/* * avrdude - A Downloader/Uploader for AVR device programmers * Copyright (C) 2000, 2001, 2002, 2003 Brian S. Dean <bsd@bsdhome.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* $Id$ */ #include "ac_cfg.h" #include <stdio.h> #include <stdlib.h> #include <string.h> #include <fcntl.h> #include <unistd.h> #include <errno.h> #if defined(__FreeBSD__) #include <dev/ppbus/ppi.h> #elif defined(__linux__) #include "linux_ppdev.h" #endif #include "avr.h" #include "pindefs.h" #include "pgm.h" #include "par.h" #include "ppi.h" #define SLOW_TOGGLE 0 struct ppipins_t { int pin; int reg; int bit; int inverted; }; static struct ppipins_t pins[] = { { 1, PPICTRL, 0x01, 1 }, { 2, PPIDATA, 0x01, 0 }, { 3, PPIDATA, 0x02, 0 }, { 4, PPIDATA, 0x04, 0 }, { 5, PPIDATA, 0x08, 0 }, { 6, PPIDATA, 0x10, 0 }, { 7, PPIDATA, 0x20, 0 }, { 8, PPIDATA, 0x40, 0 }, { 9, PPIDATA, 0x80, 0 }, { 10, PPISTATUS, 0x40, 0 }, { 11, PPISTATUS, 0x80, 1 }, { 12, PPISTATUS, 0x20, 0 }, { 13, PPISTATUS, 0x10, 0 }, { 14, PPICTRL, 0x02, 1 }, { 15, PPISTATUS, 0x08, 0 }, { 16, PPICTRL, 0x04, 0 }, { 17, PPICTRL, 0x08, 1 } }; #define NPINS (sizeof(pins)/sizeof(struct ppipins_t)) extern char * progname; extern int do_cycles; extern int verbose; static int par_setpin (int fd, int pin, int value); static int par_getpin (int fd, int pin); static int par_pulsepin (int fd, int pin); static int par_rdy_led (PROGRAMMER * pgm, int value); static int par_err_led (PROGRAMMER * pgm, int value); static int par_pgm_led (PROGRAMMER * pgm, int value); static int par_vfy_led (PROGRAMMER * pgm, int value); static int par_cmd (PROGRAMMER * pgm, unsigned char cmd[4], unsigned char res[4]); static int par_chip_erase (PROGRAMMER * pgm, AVRPART * p); static int par_program_enable (PROGRAMMER * pgm, AVRPART * p); static void par_powerup (PROGRAMMER * pgm); static void par_powerdown (PROGRAMMER * pgm); static int par_initialize (PROGRAMMER * pgm, AVRPART * p); static int par_save (PROGRAMMER * pgm); static void par_restore (PROGRAMMER * pgm); static void par_disable (PROGRAMMER * pgm); static void par_enable (PROGRAMMER * pgm); static void par_open (PROGRAMMER * pgm, char * port); static void par_close (PROGRAMMER * pgm); static int par_setpin(int fd, int pin, int value) { if (pin < 1 || pin > 17) return -1; pin--; if (pins[pin].inverted) value = !value; if (value) ppi_set(fd, pins[pin].reg, pins[pin].bit); else ppi_clr(fd, pins[pin].reg, pins[pin].bit); #if SLOW_TOGGLE usleep(1000); #endif return 0; } static int par_getpin(int fd, int pin) { int value; if (pin < 1 || pin > 17) return -1; pin--; value = ppi_get(fd, pins[pin].reg, pins[pin].bit); if (value) value = 1; if (pins[pin].inverted) value = !value; return value; } static int par_pulsepin(int fd, int pin) { if (pin < 1 || pin > 17) return -1; pin--; ppi_toggle(fd, pins[pin].reg, pins[pin].bit); #if SLOW_TOGGLE usleep(1000); #endif ppi_toggle(fd, pins[pin].reg, pins[pin].bit); #if SLOW_TOGGLE usleep(1000); #endif return 0; } int par_getpinmask(int pin) { if (pin < 1 || pin > 17) return -1; return pins[pin-1].bit; } static char vccpins_buf[64]; static char * vccpins_str(unsigned int pmask) { unsigned int mask; int pin; char b2[8]; char * b; b = vccpins_buf; b[0] = 0; for (pin = 2, mask = 1; mask < 0x80; mask = mask << 1, pin++) { if (pmask & mask) { sprintf(b2, "%d", pin); if (b[0] != 0) strcat(b, ","); strcat(b, b2); } } return b; } /* * transmit and receive a byte of data to/from the AVR device */ static unsigned char par_txrx(PROGRAMMER * pgm, unsigned char byte) { int i; unsigned char r, b, rbyte; rbyte = 0; for (i=0; i<8; i++) { b = (byte >> (7-i)) & 0x01; /* * read the result bit (it is either valid from a previous clock * pulse or it is ignored in the current context) */ r = par_getpin(pgm->fd, pgm->pinno[PIN_AVR_MISO]); /* set the data input line as desired */ par_setpin(pgm->fd, pgm->pinno[PIN_AVR_MOSI], b); /* * pulse the clock line, clocking in the MOSI data, and clocking out * the next result bit */ par_pulsepin(pgm->fd, pgm->pinno[PIN_AVR_SCK]); rbyte = rbyte | (r << (7-i)); } return rbyte; } static int par_rdy_led(PROGRAMMER * pgm, int value) { par_setpin(pgm->fd, pgm->pinno[PIN_LED_RDY], !value); return 0; } static int par_err_led(PROGRAMMER * pgm, int value) { par_setpin(pgm->fd, pgm->pinno[PIN_LED_ERR], !value); return 0; } static int par_pgm_led(PROGRAMMER * pgm, int value) { par_setpin(pgm->fd, pgm->pinno[PIN_LED_PGM], !value); return 0; } static int par_vfy_led(PROGRAMMER * pgm, int value) { par_setpin(pgm->fd, pgm->pinno[PIN_LED_VFY], !value); return 0; } /* * transmit an AVR device command and return the results; 'cmd' and * 'res' must point to at least a 4 byte data buffer */ static int par_cmd(PROGRAMMER * pgm, unsigned char cmd[4], unsigned char res[4]) { int i; for (i=0; i<4; i++) { res[i] = par_txrx(pgm, cmd[i]); } if(verbose >= 2) { fprintf(stderr, "par_cmd(): [ "); for(i = 0; i < 4; i++) fprintf(stderr, "%02X ", cmd[i]); fprintf(stderr, "] [ "); for(i = 0; i < 4; i++) { fprintf(stderr, "%02X ", res[i]); } fprintf(stderr, "]\n"); } return 0; } /* * issue the 'chip erase' command to the AVR device */ static int par_chip_erase(PROGRAMMER * pgm, AVRPART * p) { unsigned char cmd[4]; unsigned char res[4]; int cycles; int rc; if (p->op[AVR_OP_CHIP_ERASE] == NULL) { fprintf(stderr, "chip erase instruction not defined for part \"%s\"\n", p->desc); return -1; } rc = avr_get_cycle_count(pgm, p, &cycles); /* * only print out the current cycle count if we aren't going to * display it below */ if (!do_cycles && ((rc >= 0) && (cycles != 0xffffffff))) { fprintf(stderr, "%s: current erase-rewrite cycle count is %d%s\n", progname, cycles, do_cycles ? "" : " (if being tracked)"); } pgm->pgm_led(pgm, ON); memset(cmd, 0, sizeof(cmd)); avr_set_bits(p->op[AVR_OP_CHIP_ERASE], cmd); pgm->cmd(pgm, cmd, res); usleep(p->chip_erase_delay); pgm->initialize(pgm, p); pgm->pgm_led(pgm, OFF); if (do_cycles && (cycles != -1)) { if (cycles == 0x00ffff) { cycles = 0; } cycles++; fprintf(stderr, "%s: erase-rewrite cycle count is now %d\n", progname, cycles); avr_put_cycle_count(pgm, p, cycles); } return 0; } /* * issue the 'program enable' command to the AVR device */ static int par_program_enable(PROGRAMMER * pgm, AVRPART * p) { unsigned char cmd[4]; unsigned char res[4]; if (p->op[AVR_OP_PGM_ENABLE] == NULL) { fprintf(stderr, "program enable instruction not defined for part \"%s\"\n", p->desc); return -1; } memset(cmd, 0, sizeof(cmd)); avr_set_bits(p->op[AVR_OP_PGM_ENABLE], cmd); pgm->cmd(pgm, cmd, res); if (res[2] != cmd[1]) return -2; return 0; } /* * apply power to the AVR processor */ static void par_powerup(PROGRAMMER * pgm) { ppi_set(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_VCC]); /* power up */ usleep(100000); } /* * remove power from the AVR processor */ static void par_powerdown(PROGRAMMER * pgm) { ppi_clr(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_VCC]); /* power down */ } /* * initialize the AVR device and prepare it to accept commands */ static int par_initialize(PROGRAMMER * pgm, AVRPART * p) { int rc; int tries; pgm->powerup(pgm); usleep(20000); par_setpin(pgm->fd, pgm->pinno[PIN_AVR_SCK], 0); par_setpin(pgm->fd, pgm->pinno[PIN_AVR_RESET], 0); usleep(20000); par_pulsepin(pgm->fd, pgm->pinno[PIN_AVR_RESET]); usleep(20000); /* 20 ms XXX should be a per-chip parameter */ /* * Enable programming mode. If we are programming an AT90S1200, we * can only issue the command and hope it worked. If we are using * one of the other chips, the chip will echo 0x53 when issuing the * third byte of the command. In this case, try up to 32 times in * order to possibly get back into sync with the chip if we are out * of sync. */ if (strcmp(p->desc, "AT90S1200")==0) { pgm->program_enable(pgm, p); } else { tries = 0; do { rc = pgm->program_enable(pgm, p); if ((rc == 0)||(rc == -1)) break; par_pulsepin(pgm->fd, pgm->pinno[p->retry_pulse/*PIN_AVR_SCK*/]); tries++; } while (tries < 65); /* * can't sync with the device, maybe it's not attached? */ if (rc) { fprintf(stderr, "%s: AVR device not responding\n", progname); return -1; } } return 0; } static int par_save(PROGRAMMER * pgm) { int rc; rc = ppi_getall(pgm->fd, PPIDATA); if (rc < 0) { fprintf(stderr, "%s: error reading status of ppi data port\n", progname); return -1; } pgm->ppidata = rc; return 0; } static void par_restore(PROGRAMMER * pgm) { ppi_setall(pgm->fd, PPIDATA, pgm->ppidata); } static void par_disable(PROGRAMMER * pgm) { ppi_set(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_BUFF]); } static void par_enable(PROGRAMMER * pgm) { /* * Prepare to start talking to the connected device - pull reset low * first, delay a few milliseconds, then enable the buffer. This * sequence allows the AVR to be reset before the buffer is enabled * to avoid a short period of time where the AVR may be driving the * programming lines at the same time the programmer tries to. Of * course, if a buffer is being used, then the /RESET line from the * programmer needs to be directly connected to the AVR /RESET line * and not via the buffer chip. */ par_setpin(pgm->fd, pgm->pinno[PIN_AVR_RESET], 0); usleep(1); /* * enable the 74367 buffer, if connected; this signal is active low */ ppi_clr(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_BUFF]); } static void par_open(PROGRAMMER * pgm, char * port) { pgm->fd = ppi_open(port); if (pgm->fd < 0) { fprintf(stderr, "%s: failed to open parallel port \"%s\"\n\n", progname, port); exit(1); } ppi_claim(pgm); } static void par_close(PROGRAMMER * pgm) { ppi_release(pgm); ppi_close(pgm->fd); pgm->fd = -1; } static void par_display(PROGRAMMER * pgm, char * p) { char vccpins[64]; char buffpins[64]; if (pgm->pinno[PPI_AVR_VCC]) { snprintf(vccpins, sizeof(vccpins), " = pins %s", vccpins_str(pgm->pinno[PPI_AVR_VCC])); } else { strcpy(vccpins, " (not used)"); } if (pgm->pinno[PPI_AVR_BUFF]) { snprintf(buffpins, sizeof(buffpins), " = pins %s", vccpins_str(pgm->pinno[PPI_AVR_BUFF])); } else { strcpy(buffpins, " (not used)"); } fprintf(stderr, "%s VCC = 0x%02x%s\n" "%s BUFF = 0x%02x%s\n" "%s RESET = %d\n" "%s SCK = %d\n" "%s MOSI = %d\n" "%s MISO = %d\n" "%s ERR LED = %d\n" "%s RDY LED = %d\n" "%s PGM LED = %d\n" "%s VFY LED = %d\n", p, pgm->pinno[PPI_AVR_VCC], vccpins, p, pgm->pinno[PPI_AVR_BUFF], buffpins, p, pgm->pinno[PIN_AVR_RESET], p, pgm->pinno[PIN_AVR_SCK], p, pgm->pinno[PIN_AVR_MOSI], p, pgm->pinno[PIN_AVR_MISO], p, pgm->pinno[PIN_LED_ERR], p, pgm->pinno[PIN_LED_RDY], p, pgm->pinno[PIN_LED_PGM], p, pgm->pinno[PIN_LED_VFY]); } void par_initpgm(PROGRAMMER * pgm) { strcpy(pgm->type, "PPI"); pgm->rdy_led = par_rdy_led; pgm->err_led = par_err_led; pgm->pgm_led = par_pgm_led; pgm->vfy_led = par_vfy_led; pgm->initialize = par_initialize; pgm->display = par_display; pgm->save = par_save; pgm->restore = par_restore; pgm->enable = par_enable; pgm->disable = par_disable; pgm->powerup = par_powerup; pgm->powerdown = par_powerdown; pgm->program_enable = par_program_enable; pgm->chip_erase = par_chip_erase; pgm->cmd = par_cmd; pgm->open = par_open; pgm->close = par_close; }