/* * avrdude - A Downloader/Uploader for AVR device programmers * Copyright (C) 2000-2004 Brian S. Dean * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* $Id$ */ #include "ac_cfg.h" #include #include #include #include #include #include #include #ifdef HAVE_LIBELF #ifdef HAVE_LIBELF_H #include #elif defined(HAVE_LIBELF_LIBELF_H) #include #endif #ifndef EM_AVR32 # define EM_AVR32 0x18ad /* unofficial */ #endif #ifndef EM_AVR # define EM_AVR 83 /* OpenBSD lacks it */ #endif #endif #include "avrdude.h" #include "libavrdude.h" #define IHEX_MAXDATA 256 #define MAX_LINE_LEN 256 /* max line length for ASCII format input files */ struct ihexrec { unsigned char reclen; unsigned int loadofs; unsigned char rectyp; unsigned char data[IHEX_MAXDATA]; unsigned char cksum; }; static int b2ihex(const unsigned char *inbuf, int bufsize, int recsize, int startaddr, const char *outfile, FILE *outf, FILEFMT ffmt); static int ihex2b(const char *infile, FILE *inf, const AVRMEM *mem, int bufsize, unsigned int fileoffset, FILEFMT ffmt); static int b2srec(const unsigned char *inbuf, int bufsize, int recsize, int startaddr, const char *outfile, FILE *outf); static int srec2b(const char *infile, FILE *inf, const AVRMEM *mem, int bufsize, unsigned int fileoffset); static int ihex_readrec(struct ihexrec *ihex, char *rec); static int srec_readrec(struct ihexrec *srec, char *rec); static int fileio_rbin(struct fioparms *fio, const char *filename, FILE *f, const AVRMEM *mem, int size); static int fileio_ihex(struct fioparms *fio, const char *filename, FILE *f, const AVRMEM *mem, int size, FILEFMT ffmt); static int fileio_srec(struct fioparms *fio, const char *filename, FILE *f, const AVRMEM *mem, int size); #ifdef HAVE_LIBELF static int elf2b(const char *infile, FILE *inf, const AVRMEM *mem, const AVRPART *p, int bufsize, unsigned int fileoffset); static int fileio_elf(struct fioparms *fio, const char *filename, FILE *f, const AVRMEM *mem, const AVRPART *p, int size); #endif static int fileio_num(struct fioparms *fio, const char *filename, FILE *f, const AVRMEM *mem, int size, FILEFMT fmt); char * fileio_fmtstr(FILEFMT format) { switch (format) { case FMT_AUTO : return "auto-detect"; break; case FMT_SREC : return "Motorola S-Record"; break; case FMT_IHEX : return "Intel Hex"; break; case FMT_IHXC : return "Intel Hex with comments"; break; case FMT_RBIN : return "raw binary"; break; case FMT_ELF : return "ELF"; break; default : return "invalid format"; break; }; } static int b2ihex(const unsigned char *inbuf, int bufsize, int recsize, int startaddr, const char *outfile, FILE *outf, FILEFMT ffmt) { const unsigned char *buf; unsigned int nextaddr; int n, nbytes, n_64k; int i; unsigned char cksum; if (recsize > 255) { pmsg_error("recsize=%d, must be < 256\n", recsize); return -1; } n_64k = 0; nextaddr = startaddr; buf = inbuf; nbytes = 0; while (bufsize) { n = recsize; if (n > bufsize) n = bufsize; if ((nextaddr + n) > 0x10000) n = 0x10000 - nextaddr; if (n) { cksum = 0; fprintf(outf, ":%02X%04X00", n, nextaddr); cksum += n + ((nextaddr >> 8) & 0x0ff) + (nextaddr & 0x0ff); for (i=0; i ", n_64k*0x10000 + nextaddr); for (i=0; i= 0x10000) { int lo, hi; /* output an extended address record */ n_64k++; lo = n_64k & 0xff; hi = (n_64k >> 8) & 0xff; cksum = 0; fprintf(outf, ":02000004%02X%02X", hi, lo); cksum += 2 + 0 + 4 + hi + lo; cksum = -cksum; fprintf(outf, "%02X\n", cksum); nextaddr = 0; } /* advance to next 'recsize' bytes */ buf += n; bufsize -= n; } /*----------------------------------------------------------------- add the end of record data line -----------------------------------------------------------------*/ cksum = 0; n = 0; nextaddr = 0; fprintf(outf, ":%02X%04X01", n, nextaddr); cksum += n + ((nextaddr >> 8) & 0x0ff) + (nextaddr & 0x0ff) + 1; cksum = -cksum; fprintf(outf, "%02X\n", cksum); return nbytes; } static int ihex_readrec(struct ihexrec * ihex, char * rec) { int i, j; char buf[8]; int offset, len; char * e; unsigned char cksum; int rc; len = strlen(rec); offset = 1; cksum = 0; /* reclen */ if (offset + 2 > len) return -1; for (i=0; i<2; i++) buf[i] = rec[offset++]; buf[i] = 0; ihex->reclen = strtoul(buf, &e, 16); if (e == buf || *e != 0) return -1; /* load offset */ if (offset + 4 > len) return -1; for (i=0; i<4; i++) buf[i] = rec[offset++]; buf[i] = 0; ihex->loadofs = strtoul(buf, &e, 16); if (e == buf || *e != 0) return -1; /* record type */ if (offset + 2 > len) return -1; for (i=0; i<2; i++) buf[i] = rec[offset++]; buf[i] = 0; ihex->rectyp = strtoul(buf, &e, 16); if (e == buf || *e != 0) return -1; cksum = ihex->reclen + ((ihex->loadofs >> 8) & 0x0ff) + (ihex->loadofs & 0x0ff) + ihex->rectyp; /* data */ for (j=0; jreclen; j++) { if (offset + 2 > len) return -1; for (i=0; i<2; i++) buf[i] = rec[offset++]; buf[i] = 0; ihex->data[j] = strtoul(buf, &e, 16); if (e == buf || *e != 0) return -1; cksum += ihex->data[j]; } /* cksum */ if (offset + 2 > len) return -1; for (i=0; i<2; i++) buf[i] = rec[offset++]; buf[i] = 0; ihex->cksum = strtoul(buf, &e, 16); if (e == buf || *e != 0) return -1; rc = -cksum & 0x000000ff; return rc; } /* * Intel Hex to binary buffer * * Given an open file 'inf' which contains Intel Hex formatted data, * parse the file and lay it out within the memory buffer pointed to * by outbuf. The size of outbuf, 'bufsize' is honored; if data would * fall outsize of the memory buffer outbuf, an error is generated. * * Return the maximum memory address within 'outbuf' that was written. * If an error occurs, return -1. * * */ static int ihex2b(const char *infile, FILE *inf, const AVRMEM *mem, int bufsize, unsigned int fileoffset, FILEFMT ffmt) { char buffer [ MAX_LINE_LEN ]; unsigned int nextaddr, baseaddr, maxaddr; int i; int lineno; int len; struct ihexrec ihex; int rc; lineno = 0; baseaddr = 0; maxaddr = 0; nextaddr = 0; while (fgets((char *)buffer,MAX_LINE_LEN,inf)!=NULL) { lineno++; len = strlen(buffer); if (buffer[len-1] == '\n') buffer[--len] = 0; if (buffer[0] != ':') continue; rc = ihex_readrec(&ihex, buffer); if (rc < 0) { pmsg_error("invalid record at line %d of %s\n", lineno, infile); return -1; } else if (rc != ihex.cksum) { if(ffmt == FMT_IHEX) { pmsg_error("checksum mismatch at line %d of %s\n", lineno, infile); imsg_error("checksum=0x%02x, computed checksum=0x%02x\n", ihex.cksum, rc); return -1; } else { /* Just warn with more permissive format FMT_IHXC */ pmsg_notice("checksum mismatch at line %d of %s\n", lineno, infile); imsg_notice("checksum=0x%02x, computed checksum=0x%02x\n", ihex.cksum, rc); } } switch (ihex.rectyp) { case 0: /* data record */ if (fileoffset != 0 && baseaddr < fileoffset) { pmsg_error("address 0x%04x out of range (below fileoffset 0x%x) at line %d of %s\n", baseaddr, fileoffset, lineno, infile); return -1; } nextaddr = ihex.loadofs + baseaddr - fileoffset; if (nextaddr + ihex.reclen > (unsigned) bufsize) { pmsg_error("address 0x%04x out of range at line %d of %s\n", nextaddr+ihex.reclen, lineno, infile); return -1; } for (i=0; ibuf[nextaddr+i] = ihex.data[i]; mem->tags[nextaddr+i] = TAG_ALLOCATED; } if (nextaddr+ihex.reclen > maxaddr) maxaddr = nextaddr+ihex.reclen; break; case 1: /* end of file record */ return maxaddr; break; case 2: /* extended segment address record */ baseaddr = (ihex.data[0] << 8 | ihex.data[1]) << 4; break; case 3: /* start segment address record */ /* we don't do anything with the start address */ break; case 4: /* extended linear address record */ baseaddr = (ihex.data[0] << 8 | ihex.data[1]) << 16; break; case 5: /* start linear address record */ /* we don't do anything with the start address */ break; default: pmsg_error("do not know how to deal with rectype=%d " "at line %d of %s\n", ihex.rectyp, lineno, infile); return -1; break; } } /* while */ if (maxaddr == 0) { pmsg_error("no valid record found in Intel Hex file %s\n", infile); return -1; } else { pmsg_warning("no end of file record found for Intel Hex file %s\n", infile); return maxaddr; } } static int b2srec(const unsigned char *inbuf, int bufsize, int recsize, int startaddr, const char *outfile, FILE *outf) { const unsigned char *buf; unsigned int nextaddr; int n, nbytes, addr_width; unsigned char cksum; char * tmpl=0; if (recsize > 255) { pmsg_error("recsize=%d, must be < 256\n", recsize); return -1; } nextaddr = startaddr; buf = inbuf; nbytes = 0; addr_width = 0; while (bufsize) { n = recsize; if (n > bufsize) n = bufsize; if (n) { cksum = 0; if (nextaddr + n <= 0xffff) { addr_width = 2; tmpl="S1%02X%04X"; } else if (nextaddr + n <= 0xffffff) { addr_width = 3; tmpl="S2%02X%06X"; } else if (nextaddr + n <= 0xffffffff) { addr_width = 4; tmpl="S3%02X%08X"; } else { pmsg_error("address=%d, out of range\n", nextaddr); return -1; } fprintf(outf, tmpl, n + addr_width + 1, nextaddr); cksum += n + addr_width + 1; for (int i=addr_width; i>0; i--) cksum += (nextaddr >> (i-1) * 8) & 0xff; for (unsigned i=nextaddr; i0; i--) cksum += (nextaddr >> (i - 1) * 8) & 0xff; cksum = 0xff - cksum; fprintf(outf, "%02X\n", cksum); return nbytes; } static int srec_readrec(struct ihexrec * srec, char * rec) { int i, j; char buf[8]; int offset, len, addr_width; char * e; unsigned char cksum; int rc; len = strlen(rec); offset = 1; cksum = 0; addr_width = 2; /* record type */ if (offset + 1 > len) return -1; srec->rectyp = rec[offset++]; if (srec->rectyp == 0x32 || srec->rectyp == 0x38) addr_width = 3; /* S2,S8-record */ else if (srec->rectyp == 0x33 || srec->rectyp == 0x37) addr_width = 4; /* S3,S7-record */ /* reclen */ if (offset + 2 > len) return -1; for (i=0; i<2; i++) buf[i] = rec[offset++]; buf[i] = 0; srec->reclen = strtoul(buf, &e, 16); cksum += srec->reclen; srec->reclen -= (addr_width+1); if (e == buf || *e != 0) return -1; /* load offset */ if (offset + addr_width > len) return -1; for (i=0; iloadofs = strtoull(buf, &e, 16); if (e == buf || *e != 0) return -1; for (i=addr_width; i>0; i--) cksum += (srec->loadofs >> (i - 1) * 8) & 0xff; /* data */ for (j=0; jreclen; j++) { if (offset+2 > len) return -1; for (i=0; i<2; i++) buf[i] = rec[offset++]; buf[i] = 0; srec->data[j] = strtoul(buf, &e, 16); if (e == buf || *e != 0) return -1; cksum += srec->data[j]; } /* cksum */ if (offset + 2 > len) return -1; for (i=0; i<2; i++) buf[i] = rec[offset++]; buf[i] = 0; srec->cksum = strtoul(buf, &e, 16); if (e == buf || *e != 0) return -1; rc = 0xff - cksum; return rc; } static int srec2b(const char *infile, FILE * inf, const AVRMEM *mem, int bufsize, unsigned int fileoffset) { char buffer [ MAX_LINE_LEN ]; unsigned int nextaddr, maxaddr; int i; int lineno; int len; struct ihexrec srec; int rc; unsigned int reccount; unsigned char datarec; char * msg = ""; lineno = 0; maxaddr = 0; reccount = 0; while (fgets((char *)buffer,MAX_LINE_LEN,inf)!=NULL) { lineno++; len = strlen(buffer); if (buffer[len-1] == '\n') buffer[--len] = 0; if (buffer[0] != 0x53) continue; rc = srec_readrec(&srec, buffer); if (rc < 0) { pmsg_error("invalid record at line %d of %s\n", lineno, infile); return -1; } else if (rc != srec.cksum) { pmsg_error("checksum mismatch at line %d of %s\n", lineno, infile); imsg_error("checksum=0x%02x, computed checksum=0x%02x\n", srec.cksum, rc); return -1; } datarec=0; switch (srec.rectyp) { case 0x30: /* S0 - header record*/ /* skip */ break; case 0x31: /* S1 - 16 bit address data record */ datarec=1; msg="address 0x%04x out of range %sat line %d of %s\n"; break; case 0x32: /* S2 - 24 bit address data record */ datarec=1; msg="address 0x%06x out of range %sat line %d of %s\n"; break; case 0x33: /* S3 - 32 bit address data record */ datarec=1; msg="address 0x%08x out of range %sat line %d of %s\n"; break; case 0x34: /* S4 - symbol record (LSI extension) */ pmsg_error("not supported record at line %d of %s\n", lineno, infile); return -1; case 0x35: /* S5 - count of S1,S2 and S3 records previously tx'd */ if (srec.loadofs != reccount){ pmsg_error("count of transmitted data records mismatch at line %d of %s\n", lineno, infile); imsg_error("transmitted data records= %d, expected value= %d\n", reccount, srec.loadofs); return -1; } break; case 0x37: /* S7 Record - end record for 32 bit address data */ case 0x38: /* S8 Record - end record for 24 bit address data */ case 0x39: /* S9 Record - end record for 16 bit address data */ return maxaddr; default: pmsg_error("do not know how to deal with rectype S%d at line %d of %s\n", srec.rectyp, lineno, infile); return -1; } if (datarec == 1) { nextaddr = srec.loadofs; if (nextaddr < fileoffset) { pmsg_error(msg, nextaddr, "(below fileoffset) ", lineno, infile); return -1; } nextaddr -= fileoffset; if (nextaddr + srec.reclen > (unsigned) bufsize) { pmsg_error(msg, nextaddr+srec.reclen, "", lineno, infile); return -1; } for (i=0; ibuf[nextaddr+i] = srec.data[i]; mem->tags[nextaddr+i] = TAG_ALLOCATED; } if (nextaddr+srec.reclen > maxaddr) maxaddr = nextaddr+srec.reclen; reccount++; } } pmsg_warning("no end of file record found for Motorola S-Records file %s\n", infile); return maxaddr; } #ifdef HAVE_LIBELF /* * Determine whether the ELF file section pointed to by `sh' fits * completely into the program header segment pointed to by `ph'. * * Assumes the section has been checked already before to actually * contain data (SHF_ALLOC, SHT_PROGBITS, sh_size > 0). * * Sometimes, program header segments might be larger than the actual * file sections. On VM architectures, this is used to allow mmapping * the entire ELF file "as is" (including things like the program * header table itself). */ static inline int is_section_in_segment(Elf32_Shdr *sh, Elf32_Phdr *ph) { if (sh->sh_offset < ph->p_offset) return 0; if (sh->sh_offset + sh->sh_size > ph->p_offset + ph->p_filesz) return 0; return 1; } static int elf_mem_limits(const AVRMEM *mem, const AVRPART *p, unsigned int *lowbound, unsigned int *highbound, unsigned int *fileoff) { int rv = 0; if (p->prog_modes & PM_aWire) { // AVR32 if (strcmp(mem->desc, "flash") == 0) { *lowbound = 0x80000000; *highbound = 0xffffffff; *fileoff = 0; } else { rv = -1; } } else { if (strcmp(mem->desc, "flash") == 0 || strcmp(mem->desc, "boot") == 0 || strcmp(mem->desc, "application") == 0 || strcmp(mem->desc, "apptable") == 0) { *lowbound = 0; *highbound = 0x7ffff; /* max 8 MiB */ *fileoff = 0; } else if (strcmp(mem->desc, "eeprom") == 0) { *lowbound = 0x810000; *highbound = 0x81ffff; /* max 64 KiB */ *fileoff = 0; } else if (strcmp(mem->desc, "lfuse") == 0) { *lowbound = 0x820000; *highbound = 0x82ffff; *fileoff = 0; } else if (strcmp(mem->desc, "hfuse") == 0) { *lowbound = 0x820000; *highbound = 0x82ffff; *fileoff = 1; } else if (strcmp(mem->desc, "efuse") == 0) { *lowbound = 0x820000; *highbound = 0x82ffff; *fileoff = 2; } else if (strncmp(mem->desc, "fuse", 4) == 0 && (mem->desc[4] >= '0' && mem->desc[4] <= '9')) { /* Xmega fuseN */ *lowbound = 0x820000; *highbound = 0x82ffff; *fileoff = mem->desc[4] - '0'; } else if (strncmp(mem->desc, "lock", 4) == 0) { *lowbound = 0x830000; *highbound = 0x83ffff; *fileoff = 0; } else { rv = -1; } } return rv; } static int elf2b(const char *infile, FILE *inf, const AVRMEM *mem, const AVRPART *p, int bufsize, unsigned int fileoffset) { Elf *e; int rv = -1; unsigned int low, high, foff; if (elf_mem_limits(mem, p, &low, &high, &foff) != 0) { pmsg_error("cannot handle %s memory region from ELF file\n", mem->desc); return -1; } /* * The Xmega memory regions for "boot", "application", and * "apptable" are actually sub-regions of "flash". Refine the * applicable limits. This allows to select only the appropriate * sections out of an ELF file that contains section data for more * than one sub-segment. */ if ((p->prog_modes & PM_PDI) != 0 && (strcmp(mem->desc, "boot") == 0 || strcmp(mem->desc, "application") == 0 || strcmp(mem->desc, "apptable") == 0)) { AVRMEM *flashmem = avr_locate_mem(p, "flash"); if (flashmem == NULL) { pmsg_error("no flash memory region found, cannot compute bounds of %s sub-region\n", mem->desc); return -1; } /* The config file offsets are PDI offsets, rebase to 0. */ low = mem->offset - flashmem->offset; high = low + mem->size - 1; } if (elf_version(EV_CURRENT) == EV_NONE) { pmsg_error("ELF library initialization failed: %s\n", elf_errmsg(-1)); return -1; } if ((e = elf_begin(fileno(inf), ELF_C_READ, NULL)) == NULL) { pmsg_error("cannot open %s as an ELF file: %s\n", infile, elf_errmsg(-1)); return -1; } if (elf_kind(e) != ELF_K_ELF) { pmsg_error("cannot use %s as an ELF input file\n", infile); goto done; } size_t i, isize; const char *id = elf_getident(e, &isize); if (id == NULL) { pmsg_error("unable to read ident area of %s: %s\n", infile, elf_errmsg(-1)); goto done; } const char *endianname; unsigned char endianess; if (p->prog_modes & PM_aWire) { // AVR32 endianess = ELFDATA2MSB; endianname = "little"; } else { endianess = ELFDATA2LSB; endianname = "big"; } if (id[EI_CLASS] != ELFCLASS32 || id[EI_DATA] != endianess) { pmsg_error("ELF file %s is not a 32-bit, %s-endian file that was expected\n", infile, endianname); goto done; } Elf32_Ehdr *eh; if ((eh = elf32_getehdr(e)) == NULL) { pmsg_error("unable to read ehdr of %s: %s\n", infile, elf_errmsg(-1)); goto done; } if (eh->e_type != ET_EXEC) { pmsg_error("ELF file %s is not an executable file\n", infile); goto done; } const char *mname; uint16_t machine; if (p->prog_modes & PM_aWire) { machine = EM_AVR32; mname = "AVR32"; } else { machine = EM_AVR; mname = "AVR"; } if (eh->e_machine != machine) { pmsg_error("ELF file %s is not for machine %s\n", infile, mname); goto done; } if (eh->e_phnum == 0xffff /* PN_XNUM */) { pmsg_error("ELF file %s uses extended program header numbers which are not expected\n", infile); goto done; } Elf32_Phdr *ph; if ((ph = elf32_getphdr(e)) == NULL) { pmsg_error("unable to read program header table of %s: %s\n", infile, elf_errmsg(-1)); goto done; } size_t sndx; if (elf_getshdrstrndx(e, &sndx) != 0) { pmsg_error("unable to obtain section name string table: %s\n", elf_errmsg(-1)); sndx = 0; } /* * Walk the program header table, pick up entries that are of type * PT_LOAD, and have a non-zero p_filesz. */ for (i = 0; i < eh->e_phnum; i++) { if (ph[i].p_type != PT_LOAD || ph[i].p_filesz == 0) continue; pmsg_notice2("considering PT_LOAD program header entry #%d:\n" " p_vaddr 0x%x, p_paddr 0x%x, p_filesz %d\n", (int) i, ph[i].p_vaddr, ph[i].p_paddr, ph[i].p_filesz); Elf_Scn *scn = NULL; while ((scn = elf_nextscn(e, scn)) != NULL) { size_t ndx = elf_ndxscn(scn); Elf32_Shdr *sh = elf32_getshdr(scn); if (sh == NULL) { pmsg_error("unable to read section #%u header: %s\n", (unsigned int) ndx, elf_errmsg(-1)); continue; } // Only interested in PROGBITS, ALLOC sections if ((sh->sh_flags & SHF_ALLOC) == 0 || sh->sh_type != SHT_PROGBITS) continue; // Not interested in empty sections if (sh->sh_size == 0) continue; // Section must belong to this segment if (!is_section_in_segment(sh, ph+i)) continue; const char *sname = sndx? elf_strptr(e, sndx, sh->sh_name): "*unknown*"; unsigned int lma = ph[i].p_paddr + sh->sh_offset - ph[i].p_offset; pmsg_notice2("found section %s, LMA 0x%x, sh_size %u\n", sname, lma, sh->sh_size); if(!(lma >= low && lma + sh->sh_size < high)) { msg_notice2(" => skipping, inappropriate for %s memory region\n", mem->desc); continue; } /* * 1-byte sized memory regions are special: they are used for fuse * bits, where multiple regions (in the config file) map to a * single, larger region in the ELF file (e.g. "lfuse", "hfuse", * and "efuse" all map to ".fuse"). We silently accept a larger * ELF file region for these, and extract the actual byte to write * from it, using the "foff" offset obtained above. */ if (mem->size != 1 && sh->sh_size > (unsigned) mem->size) { pmsg_error("section %s does not fit into %s memory:\n" " 0x%x + %u > %u\n", sname, mem->desc, lma, sh->sh_size, mem->size); continue; } Elf_Data *d = NULL; while ((d = elf_getdata(scn, d)) != NULL) { msg_notice2(" Data block: d_buf %p, d_off 0x%x, d_size %ld\n", d->d_buf, (unsigned int)d->d_off, (long) d->d_size); if (mem->size == 1) { if (d->d_off != 0) { pmsg_error("unexpected data block at offset != 0\n"); } else if (foff >= d->d_size) { pmsg_error("ELF file section does not contain byte at offset %d\n", foff); } else { msg_notice2(" Extracting one byte from file offset %d\n", foff); mem->buf[0] = ((unsigned char *)d->d_buf)[foff]; mem->tags[0] = TAG_ALLOCATED; rv = 1; } } else { unsigned int idx; idx = lma - low + d->d_off; if ((int)(idx + d->d_size) > rv) rv = idx + d->d_size; msg_debug(" Writing %ld bytes to mem offset 0x%x\n", (long) d->d_size, idx); memcpy(mem->buf + idx, d->d_buf, d->d_size); memset(mem->tags + idx, TAG_ALLOCATED, d->d_size); } } } } done: (void)elf_end(e); return rv; } #endif /* HAVE_LIBELF */ /* * Simple itoa() implementation. Caller needs to allocate enough * space in buf. Only positive integers are handled. */ static char *itoa_simple(int n, char *buf, int base) { div_t q; char c, *cp, *cp2; cp = buf; /* * Divide by base until the number disappeared, but ensure at least * one digit will be emitted. */ do { q = div(n, base); n = q.quot; if (q.rem >= 10) c = q.rem - 10 + 'a'; else c = q.rem + '0'; *cp++ = c; } while (q.quot != 0); /* Terminate the string. */ *cp-- = '\0'; /* Now revert the result string. */ cp2 = buf; while (cp > cp2) { c = *cp; *cp-- = *cp2; *cp2++ = c; } return buf; } static int fileio_rbin(struct fioparms *fio, const char *filename, FILE *f, const AVRMEM *mem, int size) { int rc; unsigned char *buf = mem->buf; switch (fio->op) { case FIO_READ: rc = fread(buf, 1, size, f); if (rc > 0) memset(mem->tags, TAG_ALLOCATED, rc); break; case FIO_WRITE: rc = fwrite(buf, 1, size, f); break; default: pmsg_error("invalid fileio operation=%d\n", fio->op); return -1; } if (rc < 0 || (fio->op == FIO_WRITE && rc < size)) { pmsg_ext_error("%s error %s %s: %s; %s %d of the expected %d bytes\n", fio->iodesc, fio->dir, filename, strerror(errno), fio->rw, rc, size); return -1; } return rc; } static int fileio_imm(struct fioparms *fio, const char *fname, FILE *f, const AVRMEM *mem, int size) { int rc = 0; char *e, *p, *filename; unsigned long b; int loc; filename = cfg_strdup(__func__, fname); switch (fio->op) { case FIO_READ: loc = 0; p = strtok(filename, " ,"); while (p != NULL && loc < size) { b = strtoul(p, &e, 0); /* check for binary formatted (0b10101001) strings */ b = (strncmp (p, "0b", 2))? strtoul (p, &e, 0): strtoul (p + 2, &e, 2); if (*e != 0) { pmsg_error("invalid byte value (%s) specified for immediate mode\n", p); free(filename); return -1; } mem->buf[loc] = b; mem->tags[loc++] = TAG_ALLOCATED; p = strtok(NULL, " ,"); rc = loc; } break; case FIO_WRITE: pmsg_error("invalid file format 'immediate' for output\n"); free(filename); return -1; default: pmsg_error("invalid operation=%d\n", fio->op); free(filename); return -1; } if (rc < 0 || (fio->op == FIO_WRITE && rc < size)) { pmsg_ext_error("%s error %s %s: %s; %s %d of the expected %d bytes\n", fio->iodesc, fio->dir, filename, strerror(errno), fio->rw, rc, size); free(filename); return -1; } free(filename); return rc; } static int fileio_ihex(struct fioparms *fio, const char *filename, FILE *f, const AVRMEM *mem, int size, FILEFMT ffmt) { int rc; switch (fio->op) { case FIO_WRITE: rc = b2ihex(mem->buf, size, 32, fio->fileoffset, filename, f, ffmt); if (rc < 0) { return -1; } break; case FIO_READ: rc = ihex2b(filename, f, mem, size, fio->fileoffset, ffmt); if (rc < 0) return -1; break; default: pmsg_error("invalid Intel Hex file I/O operation=%d\n", fio->op); return -1; break; } return rc; } static int fileio_srec(struct fioparms *fio, const char *filename, FILE *f, const AVRMEM *mem, int size) { int rc; switch (fio->op) { case FIO_WRITE: rc = b2srec(mem->buf, size, 32, fio->fileoffset, filename, f); if (rc < 0) { return -1; } break; case FIO_READ: rc = srec2b(filename, f, mem, size, fio->fileoffset); if (rc < 0) return -1; break; default: pmsg_error("invalid Motorola S-Records file I/O operation=%d\n", fio->op); return -1; break; } return rc; } #ifdef HAVE_LIBELF static int fileio_elf(struct fioparms *fio, const char *filename, FILE *f, const AVRMEM *mem, const AVRPART *p, int size) { int rc; switch (fio->op) { case FIO_WRITE: pmsg_error("write operation not supported for ELF\n"); return -1; break; case FIO_READ: rc = elf2b(filename, f, mem, p, size, fio->fileoffset); return rc; default: pmsg_error("invalid ELF file I/O operation=%d\n", fio->op); return -1; break; } } #endif static int fileio_num(struct fioparms *fio, const char *filename, FILE *f, const AVRMEM *mem, int size, FILEFMT fmt) { const char *prefix; const char *name; char cbuf[20]; int base, i, num; switch (fmt) { case FMT_HEX: name = "hex"; prefix = "0x"; base = 16; break; default: case FMT_DEC: name = "decimal"; prefix = ""; base = 10; break; case FMT_OCT: name = "octal"; prefix = "0"; base = 8; break; case FMT_BIN: name = "binary"; prefix = "0b"; base = 2; break; } switch (fio->op) { case FIO_WRITE: break; case FIO_READ: pmsg_error("invalid file format '%s' for input\n", name); return -1; default: pmsg_error("invalid operation=%d\n", fio->op); return -1; } for (i = 0; i < size; i++) { if (i > 0) { if (putc(',', f) == EOF) goto writeerr; } num = (unsigned int)(mem->buf[i]); /* * For a base of 8 and a value < 8 to convert, don't write the * prefix. The conversion will be indistinguishable from a * decimal one then. */ if (prefix[0] != '\0' && !(base == 8 && num < 8)) { if (fputs(prefix, f) == EOF) goto writeerr; } itoa_simple(num, cbuf, base); if (fputs(cbuf, f) == EOF) goto writeerr; } if (putc('\n', f) == EOF) goto writeerr; return 0; writeerr: pmsg_ext_error("unable to write to %s: %s\n", filename, strerror(errno)); return -1; } int fileio_setparms(int op, struct fioparms *fp, const AVRPART *p, const AVRMEM * m) { fp->op = op; switch (op) { case FIO_READ: fp->mode = "r"; fp->iodesc = "input"; fp->dir = "from"; fp->rw = "read"; break; case FIO_WRITE: fp->mode = "w"; fp->iodesc = "output"; fp->dir = "to"; fp->rw = "wrote"; break; default: pmsg_error("invalid I/O operation %d\n", op); return -1; break; } /* * AVR32 devices maintain their load offset within the file itself, * but AVRDUDE maintains all memory images 0-based. */ fp->fileoffset = p->prog_modes & PM_aWire? m->offset: 0; return 0; } int fileio_fmt_autodetect(const char * fname) { FILE * f; unsigned char buf[MAX_LINE_LEN]; int i; int len; int found; int first = 1; #if !defined(WIN32) f = fopen(fname, "r"); #else f = fopen(fname, "rb"); #endif if (f == NULL) { pmsg_ext_error("unable to open %s: %s\n", fname, strerror(errno)); return -1; } while (fgets((char *)buf, MAX_LINE_LEN, f)!=NULL) { /* check for ELF file */ if (first && (buf[0] == 0177 && buf[1] == 'E' && buf[2] == 'L' && buf[3] == 'F')) { fclose(f); return FMT_ELF; } buf[MAX_LINE_LEN-1] = 0; len = strlen((char *)buf); if (buf[len-1] == '\n') buf[--len] = 0; /* check for binary data */ found = 0; for (i=0; i 127) { found = 1; break; } } if (found) { fclose(f); return FMT_RBIN; } /* check for lines that look like intel hex */ if ((buf[0] == ':') && (len >= 11)) { found = 1; for (i=1; i= 10) && isdigit(buf[1])) { found = 1; for (i=1; idesc); return -1; } rc = fileio_setparms(op, &fio, p, mem); if (rc < 0) return -1; if (size < 0 || fio.op == FIO_READ) size = mem->size; if (fio.op == FIO_READ) { /* 0xff fill unspecified memory */ memset(mem->buf, 0xff, size); } memset(mem->tags, 0, size); using_stdio = 0; if (strcmp(filename, "-")==0) { if (fio.op == FIO_READ) { fname = ""; f = stdin; } else { fname = ""; f = stdout; } using_stdio = 1; } else { fname = filename; f = NULL; } if (format == FMT_AUTO) { int format_detect; if (using_stdio) { pmsg_error("cannot auto detect file format when using stdin/out\n"); imsg_error("please specify a file format and try again\n"); return -1; } format_detect = fileio_fmt_autodetect(fname); if (format_detect < 0) { pmsg_error("cannot determine file format for %s, specify explicitly\n", fname); return -1; } format = format_detect; if (quell_progress < 2) pmsg_notice("%s file %s auto detected as %s\n", fio.iodesc, fname, fileio_fmtstr(format)); } #if defined(WIN32) /* Open Raw Binary and ELF format in binary mode on Windows.*/ if(format == FMT_RBIN || format == FMT_ELF) { if(fio.op == FIO_READ) { fio.mode = "rb"; } if(fio.op == FIO_WRITE) { fio.mode = "wb"; } } #endif if (format != FMT_IMM) { if (!using_stdio) { f = fopen(fname, fio.mode); if (f == NULL) { pmsg_ext_error("cannot open %s file %s: %s\n", fio.iodesc, fname, strerror(errno)); return -1; } } } switch (format) { case FMT_IHEX: case FMT_IHXC: rc = fileio_ihex(&fio, fname, f, mem, size, format); break; case FMT_SREC: rc = fileio_srec(&fio, fname, f, mem, size); break; case FMT_RBIN: rc = fileio_rbin(&fio, fname, f, mem, size); break; case FMT_ELF: #ifdef HAVE_LIBELF rc = fileio_elf(&fio, fname, f, mem, p, size); #else pmsg_error("cannot handle ELF file %s, ELF file support was not compiled in\n", fname); rc = -1; #endif break; case FMT_IMM: rc = fileio_imm(&fio, fname, f, mem, size); break; case FMT_HEX: case FMT_DEC: case FMT_OCT: case FMT_BIN: rc = fileio_num(&fio, fname, f, mem, size, format); break; default: pmsg_error("invalid %s file format: %d\n", fio.iodesc, format); return -1; } /* on reading flash other than for verify set the size to location of highest non-0xff byte */ if (rc > 0 && oprwv == FIO_READ) { int hiaddr = avr_mem_hiaddr(mem); if(hiaddr < rc) /* if trailing-0xff not disabled */ rc = hiaddr; } if (format != FMT_IMM && !using_stdio) { fclose(f); } return rc; }