/* * Copyright 2000, 2001, 2002 Brian S. Dean * All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY BRIAN S. DEAN ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BRIAN S. DEAN BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * */ /* $Id$ */ #include #include #include #include #include #include #include "avr.h" #include "pindefs.h" #include "pgm.h" #include "ppi.h" #define SLOW_TOGGLE 0 extern char * progname; extern int do_cycles; struct ppipins_t { int pin; int reg; int bit; int inverted; }; static struct ppipins_t pins[] = { { 1, PPICTRL, 0x01, 1 }, { 2, PPIDATA, 0x01, 0 }, { 3, PPIDATA, 0x02, 0 }, { 4, PPIDATA, 0x04, 0 }, { 5, PPIDATA, 0x08, 0 }, { 6, PPIDATA, 0x10, 0 }, { 7, PPIDATA, 0x20, 0 }, { 8, PPIDATA, 0x40, 0 }, { 9, PPIDATA, 0x80, 0 }, { 10, PPISTATUS, 0x40, 0 }, { 11, PPISTATUS, 0x80, 1 }, { 12, PPISTATUS, 0x20, 0 }, { 13, PPISTATUS, 0x10, 0 }, { 14, PPICTRL, 0x02, 1 }, { 15, PPISTATUS, 0x08, 0 }, { 16, PPICTRL, 0x04, 0 }, { 17, PPICTRL, 0x08, 1 } }; #define NPINS (sizeof(pins)/sizeof(struct ppipins_t)) char * ppi_version = "$Id$"; static char vccpins_buf[64]; char * vccpins_str(unsigned int pmask) { unsigned int mask; int pin; char b2[8]; char * b; b = vccpins_buf; b[0] = 0; for (pin = 2, mask = 1; mask < 0x80; mask = mask << 1, pin++) { if (pmask & mask) { sprintf(b2, "%d", pin); if (b[0] != 0) strcat(b, ","); strcat(b, b2); } } return b; } /* * set 'get' and 'set' appropriately for subsequent passage to ioctl() * to get/set the specified PPI registers. */ int ppi_getops(int reg, unsigned long * get, unsigned long * set) { switch (reg) { case PPIDATA: *set = PPISDATA; *get = PPIGDATA; break; case PPICTRL: *set = PPISCTRL; *get = PPIGCTRL; break; case PPISTATUS: *set = PPISSTATUS; *get = PPIGSTATUS; break; default: fprintf(stderr, "%s: avr_set(): invalid register=%d\n", progname, reg); return -1; break; } return 0; } /* * set the indicated bit of the specified register. */ int ppi_set(int fd, int reg, int bit) { unsigned char v; unsigned long get, set; int rc; rc = ppi_getops(reg, &get, &set); if (rc) return -1; ioctl(fd, get, &v); v |= bit; ioctl(fd, set, &v); return 0; } /* * clear the indicated bit of the specified register. */ int ppi_clr(int fd, int reg, int bit) { unsigned char v; unsigned long get, set; int rc; rc = ppi_getops(reg, &get, &set); if (rc) return -1; ioctl(fd, get, &v); v &= ~bit; ioctl(fd, set, &v); return 0; } /* * get the indicated bit of the specified register. */ int ppi_get(int fd, int reg, int bit) { unsigned char v; unsigned long get, set; int rc; rc = ppi_getops(reg, &get, &set); if (rc) return -1; ioctl(fd, get, &v); v &= bit; return v; /* v == bit */ } /* * toggle the indicated bit of the specified register. */ int ppi_toggle(int fd, int reg, int bit) { unsigned char v; unsigned long get, set; int rc; rc = ppi_getops(reg, &get, &set); if (rc) return -1; ioctl(fd, get, &v); v ^= bit; ioctl(fd, set, &v); return 0; } /* * get all bits of the specified register. */ int ppi_getall(int fd, int reg) { unsigned char v; unsigned long get, set; int rc; rc = ppi_getops(reg, &get, &set); if (rc) return -1; ioctl(fd, get, &v); return (int)v; } /* * set all bits of the specified register to val. */ int ppi_setall(int fd, int reg, int val) { unsigned char v; unsigned long get, set; int rc; rc = ppi_getops(reg, &get, &set); if (rc) return -1; v = val; ioctl(fd, set, &v); return 0; } /* * pulse the indicated bit of the specified register. */ int ppi_pulse(int fd, int reg, int bit) { ppi_toggle(fd, reg, bit); #if SLOW_TOGGLE usleep(1000); #endif ppi_toggle(fd, reg, bit); #if SLOW_TOGGLE usleep(1000); #endif return 0; } int ppi_setpin(int fd, int pin, int value) { if (pin < 1 || pin > 17) return -1; pin--; if (pins[pin].inverted) value = !value; if (value) ppi_set(fd, pins[pin].reg, pins[pin].bit); else ppi_clr(fd, pins[pin].reg, pins[pin].bit); #if SLOW_TOGGLE usleep(1000); #endif return 0; } int ppi_getpin(int fd, int pin) { int value; if (pin < 1 || pin > 17) return -1; pin--; value = ppi_get(fd, pins[pin].reg, pins[pin].bit); if (value) value = 1; if (pins[pin].inverted) value = !value; return value; } int ppi_pulsepin(int fd, int pin) { if (pin < 1 || pin > 17) return -1; pin--; ppi_toggle(fd, pins[pin].reg, pins[pin].bit); #if SLOW_TOGGLE usleep(1000); #endif ppi_toggle(fd, pins[pin].reg, pins[pin].bit); #if SLOW_TOGGLE usleep(1000); #endif return 0; } int ppi_getpinmask(int pin) { if (pin < 1 || pin > 17) return -1; return pins[pin-1].bit; } int ppi_getpinreg(int pin) { if (pin < 1 || pin > 17) return -1; return pins[pin-1].reg; } /* * infinite loop, sensing on the pin that we use to read data out of * the device; this is a debugging aid, you can insert a call to this * function in 'main()' and can use it to determine whether your sense * pin is actually sensing. */ int ppi_sense(int fd) { unsigned int pr; int count; char buf[128]; int i; count = 0; fprintf(stderr, "parallel port data:\n" " 111111111\n" "123456789012345678\n"); buf[17] = 0; pr = 1; do { usleep(1); /* don't be too much of a cpu hog */ for (i=1; i<=17; i++) { buf[i-1] = ppi_getpin(fd, i); if (buf[i-1]) buf[i-1] = '|'; else buf[i-1] = '.'; } fprintf(stderr, "\r \r%s", buf); } while(1); return 0; } /* * transmit and receive a byte of data to/from the AVR device */ unsigned char ppi_txrx(PROGRAMMER * pgm, unsigned char byte) { int i; unsigned char r, b, rbyte; rbyte = 0; for (i=0; i<8; i++) { b = (byte >> (7-i)) & 0x01; /* * read the result bit (it is either valid from a previous clock * pulse or it is ignored in the current context) */ r = ppi_getpin(pgm->fd, pgm->pinno[PIN_AVR_MISO]); /* set the data input line as desired */ ppi_setpin(pgm->fd, pgm->pinno[PIN_AVR_MOSI], b); /* * pulse the clock line, clocking in the MOSI data, and clocking out * the next result bit */ ppi_pulsepin(pgm->fd, pgm->pinno[PIN_AVR_SCK]); rbyte = rbyte | (r << (7-i)); } return rbyte; } int ppi_rdy_led(PROGRAMMER * pgm, int value) { ppi_setpin(pgm->fd, pgm->pinno[PIN_LED_RDY], !value); return 0; } int ppi_err_led(PROGRAMMER * pgm, int value) { ppi_setpin(pgm->fd, pgm->pinno[PIN_LED_ERR], !value); return 0; } int ppi_pgm_led(PROGRAMMER * pgm, int value) { ppi_setpin(pgm->fd, pgm->pinno[PIN_LED_PGM], !value); return 0; } int ppi_vfy_led(PROGRAMMER * pgm, int value) { ppi_setpin(pgm->fd, pgm->pinno[PIN_LED_VFY], !value); return 0; } /* * transmit an AVR device command and return the results; 'cmd' and * 'res' must point to at least a 4 byte data buffer */ int ppi_cmd(PROGRAMMER * pgm, unsigned char cmd[4], unsigned char res[4]) { int i; for (i=0; i<4; i++) { res[i] = ppi_txrx(pgm, cmd[i]); } #if 0 fprintf(stderr, "avr_cmd(): [ "); for (i=0; i<4; i++) fprintf(stderr, "%02x ", cmd[i]); fprintf(stderr, "] [ "); for (i=0; i<4; i++) fprintf(stderr, "%02x ", res[i]); fprintf(stderr, "]\n"); #endif return 0; } /* * issue the 'chip erase' command to the AVR device */ int ppi_chip_erase(PROGRAMMER * pgm, AVRPART * p) { unsigned char cmd[4]; unsigned char res[4]; int cycles; int rc; if (p->op[AVR_OP_CHIP_ERASE] == NULL) { fprintf(stderr, "chip erase instruction not defined for part \"%s\"\n", p->desc); return -1; } rc = avr_get_cycle_count(pgm, p, &cycles); /* * only print out the current cycle count if we aren't going to * display it below */ if (!do_cycles && ((rc >= 0) && (cycles != 0xffffffff))) { fprintf(stderr, "%s: current erase-rewrite cycle count is %d%s\n", progname, cycles, do_cycles ? "" : " (if being tracked)"); } pgm->pgm_led(pgm, ON); memset(cmd, 0, sizeof(cmd)); avr_set_bits(p->op[AVR_OP_CHIP_ERASE], cmd); pgm->cmd(pgm, cmd, res); usleep(p->chip_erase_delay); pgm->initialize(pgm, p); pgm->pgm_led(pgm, OFF); if (do_cycles && (cycles != -1)) { if (cycles == 0x00ffff) { cycles = 0; } cycles++; fprintf(stderr, "%s: erase-rewrite cycle count is now %d\n", progname, cycles); avr_put_cycle_count(pgm, p, cycles); } return 0; } /* * issue the 'program enable' command to the AVR device */ int ppi_program_enable(PROGRAMMER * pgm, AVRPART * p) { unsigned char cmd[4]; unsigned char res[4]; if (p->op[AVR_OP_PGM_ENABLE] == NULL) { fprintf(stderr, "program enable instruction not defined for part \"%s\"\n", p->desc); return -1; } memset(cmd, 0, sizeof(cmd)); avr_set_bits(p->op[AVR_OP_PGM_ENABLE], cmd); pgm->cmd(pgm, cmd, res); if (res[2] != cmd[1]) return -2; return 0; } /* * apply power to the AVR processor */ void ppi_powerup(PROGRAMMER * pgm) { ppi_set(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_VCC]); /* power up */ usleep(100000); } /* * remove power from the AVR processor */ void ppi_powerdown(PROGRAMMER * pgm) { ppi_clr(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_VCC]); /* power down */ } /* * initialize the AVR device and prepare it to accept commands */ int ppi_initialize(PROGRAMMER * pgm, AVRPART * p) { int rc; int tries; pgm->powerup(pgm); usleep(20000); ppi_setpin(pgm->fd, pgm->pinno[PIN_AVR_SCK], 0); ppi_setpin(pgm->fd, pgm->pinno[PIN_AVR_RESET], 0); usleep(20000); ppi_pulsepin(pgm->fd, pgm->pinno[PIN_AVR_RESET]); usleep(20000); /* 20 ms XXX should be a per-chip parameter */ /* * Enable programming mode. If we are programming an AT90S1200, we * can only issue the command and hope it worked. If we are using * one of the other chips, the chip will echo 0x53 when issuing the * third byte of the command. In this case, try up to 32 times in * order to possibly get back into sync with the chip if we are out * of sync. */ if (strcmp(p->desc, "AT90S1200")==0) { pgm->program_enable(pgm, p); } else { tries = 0; do { rc = pgm->program_enable(pgm, p); if ((rc == 0)||(rc == -1)) break; ppi_pulsepin(pgm->fd, pgm->pinno[PIN_AVR_SCK]); tries++; } while (tries < 65); /* * can't sync with the device, maybe it's not attached? */ if (rc) { fprintf(stderr, "%s: AVR device not responding\n", progname); return -1; } } return 0; } int ppi_save(PROGRAMMER * pgm) { int rc; rc = ppi_getall(pgm->fd, PPIDATA); if (rc < 0) { fprintf(stderr, "%s: error reading status of ppi data port\n", progname); return -1; } pgm->ppidata = rc; return 0; } void ppi_restore(PROGRAMMER * pgm) { ppi_setall(pgm->fd, PPIDATA, pgm->ppidata); } void ppi_disable(PROGRAMMER * pgm) { ppi_set(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_BUFF]); } void ppi_enable(PROGRAMMER * pgm) { /* * Prepare to start talking to the connected device - pull reset low * first, delay a few milliseconds, then enable the buffer. This * sequence allows the AVR to be reset before the buffer is enabled * to avoid a short period of time where the AVR may be driving the * programming lines at the same time the programmer tries to. Of * course, if a buffer is being used, then the /RESET line from the * programmer needs to be directly connected to the AVR /RESET line * and not via the buffer chip. */ ppi_setpin(pgm->fd, pgm->pinno[PIN_AVR_RESET], 0); usleep(1); /* * enable the 74367 buffer, if connected; this signal is active low */ ppi_clr(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_BUFF]); } void ppi_open(PROGRAMMER * pgm, char * port) { pgm->fd = open(port, O_RDWR); if (pgm->fd < 0) { fprintf(stderr, "%s: can't open device \"%s\": %s\n\n", progname, port, strerror(errno)); exit(1); } } void ppi_close(PROGRAMMER * pgm) { close(pgm->fd); pgm->fd = -1; } void ppi_display(PROGRAMMER * pgm, char * p) { char vccpins[64]; char buffpins[64]; if (pgm->pinno[PPI_AVR_VCC]) { snprintf(vccpins, sizeof(vccpins), " = pins %s", vccpins_str(pgm->pinno[PPI_AVR_VCC])); } else { strcpy(vccpins, " (not used)"); } if (pgm->pinno[PPI_AVR_BUFF]) { snprintf(buffpins, sizeof(buffpins), " = pins %s", vccpins_str(pgm->pinno[PPI_AVR_BUFF])); } else { strcpy(buffpins, " (not used)"); } fprintf(stderr, "%sProgrammer Pin Configuration: %s (%s)\n", p, (char *)ldata(lfirst(pgm->id)), pgm->desc); fprintf(stderr, "%s VCC = 0x%02x%s\n" "%s BUFF = 0x%02x%s\n" "%s RESET = %d\n" "%s SCK = %d\n" "%s MOSI = %d\n" "%s MISO = %d\n" "%s ERR LED = %d\n" "%s RDY LED = %d\n" "%s PGM LED = %d\n" "%s VFY LED = %d\n", p, pgm->pinno[PPI_AVR_VCC], vccpins, p, pgm->pinno[PPI_AVR_BUFF], buffpins, p, pgm->pinno[PIN_AVR_RESET], p, pgm->pinno[PIN_AVR_SCK], p, pgm->pinno[PIN_AVR_MOSI], p, pgm->pinno[PIN_AVR_MISO], p, pgm->pinno[PIN_LED_ERR], p, pgm->pinno[PIN_LED_RDY], p, pgm->pinno[PIN_LED_PGM], p, pgm->pinno[PIN_LED_VFY]); } void ppi_initpgm(PROGRAMMER * pgm) { strcpy(pgm->type, "PPI"); pgm->rdy_led = ppi_rdy_led; pgm->err_led = ppi_err_led; pgm->pgm_led = ppi_pgm_led; pgm->vfy_led = ppi_vfy_led; pgm->initialize = ppi_initialize; pgm->display = ppi_display; pgm->save = ppi_save; pgm->restore = ppi_restore; pgm->enable = ppi_enable; pgm->disable = ppi_disable; pgm->powerup = ppi_powerup; pgm->powerdown = ppi_powerdown; pgm->program_enable = ppi_program_enable; pgm->chip_erase = ppi_chip_erase; pgm->cmd = ppi_cmd; pgm->open = ppi_open; pgm->close = ppi_close; }