/* * avrdude - A Downloader/Uploader for AVR device programmers * Copyright (C) 2000-2004 Brian S. Dean * Copyright (C) 2006 Joerg Wunsch * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* $Id$ */ %{ #include "ac_cfg.h" #include #include #include #include #include "avrdude.h" #include "libavrdude.h" #include "config.h" #include "developer_opts.h" #if defined(WIN32) #define strtok_r( _s, _sep, _lasts ) \ ( *(_lasts) = strtok( (_s), (_sep) ) ) #endif #define STRINGIFY(x) #x #define TOSTRING(x) STRINGIFY(x) int yylex(void); int yyerror(char * errmsg, ...); int yywarning(char * errmsg, ...); static int clear_pin(int pinfunc); static int assign_pin(int pinfunc, TOKEN *v, int invert); static int assign_pin_list(int invert); static int which_opcode(TOKEN * opcode); static int parse_cmdbits(OPCODE * op, int opnum); static int pin_name; %} %token K_NULL; %token K_READ %token K_WRITE %token K_READ_LO %token K_READ_HI %token K_WRITE_LO %token K_WRITE_HI %token K_LOADPAGE_LO %token K_LOADPAGE_HI %token K_LOAD_EXT_ADDR %token K_WRITEPAGE %token K_CHIP_ERASE %token K_PGM_ENABLE %token K_MEMORY %token K_PAGE_SIZE %token K_PAGED %token K_ALIAS %token K_BAUDRATE %token K_BS2 %token K_BUFF %token K_CHIP_ERASE_DELAY %token K_CONNTYPE %token K_DEDICATED %token K_DEFAULT_BITCLOCK %token K_DEFAULT_PARALLEL %token K_DEFAULT_PROGRAMMER %token K_DEFAULT_SERIAL %token K_DEFAULT_SPI %token K_DESC %token K_FAMILY_ID %token K_HVUPDI_SUPPORT %token K_HVUPDI_VARIANT %token K_DEVICECODE %token K_STK500_DEVCODE %token K_AVR910_DEVCODE %token K_EEPROM %token K_ERRLED %token K_FLASH %token K_ID %token K_IO %token K_LOADPAGE %token K_MAX_WRITE_DELAY %token K_MCU_BASE %token K_MIN_WRITE_DELAY %token K_SDI %token K_SDO %token K_NUM_PAGES %token K_NVM_BASE %token K_OCD_BASE %token K_OCDREV %token K_OFFSET %token K_PAGEL %token K_PARALLEL %token K_PARENT %token K_PART %token K_PGMLED %token K_PROGRAMMER %token K_PSEUDO %token K_PWROFF_AFTER_WRITE %token K_RDYLED %token K_READBACK %token K_READBACK_P1 %token K_READBACK_P2 %token K_READMEM %token K_RESET %token K_RETRY_PULSE %token K_SERIAL %token K_SPI %token K_SCK %token K_SIGNATURE %token K_SIZE %token K_USB %token K_USBDEV %token K_USBSN %token K_USBPID %token K_USBPRODUCT %token K_USBVENDOR %token K_USBVID %token K_TYPE %token K_VCC %token K_VFYLED %token K_NO %token K_YES /* stk500 v2 xml file parameters */ /* ISP */ %token K_TIMEOUT %token K_STABDELAY %token K_CMDEXEDELAY %token K_HVSPCMDEXEDELAY %token K_SYNCHLOOPS %token K_BYTEDELAY %token K_POLLVALUE %token K_POLLINDEX %token K_PREDELAY %token K_POSTDELAY %token K_POLLMETHOD %token K_MODE %token K_DELAY %token K_BLOCKSIZE %token K_READSIZE /* HV mode */ %token K_HVENTERSTABDELAY %token K_PROGMODEDELAY %token K_LATCHCYCLES %token K_TOGGLEVTG %token K_POWEROFFDELAY %token K_RESETDELAYMS %token K_RESETDELAYUS %token K_HVLEAVESTABDELAY %token K_RESETDELAY %token K_SYNCHCYCLES %token K_HVCMDEXEDELAY %token K_CHIPERASEPULSEWIDTH %token K_CHIPERASEPOLLTIMEOUT %token K_CHIPERASETIME %token K_PROGRAMFUSEPULSEWIDTH %token K_PROGRAMFUSEPOLLTIMEOUT %token K_PROGRAMLOCKPULSEWIDTH %token K_PROGRAMLOCKPOLLTIMEOUT %token K_PP_CONTROLSTACK %token K_HVSP_CONTROLSTACK /* JTAG ICE mkII specific parameters */ %token K_ALLOWFULLPAGEBITSTREAM /* * Internal parameter for the JTAG * ICE; describes the internal JTAG * streaming behaviour inside the MCU. * 1 for all older chips, 0 for newer * MCUs. */ %token K_ENABLEPAGEPROGRAMMING /* ? yes for mega256*, mega406 */ %token K_HAS_JTAG /* MCU has JTAG i/f. */ %token K_HAS_DW /* MCU has debugWire i/f. */ %token K_HAS_PDI /* MCU has PDI i/f rather than ISP (ATxmega). */ %token K_HAS_UPDI /* MCU has UPDI i/f (AVR8X). */ %token K_HAS_TPI /* MCU has TPI i/f rather than ISP (ATtiny4/5/9/10). */ %token K_IS_AT90S1200 /* chip is an AT90S1200 (needs special treatment) */ %token K_IS_AVR32 /* chip is in the avr32 family */ %token K_FLASH_INSTR /* flash instructions */ %token K_EEPROM_INSTR /* EEPROM instructions */ %token TKN_COMMA %token TKN_EQUAL %token TKN_SEMI %token TKN_LEFT_PAREN %token TKN_RIGHT_PAREN %token TKN_NUMBER %token TKN_NUMBER_REAL %token TKN_STRING %token TKN_COMPONENT %left OP_OR /* calculator operations */ %left OP_XOR %left OP_AND %left OP_PLUS OP_MINUS %left OP_TIMES OP_DIVIDE OP_MODULO %right OP_TILDE UNARY %start configuration %% number_real : numexpr { $$ = $1; /* convert value to real */ $$->value.number_real = $$->value.number; $$->value.type = V_NUM_REAL; } | TKN_NUMBER_REAL { $$ = $1; } ; expr: numexpr | TKN_STRING; numexpr: TKN_NUMBER | numexpr OP_OR numexpr { $$ = $1; $$->value.number |= $3->value.number; } | numexpr OP_XOR numexpr { $$ = $1; $$->value.number ^= $3->value.number; } | numexpr OP_AND numexpr { $$ = $1; $$->value.number &= $3->value.number; } | numexpr OP_PLUS numexpr { $$ = $1; $$->value.number += $3->value.number; } | numexpr OP_MINUS numexpr { $$ = $1; $$->value.number -= $3->value.number; } | numexpr OP_TIMES numexpr { $$ = $1; $$->value.number *= $3->value.number; } | numexpr OP_DIVIDE numexpr { $$ = $1; $$->value.number /= $3->value.number; } | numexpr OP_MODULO numexpr { $$ = $1; $$->value.number %= $3->value.number; } | OP_PLUS numexpr %prec UNARY { $$ = $2; } | OP_MINUS numexpr %prec UNARY { $$ = $2; $$->value.number = -$$->value.number; } | OP_TILDE numexpr %prec UNARY { $$ = $2; $$->value.number = ~$$->value.number; } | TKN_LEFT_PAREN numexpr TKN_RIGHT_PAREN { $$ = $2; } ; configuration : /* empty */ | config ; config : def | config def ; def : prog_def TKN_SEMI | part_def TKN_SEMI | K_DEFAULT_PROGRAMMER TKN_EQUAL TKN_STRING TKN_SEMI { default_programmer = cache_string($3->value.string); free_token($3); } | K_DEFAULT_PARALLEL TKN_EQUAL TKN_STRING TKN_SEMI { default_parallel = cache_string($3->value.string); free_token($3); } | K_DEFAULT_SERIAL TKN_EQUAL TKN_STRING TKN_SEMI { default_serial = cache_string($3->value.string); free_token($3); } | K_DEFAULT_SPI TKN_EQUAL TKN_STRING TKN_SEMI { default_spi = cache_string($3->value.string); free_token($3); } | K_DEFAULT_BITCLOCK TKN_EQUAL number_real TKN_SEMI { default_bitclock = $3->value.number_real; free_token($3); } ; prog_def : prog_decl prog_parms { PROGRAMMER * existing_prog; char * id; if (lsize(current_prog->id) == 0) { yyerror("required parameter id not specified"); YYABORT; } if (current_prog->initpgm == NULL) { yyerror("programmer type not specified"); YYABORT; } id = ldata(lfirst(current_prog->id)); existing_prog = locate_programmer(programmers, id); if (existing_prog) { { /* temporarily set lineno to lineno of programmer start */ int temp = cfg_lineno; cfg_lineno = current_prog->lineno; yywarning("programmer %s overwrites previous definition %s:%d.", id, existing_prog->config_file, existing_prog->lineno); cfg_lineno = temp; } lrmv_d(programmers, existing_prog); pgm_free(existing_prog); } current_prog->comments = cfg_move_comments(); LISTADD(programmers, current_prog); // pgm_fill_old_pins(current_prog); // TODO to be removed if old pin data no longer needed // pgm_display_generic(current_prog, id); current_prog = NULL; current_strct = COMP_CONFIG_MAIN; } ; prog_decl : K_PROGRAMMER { current_prog = pgm_new(); current_prog->config_file = cache_string(cfg_infile); current_prog->lineno = cfg_lineno; } | K_PROGRAMMER K_PARENT TKN_STRING { PROGRAMMER * pgm = locate_programmer(programmers, $3->value.string); if (pgm == NULL) { yyerror("parent programmer %s not found", $3->value.string); free_token($3); YYABORT; } current_prog = pgm_dup(pgm); current_prog->parent_id = cache_string($3->value.string); current_prog->comments = NULL; current_prog->config_file = cache_string(cfg_infile); current_prog->lineno = cfg_lineno; free_token($3); } ; part_def : part_decl part_parms { LNODEID ln; AVRMEM * m; AVRPART * existing_part; if (current_part->id[0] == 0) { yyerror("required parameter id not specified"); YYABORT; } cfg_update_mcuid(current_part); // Sanity checks for memory sizes and compute/override num_pages entry for (ln=lfirst(current_part->mem); ln; ln=lnext(ln)) { m = ldata(ln); if (m->paged) { if (m->size <= 0) { yyerror("must specify a positive size for paged memory %s", m->desc); YYABORT; } if (m->page_size <= 0) { yyerror("must specify a positive page size for paged memory %s", m->desc); YYABORT; } // Code base relies on page_size being a power of 2 in some places if (m->page_size & (m->page_size - 1)) { yyerror("page size must be a power of 2 for paged memory %s", m->desc); YYABORT; } // Code base relies on size being a multiple of page_size if (m->size % m->page_size) { yyerror("size must be a multiple of page size for paged memory %s", m->desc); YYABORT; } // Warn if num_pages was specified but is inconsistent with size and page size if (m->num_pages && m->num_pages != m->size / m->page_size) yywarning("overriding num_page to be %d for memory %s", m->size/m->page_size, m->desc); m->num_pages = m->size / m->page_size; } } existing_part = locate_part(part_list, current_part->id); if (existing_part) { { /* temporarily set lineno to lineno of part start */ int temp = cfg_lineno; cfg_lineno = current_part->lineno; yywarning("part %s overwrites previous definition %s:%d.", current_part->id, existing_part->config_file, existing_part->lineno); cfg_lineno = temp; } lrmv_d(part_list, existing_part); avr_free_part(existing_part); } current_part->comments = cfg_move_comments(); LISTADD(part_list, current_part); current_part = NULL; current_strct = COMP_CONFIG_MAIN; } ; part_decl : K_PART { current_part = avr_new_part(); current_part->config_file = cache_string(cfg_infile); current_part->lineno = cfg_lineno; } | K_PART K_PARENT TKN_STRING { AVRPART * parent_part = locate_part(part_list, $3->value.string); if (parent_part == NULL) { yyerror("can't find parent part"); free_token($3); YYABORT; } current_part = avr_dup_part(parent_part); current_part->parent_id = cache_string($3->value.string); current_part->comments = NULL; current_part->config_file = cache_string(cfg_infile); current_part->lineno = cfg_lineno; free_token($3); } ; string_list : TKN_STRING { ladd(string_list, $1); } | string_list TKN_COMMA TKN_STRING { ladd(string_list, $3); } ; num_list : numexpr { ladd(number_list, $1); } | num_list TKN_COMMA numexpr { ladd(number_list, $3); } ; prog_parms : prog_parm TKN_SEMI | prog_parms prog_parm TKN_SEMI ; prog_parm : TKN_COMPONENT TKN_EQUAL expr { cfg_assign((char *) current_prog, COMP_PROGRAMMER, $1->value.comp, &$3->value); free_token($1); } | K_ID TKN_EQUAL string_list { { while (lsize(string_list)) { TOKEN *t = lrmv_n(string_list, 1); ladd(current_prog->id, cfg_strdup("config_gram.y", t->value.string)); free_token(t); } } } | prog_parm_type | prog_parm_pins | prog_parm_usb | prog_parm_conntype | K_DESC TKN_EQUAL TKN_STRING { current_prog->desc = cache_string($3->value.string); free_token($3); } | K_BAUDRATE TKN_EQUAL numexpr { { current_prog->baudrate = $3->value.number; free_token($3); } } | prog_parm_updi ; prog_parm_type: K_TYPE TKN_EQUAL prog_parm_type_id ; prog_parm_type_id: TKN_STRING { const struct programmer_type_t * pgm_type = locate_programmer_type($1->value.string); if (pgm_type == NULL) { yyerror("programmer type %s not found", $1->value.string); free_token($1); YYABORT; } current_prog->initpgm = pgm_type->initpgm; free_token($1); } | error { yyerror("programmer type must be written as \"id_type\""); YYABORT; } ; prog_parm_conntype: K_CONNTYPE TKN_EQUAL prog_parm_conntype_id ; prog_parm_conntype_id: K_PARALLEL { current_prog->conntype = CONNTYPE_PARALLEL; } | K_SERIAL { current_prog->conntype = CONNTYPE_SERIAL; } | K_USB { current_prog->conntype = CONNTYPE_USB; } | K_SPI { current_prog->conntype = CONNTYPE_SPI; } ; prog_parm_usb: K_USBDEV TKN_EQUAL TKN_STRING { { current_prog->usbdev = cache_string($3->value.string); free_token($3); } } | K_USBVID TKN_EQUAL numexpr { { current_prog->usbvid = $3->value.number; free_token($3); } } | K_USBPID TKN_EQUAL usb_pid_list | K_USBSN TKN_EQUAL TKN_STRING { { current_prog->usbsn = cache_string($3->value.string); free_token($3); } } | K_USBVENDOR TKN_EQUAL TKN_STRING { { current_prog->usbvendor = cache_string($3->value.string); free_token($3); } } | K_USBPRODUCT TKN_EQUAL TKN_STRING { { current_prog->usbproduct = cache_string($3->value.string); free_token($3); } } ; usb_pid_list: numexpr { { /* overwrite pids, so clear the existing entries */ if(current_prog->usbpid) ldestroy_cb(current_prog->usbpid, free); current_prog->usbpid = lcreat(NULL, 0); } { int *ip = cfg_malloc("usb_pid_list", sizeof(int)); *ip = $1->value.number; ladd(current_prog->usbpid, ip); free_token($1); } } | usb_pid_list TKN_COMMA numexpr { { int *ip = cfg_malloc("usb_pid_list", sizeof(int)); *ip = $3->value.number; ladd(current_prog->usbpid, ip); free_token($3); } } ; prog_parm_updi: K_HVUPDI_SUPPORT TKN_EQUAL hvupdi_support_list ; hvupdi_support_list: numexpr { { /* overwrite list entries, so clear the existing entries */ if(current_prog->hvupdi_support) ldestroy_cb(current_prog->hvupdi_support, free); current_prog->hvupdi_support = lcreat(NULL, 0); } { int *ip = cfg_malloc("hvupdi_support_list", sizeof(int)); *ip = $1->value.number; ladd(current_prog->hvupdi_support, ip); free_token($1); } } | hvupdi_support_list TKN_COMMA numexpr { { int *ip = cfg_malloc("hvupdi_support_list", sizeof(int)); *ip = $3->value.number; ladd(current_prog->hvupdi_support, ip); free_token($3); } } ; pin_number_non_empty: TKN_NUMBER { if(0 != assign_pin(pin_name, $1, 0)) YYABORT; } | OP_TILDE TKN_NUMBER { if(0 != assign_pin(pin_name, $2, 1)) YYABORT; } ; pin_number: pin_number_non_empty | /* empty */ { pin_clear_all(&(current_prog->pin[pin_name])); } ; pin_list_element: pin_number_non_empty | OP_TILDE TKN_LEFT_PAREN num_list TKN_RIGHT_PAREN { if(0 != assign_pin_list(1)) YYABORT; } ; pin_list_non_empty: pin_list_element | pin_list_non_empty TKN_COMMA pin_list_element ; pin_list: pin_list_non_empty | /* empty */ { pin_clear_all(&(current_prog->pin[pin_name])); } ; prog_parm_pins: K_VCC TKN_EQUAL {pin_name = PPI_AVR_VCC; clear_pin(pin_name); } pin_list | K_BUFF TKN_EQUAL {pin_name = PPI_AVR_BUFF; clear_pin(pin_name); } pin_list | K_RESET TKN_EQUAL {pin_name = PIN_AVR_RESET; clear_pin(pin_name);} pin_number { free_token($1); } | K_SCK TKN_EQUAL {pin_name = PIN_AVR_SCK; clear_pin(pin_name); } pin_number { free_token($1); } | K_SDO TKN_EQUAL {pin_name = PIN_AVR_SDO; clear_pin(pin_name); } pin_number | K_SDI TKN_EQUAL {pin_name = PIN_AVR_SDI; clear_pin(pin_name); } pin_number | K_ERRLED TKN_EQUAL {pin_name = PIN_LED_ERR; clear_pin(pin_name); } pin_number | K_RDYLED TKN_EQUAL {pin_name = PIN_LED_RDY; clear_pin(pin_name); } pin_number | K_PGMLED TKN_EQUAL {pin_name = PIN_LED_PGM; clear_pin(pin_name); } pin_number | K_VFYLED TKN_EQUAL {pin_name = PIN_LED_VFY; clear_pin(pin_name); } pin_number ; opcode : K_READ | K_WRITE | K_READ_LO | K_READ_HI | K_WRITE_LO | K_WRITE_HI | K_LOADPAGE_LO | K_LOADPAGE_HI | K_LOAD_EXT_ADDR | K_WRITEPAGE | K_CHIP_ERASE | K_PGM_ENABLE ; part_parms : part_parm TKN_SEMI | part_parms part_parm TKN_SEMI ; reset_disposition : K_DEDICATED | K_IO ; parallel_modes : yesno | K_PSEUDO ; retry_lines : K_RESET | K_SCK ; part_parm : TKN_COMPONENT TKN_EQUAL expr { cfg_assign((char *) current_part, COMP_AVRPART, $1->value.comp, &$3->value); free_token($1); } | K_ID TKN_EQUAL TKN_STRING { current_part->id = cache_string($3->value.string); free_token($3); } | K_DESC TKN_EQUAL TKN_STRING { current_part->desc = cache_string($3->value.string); free_token($3); } | K_FAMILY_ID TKN_EQUAL TKN_STRING { current_part->family_id = cache_string($3->value.string); free_token($3); } | K_HVUPDI_VARIANT TKN_EQUAL numexpr { current_part->hvupdi_variant = $3->value.number; free_token($3); } | K_DEVICECODE TKN_EQUAL numexpr { { yyerror("devicecode is deprecated, use " "stk500_devcode instead"); YYABORT; } } | K_STK500_DEVCODE TKN_EQUAL numexpr { { current_part->stk500_devcode = $3->value.number; free_token($3); } } | K_AVR910_DEVCODE TKN_EQUAL numexpr { { current_part->avr910_devcode = $3->value.number; free_token($3); } } | K_SIGNATURE TKN_EQUAL TKN_NUMBER TKN_NUMBER TKN_NUMBER { { current_part->signature[0] = $3->value.number; current_part->signature[1] = $4->value.number; current_part->signature[2] = $5->value.number; free_token($3); free_token($4); free_token($5); } } | K_USBPID TKN_EQUAL numexpr { { current_part->usbpid = $3->value.number; free_token($3); } } | K_PP_CONTROLSTACK TKN_EQUAL num_list { { TOKEN * t; unsigned nbytes; int ok; current_part->ctl_stack_type = CTL_STACK_PP; nbytes = 0; ok = 1; memset(current_part->controlstack, 0, CTL_STACK_SIZE); while (lsize(number_list)) { t = lrmv_n(number_list, 1); if (nbytes < CTL_STACK_SIZE) { current_part->controlstack[nbytes] = t->value.number; nbytes++; } else { ok = 0; } free_token(t); } if (!ok) { yywarning("too many bytes in control stack"); } } } | K_PP_CONTROLSTACK TKN_EQUAL K_NULL { { current_part->ctl_stack_type = CTL_STACK_NONE; memset(current_part->controlstack, 0, CTL_STACK_SIZE); } } | K_HVSP_CONTROLSTACK TKN_EQUAL num_list { { TOKEN * t; unsigned nbytes; int ok; current_part->ctl_stack_type = CTL_STACK_HVSP; nbytes = 0; ok = 1; memset(current_part->controlstack, 0, CTL_STACK_SIZE); while (lsize(number_list)) { t = lrmv_n(number_list, 1); if (nbytes < CTL_STACK_SIZE) { current_part->controlstack[nbytes] = t->value.number; nbytes++; } else { ok = 0; } free_token(t); } if (!ok) { yywarning("too many bytes in control stack"); } } } | K_HVSP_CONTROLSTACK TKN_EQUAL K_NULL { { current_part->ctl_stack_type = CTL_STACK_NONE; memset(current_part->controlstack, 0, CTL_STACK_SIZE); } } | K_FLASH_INSTR TKN_EQUAL num_list { { TOKEN * t; unsigned nbytes; int ok; nbytes = 0; ok = 1; memset(current_part->flash_instr, 0, FLASH_INSTR_SIZE); while (lsize(number_list)) { t = lrmv_n(number_list, 1); if (nbytes < FLASH_INSTR_SIZE) { current_part->flash_instr[nbytes] = t->value.number; nbytes++; } else { ok = 0; } free_token(t); } if (!ok) { yywarning("too many bytes in flash instructions"); } } } | K_FLASH_INSTR TKN_EQUAL K_NULL { { memset(current_part->flash_instr, 0, FLASH_INSTR_SIZE); } } | K_EEPROM_INSTR TKN_EQUAL num_list { { TOKEN * t; unsigned nbytes; int ok; nbytes = 0; ok = 1; memset(current_part->eeprom_instr, 0, EEPROM_INSTR_SIZE); while (lsize(number_list)) { t = lrmv_n(number_list, 1); if (nbytes < EEPROM_INSTR_SIZE) { current_part->eeprom_instr[nbytes] = t->value.number; nbytes++; } else { ok = 0; } free_token(t); } if (!ok) { yywarning("too many bytes in EEPROM instructions"); } } } | K_EEPROM_INSTR TKN_EQUAL K_NULL { { memset(current_part->eeprom_instr, 0, EEPROM_INSTR_SIZE); } } | K_CHIP_ERASE_DELAY TKN_EQUAL numexpr { current_part->chip_erase_delay = $3->value.number; free_token($3); } | K_PAGEL TKN_EQUAL numexpr { current_part->pagel = $3->value.number; free_token($3); } | K_BS2 TKN_EQUAL numexpr { current_part->bs2 = $3->value.number; free_token($3); } | K_RESET TKN_EQUAL reset_disposition { if ($3->primary == K_DEDICATED) current_part->reset_disposition = RESET_DEDICATED; else if ($3->primary == K_IO) current_part->reset_disposition = RESET_IO; free_tokens(2, $1, $3); } | K_TIMEOUT TKN_EQUAL numexpr { current_part->timeout = $3->value.number; free_token($3); } | K_STABDELAY TKN_EQUAL numexpr { current_part->stabdelay = $3->value.number; free_token($3); } | K_CMDEXEDELAY TKN_EQUAL numexpr { current_part->cmdexedelay = $3->value.number; free_token($3); } | K_HVSPCMDEXEDELAY TKN_EQUAL numexpr { current_part->hvspcmdexedelay = $3->value.number; free_token($3); } | K_SYNCHLOOPS TKN_EQUAL numexpr { current_part->synchloops = $3->value.number; free_token($3); } | K_BYTEDELAY TKN_EQUAL numexpr { current_part->bytedelay = $3->value.number; free_token($3); } | K_POLLVALUE TKN_EQUAL numexpr { current_part->pollvalue = $3->value.number; free_token($3); } | K_POLLINDEX TKN_EQUAL numexpr { current_part->pollindex = $3->value.number; free_token($3); } | K_PREDELAY TKN_EQUAL numexpr { current_part->predelay = $3->value.number; free_token($3); } | K_POSTDELAY TKN_EQUAL numexpr { current_part->postdelay = $3->value.number; free_token($3); } | K_POLLMETHOD TKN_EQUAL numexpr { current_part->pollmethod = $3->value.number; free_token($3); } | K_HVENTERSTABDELAY TKN_EQUAL numexpr { current_part->hventerstabdelay = $3->value.number; free_token($3); } | K_PROGMODEDELAY TKN_EQUAL numexpr { current_part->progmodedelay = $3->value.number; free_token($3); } | K_LATCHCYCLES TKN_EQUAL numexpr { current_part->latchcycles = $3->value.number; free_token($3); } | K_TOGGLEVTG TKN_EQUAL numexpr { current_part->togglevtg = $3->value.number; free_token($3); } | K_POWEROFFDELAY TKN_EQUAL numexpr { current_part->poweroffdelay = $3->value.number; free_token($3); } | K_RESETDELAYMS TKN_EQUAL numexpr { current_part->resetdelayms = $3->value.number; free_token($3); } | K_RESETDELAYUS TKN_EQUAL numexpr { current_part->resetdelayus = $3->value.number; free_token($3); } | K_HVLEAVESTABDELAY TKN_EQUAL numexpr { current_part->hvleavestabdelay = $3->value.number; free_token($3); } | K_RESETDELAY TKN_EQUAL numexpr { current_part->resetdelay = $3->value.number; free_token($3); } | K_CHIPERASEPULSEWIDTH TKN_EQUAL numexpr { current_part->chiperasepulsewidth = $3->value.number; free_token($3); } | K_CHIPERASEPOLLTIMEOUT TKN_EQUAL numexpr { current_part->chiperasepolltimeout = $3->value.number; free_token($3); } | K_CHIPERASETIME TKN_EQUAL numexpr { current_part->chiperasetime = $3->value.number; free_token($3); } | K_PROGRAMFUSEPULSEWIDTH TKN_EQUAL numexpr { current_part->programfusepulsewidth = $3->value.number; free_token($3); } | K_PROGRAMFUSEPOLLTIMEOUT TKN_EQUAL numexpr { current_part->programfusepolltimeout = $3->value.number; free_token($3); } | K_PROGRAMLOCKPULSEWIDTH TKN_EQUAL numexpr { current_part->programlockpulsewidth = $3->value.number; free_token($3); } | K_PROGRAMLOCKPOLLTIMEOUT TKN_EQUAL numexpr { current_part->programlockpolltimeout = $3->value.number; free_token($3); } | K_SYNCHCYCLES TKN_EQUAL numexpr { current_part->synchcycles = $3->value.number; free_token($3); } | K_HAS_JTAG TKN_EQUAL yesno { if ($3->primary == K_YES) current_part->prog_modes |= PM_JTAG; else if ($3->primary == K_NO) current_part->prog_modes &= ~(PM_JTAG | PM_JTAGmkI | PM_XMEGAJTAG | PM_AVR32JTAG); free_token($3); } | K_HAS_DW TKN_EQUAL yesno { if ($3->primary == K_YES) current_part->prog_modes |= PM_debugWIRE; else if ($3->primary == K_NO) current_part->prog_modes &= ~PM_debugWIRE; free_token($3); } | K_HAS_PDI TKN_EQUAL yesno { if ($3->primary == K_YES) current_part->prog_modes |= PM_PDI; else if ($3->primary == K_NO) current_part->prog_modes &= ~PM_PDI; free_token($3); } | K_HAS_UPDI TKN_EQUAL yesno { if ($3->primary == K_YES) current_part->prog_modes |= PM_UPDI; else if ($3->primary == K_NO) current_part->prog_modes &= ~PM_UPDI; free_token($3); } | K_HAS_TPI TKN_EQUAL yesno { if ($3->primary == K_YES) current_part->prog_modes |= PM_TPI; else if ($3->primary == K_NO) current_part->prog_modes &= ~PM_TPI; free_token($3); } | K_IS_AT90S1200 TKN_EQUAL yesno { if ($3->primary == K_YES) current_part->flags |= AVRPART_IS_AT90S1200; else if ($3->primary == K_NO) current_part->flags &= ~AVRPART_IS_AT90S1200; free_token($3); } | K_IS_AVR32 TKN_EQUAL yesno { if ($3->primary == K_YES) current_part->prog_modes |= PM_aWire; else if ($3->primary == K_NO) current_part->prog_modes &= ~PM_aWire; free_token($3); } | K_ALLOWFULLPAGEBITSTREAM TKN_EQUAL yesno { if ($3->primary == K_YES) current_part->flags |= AVRPART_ALLOWFULLPAGEBITSTREAM; else if ($3->primary == K_NO) current_part->flags &= ~AVRPART_ALLOWFULLPAGEBITSTREAM; free_token($3); } | K_ENABLEPAGEPROGRAMMING TKN_EQUAL yesno { if ($3->primary == K_YES) current_part->flags |= AVRPART_ENABLEPAGEPROGRAMMING; else if ($3->primary == K_NO) current_part->flags &= ~AVRPART_ENABLEPAGEPROGRAMMING; free_token($3); } | K_MCU_BASE TKN_EQUAL numexpr { current_part->mcu_base = $3->value.number; free_token($3); } | K_NVM_BASE TKN_EQUAL numexpr { current_part->nvm_base = $3->value.number; free_token($3); } | K_OCD_BASE TKN_EQUAL numexpr { current_part->ocd_base = $3->value.number; free_token($3); } | K_OCDREV TKN_EQUAL numexpr { current_part->ocdrev = $3->value.number; free_token($3); } | K_SERIAL TKN_EQUAL yesno { if ($3->primary == K_YES) current_part->flags |= AVRPART_SERIALOK; else if ($3->primary == K_NO) current_part->flags &= ~AVRPART_SERIALOK; free_token($3); } | K_PARALLEL TKN_EQUAL parallel_modes { if ($3->primary == K_YES) { current_part->flags |= AVRPART_PARALLELOK; current_part->flags &= ~AVRPART_PSEUDOPARALLEL; } else if ($3->primary == K_NO) { current_part->flags &= ~AVRPART_PARALLELOK; current_part->flags &= ~AVRPART_PSEUDOPARALLEL; } else if ($3->primary == K_PSEUDO) { current_part->flags |= AVRPART_PARALLELOK; current_part->flags |= AVRPART_PSEUDOPARALLEL; } free_token($3); } | K_RETRY_PULSE TKN_EQUAL retry_lines { switch ($3->primary) { case K_RESET : current_part->retry_pulse = PIN_AVR_RESET; break; case K_SCK : current_part->retry_pulse = PIN_AVR_SCK; break; } free_token($1); } | K_MEMORY TKN_STRING { /* select memory for extension or create if not there */ AVRMEM *mem = avr_locate_mem_noalias(current_part, $2->value.string); if(!mem) { mem = avr_new_memtype(); mem->desc = cache_string($2->value.string); ladd(current_part->mem, mem); } avr_add_mem_order($2->value.string); current_mem = mem; free_token($2); } mem_specs { if (is_alias) { // alias mem has been already entered lrmv_d(current_part->mem, current_mem); avr_free_mem(current_mem); is_alias = false; } else { // check all opcodes re necessary address bits unsigned char cmd[4] = { 0, 0, 0, 0, }; int bn; for(int i=0; iop[i]) { if((bn = avr_set_addr_mem(current_mem, i, cmd, 0UL)) > 0) yywarning("%s's %s %s misses a necessary address bit a%d", current_part->desc, current_mem->desc, opcodename(i), bn-1); } current_mem->comments = cfg_move_comments(); } cfg_pop_comms(); current_mem = NULL; current_strct = COMP_AVRPART; } | K_MEMORY TKN_STRING TKN_EQUAL K_NULL { AVRMEM *existing_mem = avr_locate_mem_noalias(current_part, $2->value.string); if (existing_mem != NULL) { lrmv_d(current_part->mem, existing_mem); avr_free_mem(existing_mem); } free_token($2); cfg_pop_comms(); current_mem = NULL; current_strct = COMP_AVRPART; } | opcode TKN_EQUAL string_list { { int opnum; OPCODE * op; opnum = which_opcode($1); if (opnum < 0) YYABORT; op = avr_new_opcode(); if(0 != parse_cmdbits(op, opnum)) YYABORT; if (current_part->op[opnum] != NULL) { /*yywarning("operation redefined");*/ avr_free_opcode(current_part->op[opnum]); } current_part->op[opnum] = op; free_token($1); } } | opcode TKN_EQUAL K_NULL { { int opnum = which_opcode($1); if(opnum < 0) YYABORT; if(current_part->op[opnum] != NULL) avr_free_opcode(current_part->op[opnum]); current_part->op[opnum] = NULL; free_token($1); } } ; yesno : K_YES | K_NO ; mem_specs : mem_spec TKN_SEMI | mem_alias TKN_SEMI | mem_specs mem_spec TKN_SEMI ; mem_spec : TKN_COMPONENT TKN_EQUAL expr { cfg_assign((char *) current_mem, COMP_AVRMEM, $1->value.comp, &$3->value); free_token($1); } | K_PAGED TKN_EQUAL yesno { current_mem->paged = $3->primary == K_YES ? 1 : 0; free_token($3); } | K_SIZE TKN_EQUAL numexpr { current_mem->size = $3->value.number; free_token($3); } | K_PAGE_SIZE TKN_EQUAL numexpr { int ps = $3->value.number; if (ps <= 0) pmsg_warning("invalid page size %d, ignored [%s:%d]\n", ps, cfg_infile, cfg_lineno); else current_mem->page_size = ps; free_token($3); } | K_NUM_PAGES TKN_EQUAL numexpr { current_mem->num_pages = $3->value.number; free_token($3); } | K_OFFSET TKN_EQUAL numexpr { current_mem->offset = $3->value.number; free_token($3); } | K_MIN_WRITE_DELAY TKN_EQUAL numexpr { current_mem->min_write_delay = $3->value.number; free_token($3); } | K_MAX_WRITE_DELAY TKN_EQUAL numexpr { current_mem->max_write_delay = $3->value.number; free_token($3); } | K_PWROFF_AFTER_WRITE TKN_EQUAL yesno { current_mem->pwroff_after_write = $3->primary == K_YES ? 1 : 0; free_token($3); } | K_READBACK TKN_EQUAL TKN_NUMBER TKN_NUMBER { current_mem->readback[0] = $3->value.number; current_mem->readback[1] = $4->value.number; free_token($3); free_token($4); } | K_READBACK_P1 TKN_EQUAL numexpr { current_mem->readback[0] = $3->value.number; free_token($3); } | K_READBACK_P2 TKN_EQUAL numexpr { current_mem->readback[1] = $3->value.number; free_token($3); } | K_MODE TKN_EQUAL numexpr { current_mem->mode = $3->value.number; free_token($3); } | K_DELAY TKN_EQUAL numexpr { current_mem->delay = $3->value.number; free_token($3); } | K_BLOCKSIZE TKN_EQUAL numexpr { current_mem->blocksize = $3->value.number; free_token($3); } | K_READSIZE TKN_EQUAL numexpr { current_mem->readsize = $3->value.number; free_token($3); } | K_POLLINDEX TKN_EQUAL numexpr { current_mem->pollindex = $3->value.number; free_token($3); } | opcode TKN_EQUAL string_list { { int opnum; OPCODE * op; opnum = which_opcode($1); if (opnum < 0) YYABORT; op = avr_new_opcode(); if(0 != parse_cmdbits(op, opnum)) YYABORT; if (current_mem->op[opnum] != NULL) { /*yywarning("operation redefined");*/ avr_free_opcode(current_mem->op[opnum]); } current_mem->op[opnum] = op; free_token($1); } } | opcode TKN_EQUAL K_NULL { { int opnum = which_opcode($1); if(opnum < 0) YYABORT; if(current_mem->op[opnum] != NULL) avr_free_opcode(current_mem->op[opnum]); current_mem->op[opnum] = NULL; free_token($1); } } ; mem_alias : K_ALIAS TKN_STRING { AVRMEM * existing_mem; existing_mem = avr_locate_mem(current_part, $2->value.string); if (existing_mem == NULL) { yyerror("%s alias to non-existent memory %s", current_mem->desc, $2->value.string); free_token($2); YYABORT; } // if this alias does already exist, drop the old one AVRMEM_ALIAS * alias = avr_locate_memalias(current_part, current_mem->desc); if (alias) { lrmv_d(current_part->mem_alias, alias); avr_free_memalias(alias); } is_alias = true; alias = avr_new_memalias(); alias->desc = current_mem->desc; alias->aliased_mem = existing_mem; ladd(current_part->mem_alias, alias); free_token($2); } ; %% #if 0 static char * vtypestr(int type) { switch (type) { case V_NUM : return "INTEGER"; case V_NUM_REAL: return "REAL"; case V_STR : return "STRING"; default: return ""; } } #endif static int clear_pin(int pinfunc) { if(pinfunc < 0 || pinfunc >= N_PINS) { yyerror("pin function must be in the range [0, %d]", N_PINS-1); return -1; } pin_clear_all(&(current_prog->pin[pinfunc])); return 0; } static int assign_pin(int pinfunc, TOKEN *v, int invert) { if(pinfunc < 0 || pinfunc >= N_PINS) { yyerror("pin function must be in the range [0, %d]", N_PINS-1); return -1; } int value = v->value.number; free_token(v); if ((value < PIN_MIN) || (value > PIN_MAX)) { yyerror("pin must be in the range " TOSTRING(PIN_MIN) "-" TOSTRING(PIN_MAX)); return -1; } pin_set_value(&(current_prog->pin[pinfunc]), value, invert); return 0; } static int assign_pin_list(int invert) { TOKEN * t; int pin; int rv = 0; if(pin_name < 0 || pin_name >= N_PINS) { yyerror("pin_name should be in the range [0, %d]", N_PINS-1); return -1; } current_prog->pinno[pin_name] = NO_PIN; while (lsize(number_list)) { t = lrmv_n(number_list, 1); if (rv == 0) { pin = t->value.number; if ((pin < PIN_MIN) || (pin > PIN_MAX)) { yyerror("pin must be in the range " TOSTRING(PIN_MIN) "-" TOSTRING(PIN_MAX)); rv = -1; /* loop clears list and frees tokens */ } pin_set_value(&(current_prog->pin[pin_name]), pin, invert); } free_token(t); } return rv; } static int which_opcode(TOKEN * opcode) { switch (opcode->primary) { case K_READ : return AVR_OP_READ; break; case K_WRITE : return AVR_OP_WRITE; break; case K_READ_LO : return AVR_OP_READ_LO; break; case K_READ_HI : return AVR_OP_READ_HI; break; case K_WRITE_LO : return AVR_OP_WRITE_LO; break; case K_WRITE_HI : return AVR_OP_WRITE_HI; break; case K_LOADPAGE_LO : return AVR_OP_LOADPAGE_LO; break; case K_LOADPAGE_HI : return AVR_OP_LOADPAGE_HI; break; case K_LOAD_EXT_ADDR : return AVR_OP_LOAD_EXT_ADDR; break; case K_WRITEPAGE : return AVR_OP_WRITEPAGE; break; case K_CHIP_ERASE : return AVR_OP_CHIP_ERASE; break; case K_PGM_ENABLE : return AVR_OP_PGM_ENABLE; break; default : yyerror("invalid opcode"); return -1; break; } } static int parse_cmdbits(OPCODE * op, int opnum) { TOKEN *t; int bitno; int len; char *s, *brkt = NULL; int rv = 0; bitno = 32; while (lsize(string_list)) { t = lrmv_n(string_list, 1); char *str = t->value.string; // Compact alternative specification? (eg, "0100.0000--000x.xxxx--xxaa.aaaa--iiii.iiii") char bit[2] = {0, 0}, *cc = str; int compact = !strchr(str, ' ') && strlen(str) > 7; bit[0] = *cc++; s = !compact? strtok_r(str, " ", &brkt): *bit? bit: NULL; while (rv == 0 && s != NULL) { // Ignore visual grouping characters in compact mode if(*s != '.' && *s != '-' && *s != '_' && *s !='/') bitno--; if (bitno < 0) { yyerror("too many opcode bits for instruction"); rv = -1; break; } len = strlen(s); if (len == 0) { yyerror("invalid bit specifier \"\""); rv = -1; break; } if (len == 1) { switch (*s) { case '1': op->bit[bitno].type = AVR_CMDBIT_VALUE; op->bit[bitno].value = 1; op->bit[bitno].bitno = bitno % 8; break; case '0': op->bit[bitno].type = AVR_CMDBIT_VALUE; op->bit[bitno].value = 0; op->bit[bitno].bitno = bitno % 8; break; case 'x': op->bit[bitno].type = AVR_CMDBIT_IGNORE; op->bit[bitno].value = 0; op->bit[bitno].bitno = bitno % 8; break; case 'a': op->bit[bitno].type = AVR_CMDBIT_ADDRESS; op->bit[bitno].value = 0; op->bit[bitno].bitno = bitno < 8 || bitno > 23? 0: opnum == AVR_OP_LOAD_EXT_ADDR? bitno+8: bitno-8; /* correct bit number for lone 'a' */ if(bitno < 8 || bitno > 23) yywarning("address bits don't normally appear in Bytes 0 or 3 of SPI commands"); break; case 'i': op->bit[bitno].type = AVR_CMDBIT_INPUT; op->bit[bitno].value = 0; op->bit[bitno].bitno = bitno % 8; break; case 'o': op->bit[bitno].type = AVR_CMDBIT_OUTPUT; op->bit[bitno].value = 0; op->bit[bitno].bitno = bitno % 8; break; case '.': case '-': case '_': case '/': break; default : yyerror("invalid bit specifier '%c'", *s); rv = -1; break; } } else { if (*s == 'a') { int sb, bn; char *e, *q; q = s+1; errno = 0; bn = strtol(q, &e, 0); // address line if (e == q || *e != 0 || errno) { yywarning("can't parse bit number from a%s", q); bn = 0; } sb = opnum == AVR_OP_LOAD_EXT_ADDR? bitno+8: bitno-8; // should be this number if(bitno < 8 || bitno > 23) yywarning("address bits don't normally appear in Bytes 0 or 3 of SPI commands"); else if((bn & 31) != sb) yywarning("a%d would normally be expected to be a%d", bn, sb); else if(bn < 0 || bn > 31) yywarning("invalid address bit a%d, using a%d", bn, bn & 31); op->bit[bitno].bitno = bn & 31; op->bit[bitno].type = AVR_CMDBIT_ADDRESS; op->bit[bitno].value = 0; } else { yyerror("invalid bit specifier %s", s); rv = -1; break; } } bit[0] = *cc++; s = !compact? strtok_r(NULL, " ", &brkt): *bit? bit: NULL; } /* while */ free_token(t); } /* while */ if(bitno > 0) yywarning("too few opcode bits in instruction"); return rv; }