/* * avrdude - A Downloader/Uploader for AVR device programmers * Copyright (C) 2003-2004 Theodore A. Roth <troth@openavr.org> * Copyright 2007 Joerg Wunsch <j@uriah.heep.sax.de> * Copyright 2008 Klaus Leidinger <klaus@mikrocontroller-projekte.de> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* $Id$ */ /* * avrdude interface for Atmel Low Cost Serial programmers which adher to the * protocol described in application note avr910. */ #include "ac_cfg.h" #include <stdio.h> #include <stdlib.h> #include <string.h> #include <errno.h> #include <ctype.h> #include <sys/time.h> #include <unistd.h> #include "avrdude.h" #include "libavrdude.h" #include "avr910.h" /* * Private data for this programmer. */ struct pdata { char has_auto_incr_addr; unsigned char devcode; unsigned int buffersize; unsigned char test_blockmode; unsigned char use_blockmode; }; #define PDATA(pgm) ((struct pdata *)(pgm->cookie)) static void avr910_setup(PROGRAMMER * pgm) { if ((pgm->cookie = malloc(sizeof(struct pdata))) == 0) { avrdude_message(MSG_INFO, "%s: avr910_setup(): Out of memory allocating private data\n", progname); exit(1); } memset(pgm->cookie, 0, sizeof(struct pdata)); PDATA(pgm)->test_blockmode = 1; } static void avr910_teardown(PROGRAMMER * pgm) { free(pgm->cookie); } static int avr910_send(PROGRAMMER * pgm, char * buf, size_t len) { return serial_send(&pgm->fd, (unsigned char *)buf, len); } static int avr910_recv(PROGRAMMER * pgm, char * buf, size_t len) { int rv; rv = serial_recv(&pgm->fd, (unsigned char *)buf, len); if (rv < 0) { avrdude_message(MSG_INFO, "%s: avr910_recv(): programmer is not responding\n", progname); return 1; } return 0; } static int avr910_drain(PROGRAMMER * pgm, int display) { return serial_drain(&pgm->fd, display); } static int avr910_vfy_cmd_sent(PROGRAMMER * pgm, char * errmsg) { char c; avr910_recv(pgm, &c, 1); if (c != '\r') { avrdude_message(MSG_INFO, "%s: error: programmer did not respond to command: %s\n", progname, errmsg); return 1; } return 0; } /* * issue the 'chip erase' command to the AVR device */ static int avr910_chip_erase(PROGRAMMER * pgm, AVRPART * p) { avr910_send(pgm, "e", 1); if (avr910_vfy_cmd_sent(pgm, "chip erase") < 0) return -1; /* * avr910 firmware may not delay long enough */ usleep (p->chip_erase_delay); return 0; } static int avr910_enter_prog_mode(PROGRAMMER * pgm) { avr910_send(pgm, "P", 1); return avr910_vfy_cmd_sent(pgm, "enter prog mode"); } static int avr910_leave_prog_mode(PROGRAMMER * pgm) { avr910_send(pgm, "L", 1); return avr910_vfy_cmd_sent(pgm, "leave prog mode"); } /* * issue the 'program enable' command to the AVR device */ static int avr910_program_enable(PROGRAMMER * pgm, AVRPART * p) { return -1; } /* * initialize the AVR device and prepare it to accept commands */ static int avr910_initialize(PROGRAMMER * pgm, AVRPART * p) { char id[8]; char sw[2]; char hw[2]; char buf[10]; char type; char c; AVRPART * part; /* Get the programmer identifier. Programmer returns exactly 7 chars _without_ the null.*/ avr910_send(pgm, "S", 1); memset (id, 0, sizeof(id)); avr910_recv(pgm, id, sizeof(id)-1); /* Get the HW and SW versions to see if the programmer is present. */ avr910_send(pgm, "V", 1); avr910_recv(pgm, sw, sizeof(sw)); avr910_send(pgm, "v", 1); avr910_recv(pgm, hw, sizeof(hw)); /* Get the programmer type (serial or parallel). Expect serial. */ avr910_send(pgm, "p", 1); avr910_recv(pgm, &type, 1); avrdude_message(MSG_INFO, "Found programmer: Id = \"%s\"; type = %c\n", id, type); avrdude_message(MSG_INFO, " Software Version = %c.%c; ", sw[0], sw[1]); avrdude_message(MSG_INFO, "Hardware Version = %c.%c\n", hw[0], hw[1]); /* See if programmer supports autoincrement of address. */ avr910_send(pgm, "a", 1); avr910_recv(pgm, &PDATA(pgm)->has_auto_incr_addr, 1); if (PDATA(pgm)->has_auto_incr_addr == 'Y') avrdude_message(MSG_INFO, "Programmer supports auto addr increment.\n"); /* Check support for buffered memory access, ignore if not available */ if (PDATA(pgm)->test_blockmode == 1) { avr910_send(pgm, "b", 1); avr910_recv(pgm, &c, 1); if (c == 'Y') { avr910_recv(pgm, &c, 1); PDATA(pgm)->buffersize = (unsigned int)(unsigned char)c<<8; avr910_recv(pgm, &c, 1); PDATA(pgm)->buffersize += (unsigned int)(unsigned char)c; avrdude_message(MSG_INFO, "Programmer supports buffered memory access with " "buffersize = %u bytes.\n", PDATA(pgm)->buffersize); PDATA(pgm)->use_blockmode = 1; } else { PDATA(pgm)->use_blockmode = 0; } } else { PDATA(pgm)->use_blockmode = 0; } if (PDATA(pgm)->devcode == 0) { char devtype_1st; int dev_supported = 0; /* Get list of devices that the programmer supports. */ avr910_send(pgm, "t", 1); avrdude_message(MSG_INFO, "\nProgrammer supports the following devices:\n"); devtype_1st = 0; while (1) { avr910_recv(pgm, &c, 1); if (devtype_1st == 0) devtype_1st = c; if (c == 0) break; part = locate_part_by_avr910_devcode(part_list, c); avrdude_message(MSG_INFO, " Device code: 0x%02x = %s\n", c, part ? part->desc : "(unknown)"); /* FIXME: Need to lookup devcode and report the device. */ if (p->avr910_devcode == c) dev_supported = 1; }; avrdude_message(MSG_INFO, "\n"); if (!dev_supported) { avrdude_message(MSG_INFO, "%s: %s: selected device is not supported by programmer: %s\n", progname, ovsigck? "warning": "error", p->id); if (!ovsigck) return -1; } /* If the user forced the selection, use the first device type that is supported by the programmer. */ buf[1] = ovsigck? devtype_1st: p->avr910_devcode; } else { /* devcode overridden by -x devcode= option */ buf[1] = (char)(PDATA(pgm)->devcode); } /* Tell the programmer which part we selected. */ buf[0] = 'T'; /* buf[1] has been set up above */ avr910_send(pgm, buf, 2); avr910_vfy_cmd_sent(pgm, "select device"); avrdude_message(MSG_NOTICE, "%s: avr910_devcode selected: 0x%02x\n", progname, (unsigned)buf[1]); avr910_enter_prog_mode(pgm); return 0; } static void avr910_disable(PROGRAMMER * pgm) { /* Do nothing. */ return; } static void avr910_enable(PROGRAMMER * pgm) { /* Do nothing. */ return; } /* * transmit an AVR device command and return the results; 'cmd' and * 'res' must point to at least a 4 byte data buffer */ static int avr910_cmd(PROGRAMMER * pgm, const unsigned char *cmd, unsigned char *res) { char buf[5]; /* FIXME: Insert version check here */ buf[0] = '.'; /* New Universal Command */ buf[1] = cmd[0]; buf[2] = cmd[1]; buf[3] = cmd[2]; buf[4] = cmd[3]; avr910_send (pgm, buf, 5); avr910_recv (pgm, buf, 2); res[0] = 0x00; /* Dummy value */ res[1] = cmd[0]; res[2] = cmd[1]; res[3] = buf[0]; return 0; } static int avr910_parseextparms(PROGRAMMER * pgm, LISTID extparms) { LNODEID ln; const char *extended_param; int rv = 0; for (ln = lfirst(extparms); ln; ln = lnext(ln)) { extended_param = ldata(ln); if (strncmp(extended_param, "devcode=", strlen("devcode=")) == 0) { int devcode; if (sscanf(extended_param, "devcode=%i", &devcode) != 1 || devcode <= 0 || devcode > 255) { avrdude_message(MSG_INFO, "%s: avr910_parseextparms(): invalid devcode '%s'\n", progname, extended_param); rv = -1; continue; } avrdude_message(MSG_NOTICE2, "%s: avr910_parseextparms(): devcode overwritten as 0x%02x\n", progname, devcode); PDATA(pgm)->devcode = devcode; continue; } if (strncmp(extended_param, "no_blockmode", strlen("no_blockmode")) == 0) { avrdude_message(MSG_NOTICE2, "%s: avr910_parseextparms(-x): no testing for Blockmode\n", progname); PDATA(pgm)->test_blockmode = 0; continue; } avrdude_message(MSG_INFO, "%s: avr910_parseextparms(): invalid extended parameter '%s'\n", progname, extended_param); rv = -1; } return rv; } static int avr910_open(PROGRAMMER * pgm, char * port) { union pinfo pinfo; /* * If baudrate was not specified use 19.200 Baud */ if(pgm->baudrate == 0) { pgm->baudrate = 19200; } strcpy(pgm->port, port); pinfo.baud = pgm->baudrate; if (serial_open(port, pinfo, &pgm->fd)==-1) { return -1; } /* * drain any extraneous input */ avr910_drain (pgm, 0); return 0; } static void avr910_close(PROGRAMMER * pgm) { avr910_leave_prog_mode(pgm); serial_close(&pgm->fd); pgm->fd.ifd = -1; } static void avr910_display(PROGRAMMER * pgm, const char * p) { return; } static void avr910_set_addr(PROGRAMMER * pgm, unsigned long addr) { char cmd[3]; cmd[0] = 'A'; cmd[1] = (addr >> 8) & 0xff; cmd[2] = addr & 0xff; avr910_send(pgm, cmd, sizeof(cmd)); avr910_vfy_cmd_sent(pgm, "set addr"); } static int avr910_write_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m, unsigned long addr, unsigned char value) { char cmd[2]; if (strcmp(m->desc, "flash") == 0) { if (addr & 0x01) { cmd[0] = 'C'; /* Write Program Mem high byte */ } else { cmd[0] = 'c'; } addr >>= 1; } else if (strcmp(m->desc, "eeprom") == 0) { cmd[0] = 'D'; } else { return avr_write_byte_default(pgm, p, m, addr, value); } cmd[1] = value; avr910_set_addr(pgm, addr); avr910_send(pgm, cmd, sizeof(cmd)); avr910_vfy_cmd_sent(pgm, "write byte"); return 0; } static int avr910_read_byte_flash(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m, unsigned long addr, unsigned char * value) { char buf[2]; avr910_set_addr(pgm, addr >> 1); avr910_send(pgm, "R", 1); /* Read back the program mem word (MSB first) */ avr910_recv(pgm, buf, sizeof(buf)); if ((addr & 0x01) == 0) { *value = buf[1]; } else { *value = buf[0]; } return 0; } static int avr910_read_byte_eeprom(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m, unsigned long addr, unsigned char * value) { avr910_set_addr(pgm, addr); avr910_send(pgm, "d", 1); avr910_recv(pgm, (char *)value, 1); return 0; } static int avr910_read_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m, unsigned long addr, unsigned char * value) { if (strcmp(m->desc, "flash") == 0) { return avr910_read_byte_flash(pgm, p, m, addr, value); } if (strcmp(m->desc, "eeprom") == 0) { return avr910_read_byte_eeprom(pgm, p, m, addr, value); } return avr_read_byte_default(pgm, p, m, addr, value); } static int avr910_paged_write_flash(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m, unsigned int page_size, unsigned int addr, unsigned int n_bytes) { unsigned char cmd[] = {'c', 'C'}; char buf[2]; unsigned int max_addr = addr + n_bytes; unsigned int page_addr; int page_bytes = page_size; int page_wr_cmd_pending = 0; page_addr = addr; avr910_set_addr(pgm, addr>>1); while (addr < max_addr) { page_wr_cmd_pending = 1; buf[0] = cmd[addr & 0x01]; buf[1] = m->buf[addr]; avr910_send(pgm, buf, sizeof(buf)); avr910_vfy_cmd_sent(pgm, "write byte"); addr++; page_bytes--; if (m->paged && (page_bytes == 0)) { /* Send the "Issue Page Write" if we have sent a whole page. */ avr910_set_addr(pgm, page_addr>>1); avr910_send(pgm, "m", 1); avr910_vfy_cmd_sent(pgm, "flush page"); page_wr_cmd_pending = 0; usleep(m->max_write_delay); avr910_set_addr(pgm, addr>>1); /* Set page address for next page. */ page_addr = addr; page_bytes = page_size; } else if ((PDATA(pgm)->has_auto_incr_addr != 'Y') && ((addr & 0x01) == 0)) { avr910_set_addr(pgm, addr>>1); } } /* If we didn't send the page wr cmd after the last byte written in the loop, send it now. */ if (page_wr_cmd_pending) { avr910_set_addr(pgm, page_addr>>1); avr910_send(pgm, "m", 1); avr910_vfy_cmd_sent(pgm, "flush final page"); usleep(m->max_write_delay); } return addr; } static int avr910_paged_write_eeprom(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m, unsigned int page_size, unsigned int addr, unsigned int n_bytes) { char cmd[2]; unsigned int max_addr = addr + n_bytes; avr910_set_addr(pgm, addr); cmd[0] = 'D'; while (addr < max_addr) { cmd[1] = m->buf[addr]; avr910_send(pgm, cmd, sizeof(cmd)); avr910_vfy_cmd_sent(pgm, "write byte"); usleep(m->max_write_delay); addr++; if (PDATA(pgm)->has_auto_incr_addr != 'Y') { avr910_set_addr(pgm, addr); } } return addr; } static int avr910_paged_write(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m, unsigned int page_size, unsigned int addr, unsigned int n_bytes) { int rval = 0; if (PDATA(pgm)->use_blockmode == 0) { if (strcmp(m->desc, "flash") == 0) { rval = avr910_paged_write_flash(pgm, p, m, page_size, addr, n_bytes); } else if (strcmp(m->desc, "eeprom") == 0) { rval = avr910_paged_write_eeprom(pgm, p, m, page_size, addr, n_bytes); } else { rval = -2; } } if (PDATA(pgm)->use_blockmode == 1) { unsigned int max_addr = addr + n_bytes; char *cmd; unsigned int blocksize = PDATA(pgm)->buffersize; int wr_size; if (strcmp(m->desc, "flash") && strcmp(m->desc, "eeprom")) return -2; if (m->desc[0] == 'e') { blocksize = 1; /* Write to eeprom single bytes only */ wr_size = 1; } else { wr_size = 2; } avr910_set_addr(pgm, addr / wr_size); cmd = malloc(4 + blocksize); if (!cmd) return -1; cmd[0] = 'B'; cmd[3] = toupper((int)(m->desc[0])); while (addr < max_addr) { if ((max_addr - addr) < blocksize) { blocksize = max_addr - addr; }; memcpy(&cmd[4], &m->buf[addr], blocksize); cmd[1] = (blocksize >> 8) & 0xff; cmd[2] = blocksize & 0xff; avr910_send(pgm, cmd, 4 + blocksize); avr910_vfy_cmd_sent(pgm, "write block"); addr += blocksize; } /* while */ free(cmd); rval = addr; } return rval; } static int avr910_paged_load(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m, unsigned int page_size, unsigned int addr, unsigned int n_bytes) { char cmd[4]; int rd_size; unsigned int max_addr; char buf[2]; int rval=0; max_addr = addr + n_bytes; if (strcmp(m->desc, "flash") == 0) { cmd[0] = 'R'; rd_size = 2; /* read two bytes per addr */ } else if (strcmp(m->desc, "eeprom") == 0) { cmd[0] = 'd'; rd_size = 1; } else { return -2; } if (PDATA(pgm)->use_blockmode) { /* use buffered mode */ int blocksize = PDATA(pgm)->buffersize; cmd[0] = 'g'; cmd[3] = toupper((int)(m->desc[0])); avr910_set_addr(pgm, addr / rd_size); while (addr < max_addr) { if ((max_addr - addr) < blocksize) { blocksize = max_addr - addr; } cmd[1] = (blocksize >> 8) & 0xff; cmd[2] = blocksize & 0xff; avr910_send(pgm, cmd, 4); avr910_recv(pgm, (char *)&m->buf[addr], blocksize); addr += blocksize; } rval = addr; } else { avr910_set_addr(pgm, addr / rd_size); while (addr < max_addr) { avr910_send(pgm, cmd, 1); if (rd_size == 2) { /* The 'R' command returns two bytes, MSB first, we need to put the data into the memory buffer LSB first. */ avr910_recv(pgm, buf, 2); m->buf[addr] = buf[1]; /* LSB */ m->buf[addr + 1] = buf[0]; /* MSB */ } else { avr910_recv(pgm, (char *)&m->buf[addr], 1); } addr += rd_size; if (PDATA(pgm)->has_auto_incr_addr != 'Y') { avr910_set_addr(pgm, addr / rd_size); } } rval = addr; } return rval; } /* Signature byte reads are always 3 bytes. */ static int avr910_read_sig_bytes(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m) { unsigned char tmp; if (m->size < 3) { avrdude_message(MSG_INFO, "%s: memsize too small for sig byte read", progname); return -1; } avr910_send(pgm, "s", 1); avr910_recv(pgm, (char *)m->buf, 3); /* Returned signature has wrong order. */ tmp = m->buf[2]; m->buf[2] = m->buf[0]; m->buf[0] = tmp; return 3; } const char avr910_desc[] = "Serial programmers using protocol described in application note AVR910"; void avr910_initpgm(PROGRAMMER * pgm) { strcpy(pgm->type, "avr910"); /* * mandatory functions */ pgm->initialize = avr910_initialize; pgm->display = avr910_display; pgm->enable = avr910_enable; pgm->disable = avr910_disable; pgm->program_enable = avr910_program_enable; pgm->chip_erase = avr910_chip_erase; pgm->cmd = avr910_cmd; pgm->open = avr910_open; pgm->close = avr910_close; /* * optional functions */ pgm->write_byte = avr910_write_byte; pgm->read_byte = avr910_read_byte; pgm->paged_write = avr910_paged_write; pgm->paged_load = avr910_paged_load; pgm->read_sig_bytes = avr910_read_sig_bytes; pgm->parseextparams = avr910_parseextparms; pgm->setup = avr910_setup; pgm->teardown = avr910_teardown; }