/* * Copyright 2000 Brian S. Dean <bsd@bsdhome.com> * All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY BRIAN S. DEAN ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BRIAN S. DEAN BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * */ /* $Id$ */ #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include "avr.h" #include "pindefs.h" #include "ppi.h" extern char * progname; extern char progbuf[]; char * avr_version = "$Id$"; /* Need to add information for 2323, 2343, and 4414 */ struct avrpart parts[] = { { "AT90S1200", "1200", { 64, 1024 }, 0xff, { 0x00, 0xff }, 9000, 20000, 20000, { NULL, NULL } }, { "AT90S2313", "2313", { 128, 2048 }, 0x7f, { 0x80, 0x7f }, 9000, 20000, 20000, { NULL, NULL } }, { "AT90S2333", "2333", { 128, 2048 }, 0xff, { 0x00, 0xff }, 9000, 20000, 20000, { NULL, NULL } }, { "AT90S4433", "4433", { 256, 4096 }, 0xff, { 0x00, 0xff }, 9000, 20000, 20000, { NULL, NULL } }, { "AT90S4434", "4434", { 256, 4096 }, 0xff, { 0x00, 0xff }, 9000, 20000, 20000, { NULL, NULL } }, { "AT90S8515", "8515", { 512, 8192 }, 0x7f, { 0x80, 0x7f }, 9000, 20000, 20000, { NULL, NULL } }, { "AT90S8535", "8535", { 512, 8192 }, 0xff, { 0x00, 0xff }, 9000, 20000, 20000, { NULL, NULL } }, }; #define N_AVRPARTS (sizeof(parts)/sizeof(struct avrpart)) int avr_list_parts ( FILE * f, char * prefix ) { int i; for (i=0; i<N_AVRPARTS; i++) { fprintf(f, "%s%s = %s\n", prefix, parts[i].optiontag, parts[i].partdesc); } return i; } struct avrpart * avr_find_part ( char * p ) { int i; for (i=0; i<N_AVRPARTS; i++) { if (strcmp(parts[i].optiontag, p)==0) { return &parts[i]; } } return NULL; } /* * transmit and receive a bit of data to/from the AVR device */ int avr_txrx_bit ( int fd, int bit ) { int r; /* * read the result bit (it is either valid from a previous clock * pulse or it is ignored in the current context) */ r = ppi_getpin(fd, PIN_AVR_MISO); /* set the data input line as desired */ ppi_setpin(fd, PIN_AVR_MOSI, bit); /* * pulse the clock line, clocking in the MOSI data, and clocking out * the next result bit */ ppi_pulsepin(fd, PIN_AVR_SCK); return r; } /* * transmit and receive a byte of data to/from the AVR device */ unsigned char avr_txrx ( int fd, unsigned char byte ) { int i; unsigned char r, b, rbyte; rbyte = 0; for (i=0; i<8; i++) { b = (byte >> (7-i)) & 0x01; r = avr_txrx_bit ( fd, b ); rbyte = rbyte | (r << (7-i)); } return rbyte; } /* * transmit an AVR device command and return the results; 'cmd' and * 'res' must point to at least a 4 byte data buffer */ int avr_cmd ( int fd, unsigned char cmd[4], unsigned char res[4] ) { int i; for (i=0; i<4; i++) { res[i] = avr_txrx(fd, cmd[i]); } return 0; } /* * read a byte of data from the indicated memory region */ unsigned char avr_read_byte ( int fd, struct avrpart * p, AVRMEM memtype, unsigned short addr ) { unsigned short offset; unsigned char cmd[4]; unsigned char res[4]; /* order here is very important, AVR_EEPROM, AVR_FLASH, AVR_FLASH+1 */ static unsigned char cmdbyte[3] = { 0xa0, 0x20, 0x28 }; LED_ON(fd, PIN_LED_PGM); offset = 0; if (memtype == AVR_FLASH) { offset = addr & 0x01; addr = addr / 2; } cmd[0] = cmdbyte[memtype + offset]; cmd[1] = addr >> 8; /* high order bits of address */ cmd[2] = addr & 0x0ff; /* low order bits of address */ cmd[3] = 0; /* don't care */ avr_cmd(fd, cmd, res); LED_OFF(fd, PIN_LED_PGM); return res[3]; } /* * Read the entirety of the specified memory type into the * corresponding buffer of the avrpart pointed to by 'p'. * * Return the number of bytes read, or -1 if an error occurs. */ int avr_read ( int fd, struct avrpart * p, AVRMEM memtype ) { unsigned char rbyte; unsigned short i; unsigned char * buf; int size; buf = p->mem[memtype]; size = p->memsize[memtype]; for (i=0; i<size; i++) { rbyte = avr_read_byte(fd, p, memtype, i); fprintf ( stderr, " \r%4u 0x%02x", i, rbyte ); buf[i] = rbyte; } fprintf ( stderr, "\n" ); return i; } /* * write a byte of data to the indicated memory region */ int avr_write_byte ( int fd, struct avrpart * p, AVRMEM memtype, unsigned short addr, unsigned char data ) { unsigned char cmd[4]; unsigned char res[4]; unsigned char r; int ready; int tries; unsigned char b; unsigned short offset; unsigned short caddr; /* order here is very important, AVR_EEPROM, AVR_FLASH, AVR_FLASH+1 */ static unsigned char cmdbyte[3] = { 0xc0, 0x40, 0x48 }; /* * check to see if the write is necessary by reading the existing * value and only write if we are changing the value */ b = avr_read_byte(fd, p, memtype, addr); if (b == data) { return 0; } LED_ON(fd, PIN_LED_PGM); offset = 0; caddr = addr; if (memtype == AVR_FLASH) { offset = addr & 0x01; caddr = addr / 2; } cmd[0] = cmdbyte[memtype + offset]; cmd[1] = caddr >> 8; /* high order bits of address */ cmd[2] = caddr & 0x0ff; /* low order bits of address */ cmd[3] = data; /* data */ avr_cmd(fd, cmd, res); tries = 0; ready = 0; while (!ready) { usleep(p->min_write_delay); /* typical flash/eeprom write delay */ r = avr_read_byte(fd, p, memtype, addr); if ((data == p->f_readback) || (data == p->e_readback[0]) || (data == p->e_readback[1])) { /* * use an extra long delay when we happen to be writing values * used for polled data read-back. In this case, polling * doesn't work, and we need to delay the worst case write time * specified for the chip. */ usleep(p->max_write_delay); ready = 1; } else if (r == data) { ready = 1; } tries++; if (!ready && tries > 10) { /* * we couldn't write the data, indicate our displeasure by * returning an error code */ LED_OFF(fd, PIN_LED_PGM); return -1; } } LED_OFF(fd, PIN_LED_PGM); return 0; } /* * Write the whole memory region (flash or eeprom, specified by * 'memtype') from the corresponding buffer of the avrpart pointed to * by 'p'. Write up to 'size' bytes from the buffer. Data is only * written if the new data value is different from the existing data * value. Data beyond 'size' bytes is not affected. * * Return the number of bytes written, or -1 if an error occurs. */ int avr_write ( int fd, struct avrpart * p, AVRMEM memtype, int size ) { int rc; int wsize; unsigned char * buf; unsigned short i; unsigned char data; LED_OFF(fd, PIN_LED_ERR); buf = p->mem[memtype]; wsize = p->memsize[memtype]; if (size < wsize) { wsize = size; } else if (size > wsize) { fprintf(stderr, "%s: WARNING: %d bytes requested, but memory region is only %d bytes\n" "%sOnly %d bytes will actually be written\n", progname, size, wsize, progbuf, wsize); } for (i=0; i<wsize; i++) { /* eeprom or low byte of flash */ data = buf[i]; rc = avr_write_byte(fd, p, memtype, i, data ); fprintf(stderr, " \r%4u 0x%02x", i, data); if (rc) { fprintf(stderr, " ***failed; "); fprintf(stderr, "\n"); LED_ON(fd, PIN_LED_ERR); } } fprintf ( stderr, "\n" ); return i; } /* * issue the 'program enable' command to the AVR device */ int avr_program_enable ( int fd ) { unsigned char cmd[4] = {0xac, 0x53, 0x00, 0x00}; unsigned char res[4]; avr_cmd(fd, cmd, res); if (res[2] != cmd[1]) return -1; return 0; } /* * issue the 'chip erase' command to the AVR device */ int avr_chip_erase ( int fd, struct avrpart * p ) { unsigned char data[4] = {0xac, 0x80, 0x00, 0x00}; unsigned char res[4]; LED_ON(fd, PIN_LED_PGM); avr_cmd(fd, data, res); usleep(p->chip_erase_delay); avr_initialize(fd, p); LED_OFF(fd, PIN_LED_PGM); return 0; } /* * read the AVR device's signature bytes */ int avr_signature ( int fd, unsigned char sig[4] ) { unsigned char cmd[4] = {0x30, 0x00, 0x00, 0x00}; unsigned char res[4]; int i; for (i=0; i<4; i++) { cmd[2] = i; avr_cmd(fd, cmd, res); sig[i] = res[3]; } return 0; } /* * apply power to the AVR processor */ void avr_powerup ( int fd ) { ppi_set(fd, PPIDATA, PPI_AVR_VCC); /* power up */ usleep(100000); } /* * remove power from the AVR processor */ void avr_powerdown ( int fd ) { ppi_clr(fd, PPIDATA, PPI_AVR_VCC); /* power down */ } /* * initialize the AVR device and prepare it to accept commands */ int avr_initialize ( int fd, struct avrpart * p ) { int rc; int tries; avr_powerup(fd); ppi_setpin(fd, PIN_AVR_SCK, 0); ppi_setpin(fd, PIN_AVR_RESET, 0); ppi_pulsepin(fd, PIN_AVR_RESET); usleep(20000); /* 20 ms XXX should be a per-chip parameter */ /* * Enable programming mode. If we are programming an AT90S1200, we * can only issue the command and hope it worked. If we are using * one of the other chips, the chip will echo 0x53 when issuing the * third byte of the command. In this case, try up to 32 times in * order to possibly get back into sync with the chip if we are out * of sync. */ if (strcmp(p->partdesc, "AT90S1200")==0) { avr_program_enable ( fd ); } else { tries = 0; do { rc = avr_program_enable ( fd ); if (rc == 0) break; ppi_pulsepin(fd, PIN_AVR_SCK); tries++; } while (tries < 32); /* * can't sync with the device, maybe it's not attached? */ if (tries == 32) { fprintf ( stderr, "%s: AVR device not responding\n", progname ); return -1; } } return 0; } char * avr_memtstr ( AVRMEM memtype ) { switch (memtype) { case AVR_EEPROM : return "eeprom"; break; case AVR_FLASH : return "flash"; break; default : return "unknown-memtype"; break; } } int avr_initmem ( struct avrpart * p ) { int i; for (i=0; i<AVR_MAXMEMTYPES; i++) { p->mem[i] = (unsigned char *) malloc(p->memsize[i]); if (p->mem[i] == NULL) { fprintf(stderr, "%s: can't alloc buffer for %s size of %d bytes\n", progname, avr_memtstr(i), p->memsize[i]); return -1; } } return 0; } /* * Verify the memory buffer of p with that of v. The byte range of v, * may be a subset of p. The byte range of p should cover the whole * chip's memory size. * * Return the number of bytes verified, or -1 if they don't match. */ int avr_verify(struct avrpart * p, struct avrpart * v, AVRMEM memtype, int size) { int i; unsigned char * buf1, * buf2; int vsize; buf1 = p->mem[memtype]; buf2 = v->mem[memtype]; vsize = p->memsize[memtype]; if (vsize < size) { fprintf(stderr, "%s: WARNING: requested verification for %d bytes\n" "%s%s memory region only contains %d bytes\n" "%sOnly %d bytes will be verified.\n", progname, size, progbuf, avr_memtstr(memtype), vsize, progbuf, vsize); size = vsize; } for (i=0; i<size; i++) { if (buf1[i] != buf2[i]) { fprintf(stderr, "%s: verification error, first mismatch at byte %d\n" "%s0x%02x != 0x%02x\n", progname, i, progbuf, buf1[i], buf2[i]); return -1; } } return size; } void avr_display ( FILE * f, struct avrpart * p, char * prefix ) { fprintf(f, "%sAVR Part = %s\n" "%sFlash memory size = %d bytes\n" "%sEEPROM memory size = %d bytes\n" "%sMin/Max program delay = %d/%d us\n" "%sChip Erase delay = %d us\n" "%sFlash Polled Readback = 0x%02x\n" "%sEEPROM Polled Readback = 0x%02x, 0x%02x\n", prefix, p->partdesc, prefix, p->memsize[AVR_FLASH], prefix, p->memsize[AVR_EEPROM], prefix, p->min_write_delay, p->max_write_delay, prefix, p->chip_erase_delay, prefix, p->f_readback, prefix, p->e_readback[0], p->e_readback[1]); }