/* * Copyright 2000 Brian S. Dean * All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY BRIAN S. DEAN ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BRIAN S. DEAN BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * */ /* $Id$ */ #include #include #include #include "avr.h" #include "ppi.h" extern char * progname; extern char progbuf[]; /* Need to add information for 2323, 2343, and 4414 */ struct avrpart parts[] = { { "AT90S1200", "1200", 1024, 64, 0xff, { 0x00, 0xff }, 9000, 20000, 20000, NULL, NULL }, { "AT90S2313", "2313", 2048, 128, 0x7f, { 0x80, 0x7f }, 9000, 20000, 20000, NULL, NULL }, { "AT90S2333", "2333", 2048, 128, 0xff, { 0x00, 0xff }, 9000, 20000, 20000, NULL, NULL }, { "AT90S4433", "4433", 4096, 256, 0xff, { 0x00, 0xff }, 9000, 20000, 20000, NULL, NULL }, { "AT90S4434", "4434", 4096, 256, 0xff, { 0x00, 0xff }, 9000, 20000, 20000, NULL, NULL }, { "AT90S8515", "8515", 8192, 512, 0x7f, { 0x80, 0x7f }, 9000, 20000, 20000, NULL, NULL }, { "AT90S8535", "8535", 8192, 512, 0xff, { 0x00, 0xff }, 9000, 20000, 20000, NULL, NULL }, }; #define N_AVRPARTS (sizeof(parts)/sizeof(struct avrpart)) int avr_list_parts ( FILE * f, char * prefix ) { int i; for (i=0; i> (7-i)) & 0x01; r = avr_txrx_bit ( fd, b ); rbyte = rbyte | (r << (7-i)); } return rbyte; } /* * transmit an AVR device command and return the results; 'cmd' and * 'res' must point to at least a 4 byte data buffer */ int avr_cmd ( int fd, unsigned char cmd[4], unsigned char res[4] ) { int i; for (i=0; i<4; i++) { res[i] = avr_txrx(fd, cmd[i]); } return 0; } /* * read a byte of data from the indicated memory region */ unsigned char avr_read_byte ( int fd, struct avrpart * p, AVRMEM memtype, unsigned short addr ) { unsigned char cmd[4]; unsigned char res[4]; switch (memtype) { case AVR_FLASH_LO: cmd[0] = 0x20; break; case AVR_FLASH_HI: cmd[0] = 0x28; break; case AVR_EEPROM: cmd[0] = 0xa0; break; default: fprintf(stderr, "%s: avr_read_byte(); internal error: invalid memtype=%d\n", progname, memtype); return -1; break; } cmd[1] = addr >> 8; /* high order bits of address */ cmd[2] = addr & 0x0ff; /* low order bits of address */ cmd[3] = 0; /* don't care */ avr_cmd(fd, cmd, res); return res[3]; } /* * Read the entirety of the specified memory type into the * corresponding buffer of the avrpart pointed to by 'p'. * * Return the number of bytes read, or -1 if an error occurs. */ int avr_read ( int fd, struct avrpart * p, AVRMEM memtype ) { unsigned char rbyte, memt; unsigned short n, start, end, i, bi; unsigned char * buf; int bufsize; start = 0; switch (memtype) { case AVR_FLASH : memt = AVR_FLASH_LO; buf = p->flash; n = p->flash_size/2; bufsize = p->flash_size; break; case AVR_EEPROM : memt = memtype; buf = p->eeprom; n = p->eeprom_size; bufsize = p->eeprom_size; break; default: fprintf(stderr, "%s: avr_read(); internal error: invalid memtype=%d\n", progname, memtype); return -1; break; } end = start+n; bi = 0; for (i=start; i> 8; /* high order bits of address */ cmd[2] = addr & 0x0ff; /* low order bits of address */ cmd[3] = data; /* data */ avr_cmd(fd, cmd, res); tries = 0; ready = 0; while (!ready) { usleep(p->min_write_delay); /* typical flash/eeprom write delay */ r = avr_read_byte(fd, p, memtype, addr); if ((data == p->f_readback) || (data == p->e_readback[0]) || (data == p->e_readback[1])) { /* * use an extra long delay when we happen to be writing values * used for polled data read-back. In this case, polling * doesn't work, and we need to delay the worst case write time * specified for the chip. */ usleep(p->max_write_delay); ready = 1; } else if (r == data) { ready = 1; } tries++; if (!ready && tries > 10) { /* * we couldn't write the data, indicate our displeasure by * returning an error code */ return -1; } } return 0; } /* * Write the whole memory region (flash or eeprom, specified by * 'memtype') from the corresponding buffer of the avrpart pointed to * by 'p'. Write up to 'size' bytes from the buffer. Data is only * written if the new data value is different from the existing data * value. Data beyond 'size' bytes is not affected. * * Return the number of bytes written, or -1 if an error occurs. */ int avr_write ( int fd, struct avrpart * p, AVRMEM memtype, int size ) { unsigned char data, memt; unsigned short start, end, i, bi; int nl; int rc; unsigned char * buf; int bufsize; int wsize; start = 0; switch (memtype) { case AVR_FLASH : buf = p->flash; bufsize = p->flash_size; wsize = bufsize; if (size < wsize) { bufsize = size; } end = start+bufsize/2; memt = AVR_FLASH_LO; break; case AVR_EEPROM : buf = p->eeprom; bufsize = p->eeprom_size; wsize = bufsize; if (size < wsize) { bufsize = size; } end = start+bufsize; memt = memtype; break; default: fprintf(stderr, "%s: avr_write(); internal error: invalid memtype=%d\n", progname, memtype); return -1; break; } /* were we asked to write out more data than the device can hold? */ if (wsize < size) { fprintf(stderr, "%s: WARNING: %d bytes requested, but memory region is only %d bytes\n" "%sOnly %d bytes will actually be written\n", progname, size, bufsize, progbuf, bufsize); } bi = 0; for (i=start; ichip_erase_delay); avr_initialize(fd, p); return 0; } /* * read the AVR device's signature bytes */ int avr_signature ( int fd, unsigned char sig[4] ) { unsigned char cmd[4] = {0x30, 0x00, 0x00, 0x00}; unsigned char res[4]; int i; for (i=0; i<4; i++) { cmd[2] = i; avr_cmd(fd, cmd, res); sig[i] = res[3]; } return 0; } /* * apply power to the AVR processor */ void avr_powerup ( int fd ) { ppi_set(fd, PPIDATA, AVR_POWER); /* power up */ usleep(100000); } /* * remove power from the AVR processor */ void avr_powerdown ( int fd ) { ppi_clr(fd, PPIDATA, AVR_POWER); /* power down */ } /* * initialize the AVR device and prepare it to accept commands */ int avr_initialize ( int fd, struct avrpart * p ) { int rc; int tries; avr_powerup(fd); ppi_clr(fd, PPIDATA, AVR_CLOCK); ppi_clr(fd, PPIDATA, AVR_RESET); ppi_pulse(fd, PPIDATA, AVR_RESET); usleep(20000); /* 20 ms XXX should be a per-chip parameter */ /* * Enable programming mode. If we are programming an AT90S1200, we * can only issue the command and hope it worked. If we are using * one of the other chips, the chip will echo 0x53 when issuing the * third byte of the command. In this case, try up to 32 times in * order to possibly get back into sync with the chip if we are out * of sync. */ if (strcmp(p->partdesc, "AT90S1200")==0) { avr_program_enable ( fd ); } else { tries = 0; do { rc = avr_program_enable ( fd ); if (rc == 0) break; ppi_pulse(fd, PPIDATA, AVR_CLOCK); tries++; } while (tries < 32); /* * can't sync with the device, maybe it's not attached? */ if (tries == 32) { fprintf ( stderr, "%s: AVR device not responding\n", progname ); return -1; } } return 0; } char * avr_memtstr ( AVRMEM memtype ) { switch (memtype) { case AVR_EEPROM : return "eeprom"; break; case AVR_FLASH : return "flash"; break; default : return "unknown-memtype"; break; } } int avr_initmem ( struct avrpart * p ) { p->flash = (unsigned char *) malloc(p->flash_size); if (p->flash == NULL) { fprintf(stderr, "%s: can't alloc buffer for flash size of %d bytes\n", progname, p->flash_size); return -1; } p->eeprom = (unsigned char *) malloc(p->eeprom_size); if (p->eeprom == NULL) { fprintf(stderr, "%s: can't alloc buffer for eeprom size of %d bytes\n", progname, p->eeprom_size); return -1; } return 0; } /* * Verify up to 'size' bytes of p against v. Return the number of * bytes verified, or -1 if they don't match. */ int avr_verify(struct avrpart * p, struct avrpart * v, AVRMEM memtype, int size) { int i; unsigned char * buf1, * buf2; int vsize; switch (memtype) { case AVR_FLASH: buf1 = p->flash; buf2 = v->flash; vsize = p->flash_size; break; case AVR_EEPROM: buf1 = p->eeprom; buf2 = v->eeprom; vsize = p->eeprom_size; break; default: fprintf(stderr, "%s: invalid memory type = %d for data verification\n", progname, memtype); return -1; } if (vsize < size) { fprintf(stderr, "%s: WARNING: requested verification for %d bytes\n" "%s%s memory region only contains %d bytes\n" "%sOnly %d bytes will be verified.\n", progname, size, progbuf, avr_memtstr(memtype), vsize, progbuf, vsize); size = vsize; } for (i=0; ipartdesc, prefix, p->flash_size, prefix, p->eeprom_size, prefix, p->min_write_delay, p->max_write_delay, prefix, p->chip_erase_delay, prefix, p->f_readback, prefix, p->e_readback[0], p->e_readback[1]); }