better understanding of the AVRs’ Self-programming capabilities, the basics of
this feature are explained below.

Memory Organization

The Flash memory is divided into two sections, one Application section and one Boot
Loader section. The Application section contains the main code for the application, while
the Boot Loader section contains the code for the actual Self-programming. The SPM
instruction can only be executed from the Boot Loader section. (Note: The Boot Loader
section can also be used for ordinary application code.)

The Flash memory is divided into pages containing 32, 64, or 128 words each. The
usage of pages is explained later. The entire memory span, both Application and Boot
Loader sections, is divided into pages. For instance, a device with 8 KB of Flash and
page size of 32 words (64 bytes) will therefore have a total of 128 pages. The memory
organization is shown in Figure 1.

Figure 1. Memory Organization

The size of the Boot Loader section can be selected using the two BOOTSZx Fuses.
The fuses select one of four predefined sizes. The BOOTSZx Fuses can be changed
using Serial or Parallel Programming. Refer to the devices' data sheet for details.

If a Boot Loader is implemented, it can be called either directly from the Application code
using calls or jumps, or by programming the BOOTRST Fuse. When the BOOTRST
Fuse is programmed, the CPU will start execution in the Boot Loader section on Reset,
instead of starting at address 0. The BOOTRST Fuse can be changed using Serial or
Parallel Programming.

Read-While-Write
Capabilities

In addition to the selectable division between the application and Boot Loader sections,
the Flash is also divided into two fixed-size sections. The first section is the Read-While-
Write (RWW) section. The second is the No-Read-While-Write (NRWW) section. The
NRWW section size always equals the largest selectable Boot Loader section size, thus
the Boot Loader section occupies all or part of the NRWW section. This is illustrated in
Figure 2.

Application Section

Boot Loader Section

Flash Memory

Page 13

Page 14

Page 15

Page 16

32, 64 or 128
Words
2 AVR109
1644G–AVR–06/04

AVR109
Figure 2. RWW and NRWW Sections

The difference between the sections is that the NRWW section is accessible while
updating the RWW section. It is not possible to access the RWW section when it’s being
updated. When the NRWW is updated (e.g., updating the Boot Loader code itself), the
CPU is halted during the whole operation. In other words, No-Read-While-Writing to the
NRWW section, but possible to Read-While-Writing to the RWW section. Refer to the
devices’ data sheet for details.

This functionality makes it possible to continue execution of critical code while updating
the RWW section. Note that this critical code must be contained within the NRWW sec-
tion (not necessarily in the Boot Loader section). See the section on interrupts below for
more information.

The ATmega163 and ATmega323 devices don’t have NRWW and RWW sections, only
the selectable division into application and Boot Loader sections. Any updates to Flash
memory on these devices halt the CPU during the whole operation.

Using the SPM
Instruction

All Self-programming operations are performed using the SPM instruction. The opera-
tion is selected using the SPMCR Register (SPMCSR in some devices). The register is
organized as shown in Figure 3.

Figure 3. The SPMCR Register

When using the SPM function, the SPMEN bit must always be set within four cycles
prior to executing the SPM instruction. This is to prevent unintentional Flash updates.
The software must ensure that no interrupt routines are called between setting the
SPMEN bit and executing the SPM instruction, thus exceeding the 4-cycle limit. The
other four highlighted bits choose between the different SPM functions. The SPMEN bit
is automatically cleared together with the function bit when the operation is completed.

The SPM functions are described below.

Page Erase All Flash memory updates are done page by page. Before writing new data to a page,
the page must be erased.

RWW Section

NRWW Section

Flash Memory

Boot Loader Alternatives

SPMIE RWWSB - RWWSRE BLBSET PGWRT PGERS SPMEN

Bit 0Bit 7
3
1644G–AVR–06/04

The Z-register is used to select the page to be erased. Set up the Z-register to point to a
byte in the page to be erased. The lower bits selecting the byte within the page are
ignored. For instance, on a device with a page size of 32 words (64 bytes), the lower six
bits of the Z-register are ignored.

To erase a page, set the PGERS and SPMEN bits in the SPMCR Register and execute
the SPM instruction.

Loading Page Buffer To write new data to a page, the Page Buffer must be filled first. The Page Buffer is a
separate (not SRAM) write-only buffer holding one temporary page. This buffer must be
filled word by word. The buffer is copied to Flash memory in one operation.

The Z-register is used to select the word to be written into the buffer. The LSB of Z is
ignored, as an entire word is always written in one operation. Single byte access is thus
not possible. The higher bits of Z selecting the page are ignored when writing to the
Page Buffers. The Z-register bit structure for a 32-word (64-byte) page is shown in Fig-
ure 4. Larger page sizes use more bits for word selection.

Figure 4. Writing to Page Buffer

To write a word to the Page Buffer, load the word into the R1:R0 Registers. Set the Z-
register to point to the correct word and set only the SPMEN bit in the SPMCR Register.
The SPM instruction must then be executed within four cycles.

Page Write When the Page Buffer is loaded with new data, it must be written to Flash memory. To
do this, set up the Z-register the same way as described in the section regarding Page
Erase. Then set the PGWRT and SPMEN bits in the SPMCR Register and execute the
SPM instruction within four cycles. The R1:R0 Register contents are ignored. The use of
the Z-register for 32-word (64-byte) page write is shown in Figure 5.

1

2

29

30

0

31

32-word Page Buffer

B
it

0

Word Select
Z

B
it

1

B
it

5

B
it

6

4 AVR109
1644G–AVR–06/04

AVR109
Figure 5. Writing a Page to Flash

The SPMEN bit can be polled to find out when the CPU is ready for further page
updates. The update procedure can also be interrupt controlled. See the section on
interrupts below for more information.

The RWW Section Busy Flag When performing a Page Erase or Page Write operation on the RWW section, the
RWWSB Flag is set by hardware, indicating that the section is inaccessible. The
RWWSB Flag should be cleared in software when the SPM operation is completed. This
is done by setting the RWWSRE and SPMEN bits in the SPMCR Register, followed by
an SPM instruction within four cycles. Alternatively, the flag is automatically cleared by
starting to load the Page Buffers. The RWWSB Flag can be used by other parts of the
application to check the RWW section’s current accessibility. Refer to the devices’ data
sheet for more details.

Note that the contents of the Z-register and the R1:R0 Registers are ignored when using
the RWWSRE function.

Note that if the RWW section accessed without re-enabling it after an erase or write
operation, all addresses in the RRW section read 0xFFFF. This applies both when read-
ing the Flash using LPM and if performing calls or jumps into the RWW section. The
consequence of performing a jump into the RWW section without enabling it will there-
fore be that the program code “0xFFFF” is executed, eventually leading to that the
program counter “falls” through the code space until it meets the first executable code.
The first executable code would in that case be encountered on the first address of the
NRWW section.

The Boot Lock Bits The application and Boot Loader section can be protected on different levels. There are
four levels of protection for both sections. A short description of the modes follows.

Page 45

Page 46

Page 47

Flash Memory

1

2

29

30

0

31

32-word Page Buffer

B
it

0

Page Select
Z

B
it

1

B
it

5

B
it

6

Table 1. Boot Lock Modes

Mode Bits Description

Mode 1 11 Full read/write access
5
1644G–AVR–06/04

Note that once programmed (cleared), it is impossible to unprogram the bits again with-
out using serial or parallel programming. For instance, to implement an application that
is to be updated once, set Boot Lock mode 1 on the Application section, and mode 4 on
the Boot Loader section. This prevents the application from accessing the Boot Loader,
while giving the Boot Loader full access to update the application section. Once
updated, the Boot Loader would set mode 3 on the Application section, thus blocking all
further access.

To program the Boot Lock bits, load the R0 Register with the correct bits, set the BLB-
SET and SPMEN bits in the SPMCR Register and execute the SPM instruction within
four cycles. The contents of the Z-register are ignored.

Using the LPM instruction instead of the SPM instruction will read the bits.

Interrupt Considerations It is possible to use interrupts while writing to the RWW section, but the software must
prevent any other access to the RWW section. In other words, interrupt service routines
to be executed while updating the RWW section must be placed in the NRWW section,
including the Interrupt Vectors.

Using the IVSEL bit in the GICR Register, the application can be used to implement two
separate Interrupt Vector tables. One in the Application section, and one in the Boot
Loader section to be used when updating the RWW section. This enables the applica-
tion to continue critical processes, e.g., safety monitoring, during Self-programming.
Refer to the devices’ data sheet for more details on interrupts and the IVSEL Flag.

If the secondary Interrupt Vectors are not used, the interrupts must be disabled during
RWW section updates.

The SPM Interrupt On all devices supporting Self-programming, except the ATmega163 and ATmega323
devices, it is possible to control the Flash update operations using interrupts. Setting the
SPMIE bit in the SPMCR Register will enable the SPM ready interrupt. This can be used
to indicate when the current SPM operation is finished.

EEPROM Conflicts Note that all write operations to the EEPROM must be finished before executing the
SPM instruction and vice versa. Write/erase of the Flash and EEPROM cannot occur
simultaneously.

Typical Update
Procedures

Two common update procedures are shown in Figure 6. The flowchart to the left
describes a Read-Modify-Write operation used to update small parts of the Flash, e.g., a
constant string contained in Flash memory. The flowchart to the right describes a Page
Write operation used to write whole pages without reading previous contents, e.g., write
data received from an UART.

Mode 2 10 No write access

Mode 3 00 No write access and no read access (data or interrupt execution) from the
other section.

Mode 4 01 No read access (data or interrupt execution) from the other section.

Table 1. Boot Lock Modes

Mode Bits Description
6 AVR109
1644G–AVR–06/04

AVR109
Figure 6. Typical Update Flowcharts

START

Read Page
Contents Into

SRAM

Read-Modify-Write

Erase Page

Update Data in
SRAM

Write Page

Reenable RWW
Section

END

START

Page Write

Erase Page

Get New Page
Contents, e.g. from

UART

Fill Page Buffers

Fill Page Buffers Write Page

More Pages ?

Reenable RWW
Section

END

Yes

No
7
1644G–AVR–06/04

Boot Loader
Example

The Boot Loader software presented in this application note uses the AVR Open Source Pro-
grammer (AVROSP) as the user interface. The example application implements functions to
read or update the Flash and EEPROM memories on the target device. It is also possible to
read and update the Lock bits and read the Fuse bits of the device.

AVRProg
Compatibility

AVRProg compatibility relies upon device codes, which are not defined for all devices. The
preprocessor.xls file contains the defined device codes, but some are not yet implemented in
the AVRProg executable. In this case, use a code from a device with the same memory sizes.
AVROSP, on the other hand, relies on signature bytes only, and accepts all devices with self-
programming capabilities.

Protocol The protocol used by the Boot Loader program is a subset of the protocol defined for AVR-
Prog. A list of supported commands is shown in Table 2 on page 8. All commands start with a
single letter. The programmer returns 13d (carriage return) or the requested data after the
command is finished. Unknown commands are replied with a “?”.

Table 2. AVRProg Commands

Host Writes Host Reads

ID Data Data

Enter Programming Mode “P” 13d

Auto Increment Address “a” dd

Set Address “A” ah al 13d

Write Program Memory, Low Byte “c” dd 13d

Write Program Memory, High Byte “C” dd 13d

Issue Page Write “m” 13d

Read Lock Bits “‘r” dd

Read Program Memory “R” 2*dd

Read Data Memory “d” dd

Write Data Memory “D” dd 13d

Chip Erase “e” 13d

Write Lock Bits “l” dd 13d

Read Fuse Bits “F” dd

Read High Fuse Bits “N” dd

Read Extended Fuse Bits “Q” dd

Leave Programming Mode “L” 13d

Select Device Type “T” dd 13d

Read Signature Bytes “s” 3*dd

Return Supported Device Codes “t” n*dd 00d

Return Software Identifier “S” s[7]

Return Software Version “V” dd dd

Return Programmer Type “p” dd

Set LED “x” dd 13d
8 AVR109
1644G–AVR–06/04

AVR109
Program
Description

The main program starts by checking if programming is to be done, or if the program in the
Application code section is to be executed. In this application, this is indicated by the value of
PIND. If a user-specified pin on port D is held low during reset, the program will enter Pro-
gramming mode. If this pin is high, program execution starts from address $0000 (as if an
ordinary reset had occurred).

In Programming mode, the program receives commands from AVROSP via the UART. Each
command executes an associated task. Any command not recognized by the boot loader pro-
gram results in a “?” being sent back to AVROSP. For instructions on how to customize the
bootloader for different AVR devices and boot section sizes, refer to the step-by-step instruc-
tions in the preprocessor.xls Microsoft Excel file.

Main.c The main.c program handles communication with the host PC and executes the received com-
mands. Figure 7 shows a flowchart illustrating the operation.

Clear LED “y” dd 13d

Exit Bootloader “E” 13d

Check Block Support “b” “Y” 2*dd

Start Block Flash Load “B” 2*dd “F”
n*dd

13d

Start Block EEPROM Load “B” 2*dd “E”
n*dd

13d

Start Block Flash Read “g” 2*dd “F” n*dd

Start Block EEPROM Read “g” 2*dd “E” n*dd

Table 2. AVRProg Commands (Continued)

Host Writes Host Reads

ID Data Data
9
1644G–AVR–06/04

Figure 7. Main Program Execution(1)

Note: 1. As shown in Figure 7, once the Boot Loader routine is entered, the only way to exit is
through a reset of the device.

Serial.c The UART routine (serial.c) implements simple polled UART routines. As described earlier,
the reason for doing this polled is that interrupts are not permitted in the Boot section for cer-
tain Boot Lock bit settings.

Execute Program
in Application
Code Section.

Start

Init PORTD

PinD,x
Low?

Command
Received?

Valid
Command?

Execute Associated
Task.

Yes

No

No

No
10 AVR109
1644G–AVR–06/04

 Printed on recycled paper.

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use
as critical components in life support devices or systems.

Atmel Corporation Atmel Operations

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

1644G–AVR–06/04

© Atmel Corporation 2004. All rights reserved. Atmel® and combinations thereof, AVR®, and AVR Studio® are the registered trademarks of
Atmel Corporation or its subsidiaries. Microsoft®, Windows®, Windows NT®, and Windows XP® are the registered trademarks of Microsoft Corpo-
ration. Other terms and product names may be the trademarks of others

	Features
	Introduction
	SPM Explained
	Memory Organization
	Read-While-Write Capabilities
	Using the SPM Instruction
	Page Erase
	Loading Page Buffer
	Page Write
	The RWW Section Busy Flag
	The Boot Lock Bits

	Interrupt Considerations
	The SPM Interrupt

	EEPROM Conflicts
	Typical Update Procedures

	Boot Loader Example
	AVRProg Compatibility
	Protocol
	Program Description
	Main.c
	Serial.c

