/* * Copyright 2001 Brian S. Dean * All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY BRIAN S. DEAN ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BRIAN S. DEAN BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * */ /* $Id$ */ #include #include #include #include #include "avr.h" #include "config.h" #include "pindefs.h" #include "ppi.h" extern char * progname; extern char progbuf[]; extern PROGRAMMER * pgm; char * avr_version = "$Id$"; /* Need to add information for 2323, 2343, and 4414 */ #if 0 struct avrpart parts[] = { {"AT90S1200", "1200", 20000, {{0, 64, 0, 0, 9000, 20000, {0x00, 0xff }, NULL}, /* eeprom */ {0, 1024, 0, 0, 9000, 20000, {0xff, 0 }, NULL}}}, /* flash */ {"AT90S2313", "2313", 20000, {{0, 128, 0, 0, 9000, 20000, {0x80, 0x7f }, NULL}, /* eeprom */ {0, 2048, 0, 0, 9000, 20000, {0x7f, 0 }, NULL}}}, /* flash */ {"AT90S2333", "2333", 20000, {{0, 128, 0, 0, 9000, 20000, {0x00, 0xff }, NULL}, /* eeprom */ {0, 2048, 0, 0, 9000, 20000, {0xff, 0 }, NULL}}}, /* flash */ {"AT90S4433", "4433", 20000, {{0, 256, 0, 0, 9000, 20000, {0x00, 0xff }, NULL}, /* eeprom */ {0, 4096, 0, 0, 9000, 20000, {0xff, 0 }, NULL}}}, /* flash */ {"AT90S4434", "4434", 20000, {{0, 256, 0, 0, 9000, 20000, {0x00, 0xff }, NULL}, /* eeprom */ {0, 4096, 0, 0, 9000, 20000, {0xff, 0 }, NULL}}}, /* flash */ {"AT90S8515", "8515", 20000, {{0, 512, 0, 0, 9000, 20000, {0x80, 0x7f }, NULL}, /* eeprom */ {0, 8192, 0, 0, 9000, 20000, {0x7f, 0x00 }, NULL}}}, /* flash */ {"AT90S8535", "8535", 20000, {{0, 512, 0, 0, 9000, 20000, {0x00, 0xff }, NULL}, /* eeprom */ {0, 8192, 0, 0, 9000, 20000, {0xff, 0x00 }, NULL}}}, /* flash */ {"ATMEGA103", "103", 56000*2, {{0, 4096, 0, 0, 64000, 69000, {0x80, 0x7f }, NULL}, /* eeprom */ {1, 131072, 256, 512, 22000, 56000, {0xff, 0x00 }, NULL}}}, /* flash */ }; #define N_AVRPARTS (sizeof(parts)/sizeof(struct avrpart)) int avr_list_parts(FILE * f, char * prefix) { int i; for (i=0; iid[0] = 0; p->desc[0] = 0; return p; } AVRPART * avr_dup_part(AVRPART * d) { AVRPART * p; int i; p = (AVRPART *)malloc(sizeof(AVRPART)); if (p == NULL) { fprintf(stderr, "avr_dup_part(): out of memory\n"); exit(1); } *p = *d; for (i=0; imem[i].buf = (unsigned char *)malloc(p->mem[i].size); if (p->mem[i].buf == NULL) { fprintf(stderr, "avr_dup_part(): out of memory (memsize=%d)\n", p->mem[i].size); exit(1); } memset(p->mem[i].buf, 0, p->mem[i].size); } return p; } /* * transmit and receive a bit of data to/from the AVR device */ int avr_txrx_bit(int fd, int bit) { int r; /* * read the result bit (it is either valid from a previous clock * pulse or it is ignored in the current context) */ r = ppi_getpin(fd, pgm->pinno[PIN_AVR_MISO]); /* set the data input line as desired */ ppi_setpin(fd, pgm->pinno[PIN_AVR_MOSI], bit); /* * pulse the clock line, clocking in the MOSI data, and clocking out * the next result bit */ ppi_pulsepin(fd, pgm->pinno[PIN_AVR_SCK]); return r; } /* * transmit and receive a byte of data to/from the AVR device */ unsigned char avr_txrx(int fd, unsigned char byte) { int i; unsigned char r, b, rbyte; rbyte = 0; for (i=0; i<8; i++) { b = (byte >> (7-i)) & 0x01; r = avr_txrx_bit(fd, b); rbyte = rbyte | (r << (7-i)); } return rbyte; } /* * transmit an AVR device command and return the results; 'cmd' and * 'res' must point to at least a 4 byte data buffer */ int avr_cmd(int fd, unsigned char cmd[4], unsigned char res[4]) { int i; for (i=0; i<4; i++) { res[i] = avr_txrx(fd, cmd[i]); } return 0; } /* * read a byte of data from the indicated memory region */ unsigned char avr_read_byte(int fd, AVRPART * p, int memtype, unsigned long addr) { unsigned short offset; unsigned char cmd[4]; unsigned char res[4]; /* order here is very important, AVR_EEPROM, AVR_FLASH, AVR_FLASH+1 */ static unsigned char cmdbyte[3] = { 0xa0, 0x20, 0x28 }; LED_ON(fd, pgm->pinno[PIN_LED_PGM]); LED_OFF(fd, pgm->pinno[PIN_LED_ERR]); offset = 0; if (memtype == AVR_M_FLASH) { offset = addr & 0x01; addr = addr / 2; } cmd[0] = cmdbyte[memtype + offset]; cmd[1] = addr >> 8; /* high order bits of address */ cmd[2] = addr & 0x0ff; /* low order bits of address */ cmd[3] = 0; /* don't care */ avr_cmd(fd, cmd, res); LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); return res[3]; } /* * Read the entirety of the specified memory type into the * corresponding buffer of the avrpart pointed to by 'p'. * * Return the number of bytes read, or -1 if an error occurs. */ int avr_read(int fd, AVRPART * p, int memtype) { unsigned char rbyte; unsigned long i; unsigned char * buf; int size; buf = p->mem[memtype].buf; size = p->mem[memtype].size; for (i=0; ipinno[PIN_LED_PGM]); LED_OFF(fd, pgm->pinno[PIN_LED_ERR]); /* * 'page' indicates which page is being programmed: 0 for the first * page_size block, 1 for the second, up to num_pages-1 for the * last. The MCU actually wants the high-order bits of what would * be the actual address instead, shifted left to the upper most * bits of a 16 bit word. For a 128K flash, the actual address is a * 17 bits. To get the right value to send to the MCU, we want to * shift 'page' left by 16 - the number of bits in the page * address. */ page = page << p->mem[memtype].pageaddr_shift; fprintf(stderr, "page address=%u\n", page); cmd[0] = 0x4c; cmd[1] = page >> 8; /* high order bits of address */ cmd[2] = page & 0x0ff; /* low order bits of address */ cmd[3] = 0; /* these bits are ignored */ avr_cmd(fd, cmd, res); /* * since we don't know what voltage the target AVR is powered by, be * conservative and delay the max amount the spec says to wait */ usleep(p->mem[memtype].max_write_delay); LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); return 0; } /* * write a byte of data to the indicated memory region */ int avr_write_byte(int fd, AVRPART * p, int memtype, unsigned long addr, unsigned char data) { unsigned char cmd[4]; unsigned char res[4]; unsigned char r; int ready; int tries; unsigned char b; unsigned short offset; unsigned short caddr; /* order here is very important, AVR_M_EEPROM, AVR_M_FLASH, AVR_M_FLASH+1 */ static unsigned char cmdbyte[3] = { 0xc0, 0x40, 0x48 }; if (!p->mem[memtype].paged) { /* * check to see if the write is necessary by reading the existing * value and only write if we are changing the value; we can't * use this optimization for paged addressing. */ b = avr_read_byte(fd, p, memtype, addr); if (b == data) { return 0; } } else { addr = addr % p->mem[memtype].page_size; } LED_ON(fd, pgm->pinno[PIN_LED_PGM]); LED_OFF(fd, pgm->pinno[PIN_LED_ERR]); offset = 0; caddr = addr; if (memtype == AVR_M_FLASH) { offset = addr & 0x01; caddr = addr / 2; } cmd[0] = cmdbyte[memtype + offset]; cmd[1] = caddr >> 8; /* high order bits of address */ cmd[2] = caddr & 0x0ff; /* low order bits of address */ cmd[3] = data; /* data */ avr_cmd(fd, cmd, res); if (p->mem[memtype].paged) { /* * in paged addressing, single bytes to written to the memory * page complete immediately, we only need to delay when we commit * the whole page via the avr_write_page() routine. */ LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); return 0; } tries = 0; ready = 0; while (!ready) { usleep(p->mem[memtype].min_write_delay); /* typical write delay */ r = avr_read_byte(fd, p, memtype, addr); if ((data == p->mem[memtype].readback[0]) || (data == p->mem[memtype].readback[1])) { /* * use an extra long delay when we happen to be writing values * used for polled data read-back. In this case, polling * doesn't work, and we need to delay the worst case write time * specified for the chip. */ usleep(p->mem[memtype].max_write_delay); r = avr_read_byte(fd, p, memtype, addr); } if (r == data) { ready = 1; } tries++; if (!ready && tries > 5) { /* * we couldn't write the data, indicate our displeasure by * returning an error code */ LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); LED_ON(fd, pgm->pinno[PIN_LED_ERR]); return -1; } } LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); return 0; } /* * Write the whole memory region (flash or eeprom, specified by * 'memtype') from the corresponding buffer of the avrpart pointed to * by 'p'. Write up to 'size' bytes from the buffer. Data is only * written if the new data value is different from the existing data * value. Data beyond 'size' bytes is not affected. * * Return the number of bytes written, or -1 if an error occurs. */ int avr_write(int fd, AVRPART * p, int memtype, int size) { int rc; int wsize; unsigned long i; unsigned char data; int werror; LED_OFF(fd, pgm->pinno[PIN_LED_ERR]); werror = 0; wsize = p->mem[memtype].size; if (size < wsize) { wsize = size; } else if (size > wsize) { fprintf(stderr, "%s: WARNING: %d bytes requested, but memory region is only %d bytes\n" "%sOnly %d bytes will actually be written\n", progname, size, wsize, progbuf, wsize); } for (i=0; imem[memtype].buf[i]; rc = avr_write_byte(fd, p, memtype, i, data); if (i % 1024 == 0) fprintf(stderr, " \r%4lu 0x%02x", i, data); if (rc) { fprintf(stderr, " ***failed; "); fprintf(stderr, "\n"); LED_ON(fd, pgm->pinno[PIN_LED_ERR]); werror = 1; } if (p->mem[memtype].paged) { if (((i % p->mem[memtype].page_size) == p->mem[memtype].page_size-1) || (i == wsize-1)) { rc = avr_write_page(fd, p, memtype, i/p->mem[memtype].page_size); if (rc) { fprintf(stderr, " *** page %ld (addresses 0x%04lx - 0x%04lx) failed to write\n", i % p->mem[memtype].page_size, i-p->mem[memtype].page_size+1, i); fprintf(stderr, "\n"); LED_ON(fd, pgm->pinno[PIN_LED_ERR]); werror = 1; } } } if (werror) { /* * make sure the error led stay on if there was a previous write * error, otherwise it gets cleared in avr_write_byte() */ LED_ON(fd, pgm->pinno[PIN_LED_ERR]); } } fprintf(stderr, "\n"); return i; } /* * issue the 'program enable' command to the AVR device */ int avr_program_enable(int fd) { unsigned char cmd[4] = {0xac, 0x53, 0x00, 0x00}; unsigned char res[4]; avr_cmd(fd, cmd, res); if (res[2] != cmd[1]) return -1; return 0; } /* * issue the 'chip erase' command to the AVR device */ int avr_chip_erase(int fd, AVRPART * p) { unsigned char data[4] = {0xac, 0x80, 0x00, 0x00}; unsigned char res[4]; LED_ON(fd, pgm->pinno[PIN_LED_PGM]); avr_cmd(fd, data, res); usleep(p->chip_erase_delay); avr_initialize(fd, p); LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); return 0; } /* * read the AVR device's signature bytes */ int avr_signature(int fd, unsigned char sig[4]) { unsigned char cmd[4] = {0x30, 0x00, 0x00, 0x00}; unsigned char res[4]; int i; for (i=0; i<4; i++) { cmd[2] = i; avr_cmd(fd, cmd, res); sig[i] = res[3]; } return 0; } /* * apply power to the AVR processor */ void avr_powerup(int fd) { ppi_set(fd, PPIDATA, PPI_AVR_VCC); /* power up */ usleep(100000); } /* * remove power from the AVR processor */ void avr_powerdown(int fd) { ppi_clr(fd, PPIDATA, PPI_AVR_VCC); /* power down */ } /* * initialize the AVR device and prepare it to accept commands */ int avr_initialize(int fd, AVRPART * p) { int rc; int tries; avr_powerup(fd); ppi_setpin(fd, pgm->pinno[PIN_AVR_SCK], 0); ppi_setpin(fd, pgm->pinno[PIN_AVR_RESET], 0); ppi_pulsepin(fd, pgm->pinno[PIN_AVR_RESET]); usleep(20000); /* 20 ms XXX should be a per-chip parameter */ /* * Enable programming mode. If we are programming an AT90S1200, we * can only issue the command and hope it worked. If we are using * one of the other chips, the chip will echo 0x53 when issuing the * third byte of the command. In this case, try up to 32 times in * order to possibly get back into sync with the chip if we are out * of sync. */ if (strcmp(p->desc, "AT90S1200")==0) { avr_program_enable(fd); } else { tries = 0; do { rc = avr_program_enable(fd); if (rc == 0) break; ppi_pulsepin(fd, pgm->pinno[PIN_AVR_SCK]); tries++; } while (tries < 32); /* * can't sync with the device, maybe it's not attached? */ if (tries == 32) { fprintf(stderr, "%s: AVR device not responding\n", progname); return -1; } } return 0; } char * avr_memtstr(int memtype) { switch (memtype) { case AVR_M_EEPROM : return "eeprom"; break; case AVR_M_FLASH : return "flash"; break; default : return "unknown-memtype"; break; } } int avr_initmem(AVRPART * p) { int i; for (i=0; imem[i].buf = (unsigned char *) malloc(p->mem[i].size); if (p->mem[i].buf == NULL) { fprintf(stderr, "%s: can't alloc buffer for %s size of %d bytes\n", progname, avr_memtstr(i), p->mem[i].size); return -1; } } return 0; } /* * Verify the memory buffer of p with that of v. The byte range of v, * may be a subset of p. The byte range of p should cover the whole * chip's memory size. * * Return the number of bytes verified, or -1 if they don't match. */ int avr_verify(AVRPART * p, AVRPART * v, int memtype, int size) { int i; unsigned char * buf1, * buf2; int vsize; buf1 = p->mem[memtype].buf; buf2 = v->mem[memtype].buf; vsize = p->mem[memtype].size; if (vsize < size) { fprintf(stderr, "%s: WARNING: requested verification for %d bytes\n" "%s%s memory region only contains %d bytes\n" "%sOnly %d bytes will be verified.\n", progname, size, progbuf, avr_memtstr(memtype), vsize, progbuf, vsize); size = vsize; } for (i=0; ipaged ? "yes" : "no", m->size, m->page_size, m->pageaddr_shift, m->num_pages, m->min_write_delay, m->max_write_delay, m->readback[0], m->readback[1]); } } void avr_display(FILE * f, AVRPART * p, char * prefix) { int i; char * buf; char * px; fprintf(f, "%sAVR Part : %s\n" "%sChip Erase delay : %d us\n" "%sMemory Detail :\n\n", prefix, p->desc, prefix, p->chip_erase_delay, prefix); px = prefix; i = strlen(prefix) + 5; buf = (char *)malloc(i); if (buf == NULL) { /* ugh, this is not important enough to bail, just ignore it */ } else { strcpy(buf, prefix); strcat(buf, " "); px = buf; } avr_mem_display(px, f, NULL, 0); for (i=0; imem[i], i); } if (buf) free(buf); }