/* * avrdude - A Downloader/Uploader for AVR device programmers * Copyright (C) 2022, Stefan Rueger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* $Id$ */ /* * Code to program an Atmel AVR device through one of the supported * programmers. * * For parallel port connected programmers, the pin definitions can be * changed via a config file. See the config file for instructions on * how to add a programmer definition. * */ #include "ac_cfg.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "avrdude.h" #include "libavrdude.h" #include "developer_opts.h" #include "developer_opts_private.h" static char cmdbitchar(CMDBIT cb) { switch(cb.type) { case AVR_CMDBIT_IGNORE: return 'x'; case AVR_CMDBIT_VALUE: return cb.value? '1': '0'; case AVR_CMDBIT_ADDRESS: return 'a'; case AVR_CMDBIT_INPUT: return 'i'; case AVR_CMDBIT_OUTPUT: return 'o'; default: return '?'; } } static char *cmdbitstr(CMDBIT cb) { char space[10]; *space = cmdbitchar(cb); if(*space == 'a') sprintf(space+1, "%d", cb.bitno); else space[1] = 0; return strdup(space); } static const char *opcodename(int what) { switch(what) { case AVR_OP_READ: return "read"; case AVR_OP_WRITE: return "write"; case AVR_OP_READ_LO: return "read_lo"; case AVR_OP_READ_HI: return "read_hi"; case AVR_OP_WRITE_LO: return "write_lo"; case AVR_OP_WRITE_HI: return "write_hi"; case AVR_OP_LOADPAGE_LO: return "loadpage_lo"; case AVR_OP_LOADPAGE_HI: return "loadpage_hi"; case AVR_OP_LOAD_EXT_ADDR: return "load_ext_addr"; case AVR_OP_WRITEPAGE: return "writepage"; case AVR_OP_CHIP_ERASE: return "chip_erase"; case AVR_OP_PGM_ENABLE: return "pgm_enable"; default: return "???"; } } static char *opcode2str(OPCODE *op, int detailed) { char cb, space[1024], *sp = space; if(!op) return strdup("NULL"); if(detailed) *sp++ = '"'; for(int i=31; i >= 0; i--) { *sp++ = cb = cmdbitchar(op->bit[i]); if(detailed && cb == 'a') { sprintf(sp, "%d", op->bit[i].bitno); sp += strlen(sp); } if(i) { if(detailed) *sp++ = ' '; if(i%8 == 0) *sp++ = ' '; } } if(detailed) *sp++ = '"'; *sp = 0; return strdup(space); } // return 0 if op code would encode (essentially) the same SPI command static int opcodecmp(OPCODE *op1, OPCODE *op2) { char *opstr1, *opstr2, *p; int cmp; if(!op1 && !op2) return 0; if(!op1 || !op2) return op1? -1: 1; opstr1 = opcode2str(op1, 1); opstr2 = opcode2str(op2, 1); if(!opstr1 || !opstr2) { dev_info("%s: out of memory\n", progname); exit(1); } // don't care x and 0 are functionally equivalent for(p=opstr1; *p; p++) if(*p == 'x') *p = '0'; for(p=opstr2; *p; p++) if(*p == 'x') *p = '0'; cmp = strcmp(opstr1, opstr2); free(opstr1); free(opstr2); return cmp; } static void printopcode(AVRPART *p, const char *d, OPCODE *op, int what) { unsigned char cmd[4]; int i; if(op) { memset(cmd, 0, sizeof cmd); avr_set_bits(op, cmd); dev_info(".op\t%s\t%s\t%s\t0x%02x%02x%02x%02x\t", p->desc, d, opcodename(what), cmd[0], cmd[1], cmd[2], cmd[3]); for(i=31; i >= 0; i--) { dev_info("%c", cmdbitchar(op->bit[i])); if(i%8 == 0) dev_info("%c", i? '\t': '\n'); } } } static void printallopcodes(AVRPART *p, const char *d, OPCODE **opa) { for(int i=0; i>= 1; ret++) continue; return ret; } // mnemonic characterisation of flags static char *parttype(AVRPART *p) { static char type[1024]; switch(p->flags & (AVRPART_HAS_PDI | AVRPART_AVR32 | AVRPART_HAS_TPI | AVRPART_HAS_UPDI)) { case 0: strcpy(type, "ISP"); break; case AVRPART_HAS_PDI: strcpy(type, "PDI"); break; case AVRPART_AVR32: strcpy(type, "AVR32"); break; case AVRPART_HAS_TPI: strcpy(type, "TPI"); break; case AVRPART_HAS_UPDI: strcpy(type, "UPDI"); break; default: strcpy(type, "UNKNOWN"); break; } if((p->flags & AVRPART_SERIALOK) == 0) strcat(type, "|NOTSERIAL"); if((p->flags & AVRPART_PARALLELOK) == 0) strcat(type, "|NOTPARALLEL"); if(p->flags & AVRPART_PSEUDOPARALLEL) strcat(type, "|PSEUDOPARALLEL"); if(p->flags & AVRPART_IS_AT90S1200) strcat(type, "|IS_AT90S1200"); if(p->flags & AVRPART_HAS_DW) strcat(type, "|DW"); if(p->flags & AVRPART_HAS_JTAG) strcat(type, "|JTAG"); if(p->flags & AVRPART_ALLOWFULLPAGEBITSTREAM) strcat(type, "|PAGEBITSTREAM"); if((p->flags & AVRPART_ENABLEPAGEPROGRAMMING) == 0) strcat(type, "|NOPAGEPROGRAMMING"); return type; } // check whether address bits are where they should be in ISP commands static void checkaddr(int memsize, int pagesize, int what, OPCODE *op, AVRPART *p, AVRMEM *m) { int i, lo, hi; const char *whatstr = opcodename(what); lo = intlog2(pagesize); hi = intlog2(memsize-1); // address bits should be between positions lo and hi (and fall in line), outside should be 0 or don't care for(i=0; i<16; i++) { // ISP programming only deals with 16-bit addresses (words for flash, bytes for eeprom) if(i < lo || i > hi) { if(op->bit[i+8].type != AVR_CMDBIT_IGNORE && !(op->bit[i+8].type == AVR_CMDBIT_VALUE && op->bit[i+8].value == 0)) { char *cbs = cmdbitstr(op->bit[i+8]); dev_info(".cmderr\t%s\t%s-%s\tbit %d outside addressable space should be x or 0 but is %s\n", p->desc, m->desc, whatstr, i+8, cbs? cbs: "NULL"); if(cbs) free(cbs); } } else { if(op->bit[i+8].type != AVR_CMDBIT_ADDRESS) dev_info(".cmderr\t%s\t%s-%s\tbit %d is %c but should be a\n", p->desc, m->desc, whatstr, i+8, cmdbitchar(op->bit[i+8])); else if(op->bit[i+8].bitno != i) dev_info(".cmderr\t%s\t%s-%s\tbit %d inconsistent: a%d specified as a%d\n", p->desc, m->desc, whatstr, i+8, i, op->bit[i+8].bitno); } } for(i=0; i<32; i++) // command bits 8..23 should not contain address bits if((i<8 || i>23) && op->bit[i].type == AVR_CMDBIT_ADDRESS) dev_info(".cmderr\t%s\t%s-%s\tbit %d contains a%d which it shouldn't\n", p->desc, m->desc, whatstr, i, op->bit[i].bitno); } static char *dev_sprintf(const char *fmt, ...) { int size = 0; char *p = NULL; va_list ap; // compute size va_start(ap, fmt); size = vsnprintf(p, size, fmt, ap); va_end(ap); if(size < 0) return NULL; size++; // for temrinating '\0' if(!(p = malloc(size))) return NULL; va_start(ap, fmt); size = vsnprintf(p, size, fmt, ap); va_end(ap); if(size < 0) { free(p); return NULL; } return p; } static int dev_nprinted; int dev_message(int msglvl, const char *fmt, ...) { va_list ap; int rc = 0; if(verbose >= msglvl) { va_start(ap, fmt); rc = vfprintf(stderr, fmt, ap); va_end(ap); if(rc > 0) dev_nprinted += rc; } return rc; } static int dev_part_strct_entry(bool tsv, char *col0, char *col1, char *col2, const char *name, char *cont) { const char *n = name? name: "name_error"; const char *c = cont? cont: "cont_error"; if(tsv) { // tab separated values if(col0) { dev_info("%s\t", col0); if(col1) { dev_info("%s\t", col1); if(col2) { dev_info("%s\t", col2); } } } dev_info("%s\t%s\n", n, c); } else { // grammar conform int indent = col2 && strcmp(col2, "part"); printf("%*s%-*s = %s;\n", indent? 8: 4, "", indent? 15: 19, n, c); } if(cont) free(cont); return 1; } static const char *dev_controlstack_name(AVRPART *p) { return p->ctl_stack_type == CTL_STACK_PP? "pp_controlstack": p->ctl_stack_type == CTL_STACK_HVSP? "hvsp_controlstack": p->ctl_stack_type == CTL_STACK_NONE? "NULL": "unknown_controlstack"; } static void dev_stack_out(bool tsv, AVRPART *p, const char *name, unsigned char *stack, int ns) { if(!strcmp(name, "NULL")) { name = "pp_controlstack"; ns = 0; } if(tsv) dev_info(".pt\t%s\t%s\t", p->desc, name); else dev_info(" %-19s =%s", name, ns <=8? " ": ""); if(ns <= 0) dev_info(tsv? "NULL\n": "NULL;\n"); else for(int i=0; i 8 && i%8 == 0? "\n ": "", stack[i], i+1base = *m; // zap all bytes beyond terminating nul of desc array len = strlen(m->desc)+1; if(len < sizeof m->desc) memset(d->base.desc + len, 0, sizeof m->desc - len); // zap address values d->base.buf = NULL; d->base.tags = NULL; for(int i=0; ibase.op[i] = NULL; // copy over the SPI operations themselves memset(d->base.op, 0, sizeof d->base.op); memset(d->ops, 0, sizeof d->ops); for(int i=0; iops/sizeof *d->ops; i++) if(m->op[i]) d->ops[i] = *m->op[i]; return 0; } static int memorycmp(AVRMEM *m1, AVRMEM *m2) { AVRMEMdeep dm1, dm2; if(!m1 && !m2) return 0; if(!m1 || !m2) return m1? -1: 1; avrmem_deep_copy(&dm1, m1); avrmem_deep_copy(&dm2, m2); return memcmp(&dm1, &dm2, sizeof dm1); } typedef struct { AVRPART base; OPCODE ops[AVR_OP_MAX]; AVRMEMdeep mems[40]; } AVRPARTdeep; static int avrpart_deep_copy(AVRPARTdeep *d, AVRPART *p) { AVRMEM *m; int len, di; memset(d, 0, sizeof *d); d->base = *p; d->base.config_file = NULL; d->base.lineno = 0; // zap all bytes beyond terminating nul of desc, id and family_id array len = strlen(p->desc); if(len < sizeof p->desc) memset(d->base.desc + len, 0, sizeof p->desc - len); len = strlen(p->family_id); if(len < sizeof p->family_id) memset(d->base.family_id + len, 0, sizeof p->family_id - len); len = strlen(p->id); if(len < sizeof p->id) memset(d->base.id + len, 0, sizeof p->id - len); // zap address values d->base.mem = NULL; d->base.mem_alias = NULL; for(int i=0; ibase.op[i] = NULL; // copy over the SPI operations memset(d->base.op, 0, sizeof d->base.op); memset(d->ops, 0, sizeof d->ops); for(int i=0; iop[i]) d->ops[i] = *p->op[i]; // fill in all memories we got in defined order di = 0; for(int mi=0; mi < sizeof mem_order/sizeof *mem_order && mem_order[mi]; mi++) { m = p->mem? avr_locate_mem(p, mem_order[mi]): NULL; if(m) { if(di >= sizeof d->mems/sizeof *d->mems) { avrdude_message(MSG_INFO, "%s: ran out of mems[] space, increase size in AVRMEMdeep of developer_opts.c and recompile\n", progname); exit(1); } avrmem_deep_copy(d->mems+di, m); di++; } } return di; } static char txtchar(unsigned char in) { in &= 0x7f; return in == ' '? '_': in > ' ' && in < 0x7f? in: '.'; } static void dev_raw_dump(unsigned char *p, int nbytes, const char *name, const char *sub, int idx) { unsigned char *end = p+nbytes; int n = ((end - p) + 15)/16; for(int i=0; idesc, "part", 0); dev_raw_dump((unsigned char *) &dp.ops, sizeof dp.ops, part->desc, "ops", 1); for(int i=0; idesc, dp.mems[i].base.desc, i+2); } static void dev_part_strct(AVRPART *p, bool tsv, AVRPART *base) { dev_info("# %s %d\n", p->config_file, p->lineno); if(!tsv) dev_info("part\n"); _if_partout(strcmp, "\"%s\"", desc); _if_partout(strcmp, "\"%s\"", id); _if_partout(strcmp, "\"%s\"", family_id); _if_partout(intcmp, "%d", hvupdi_variant); _if_partout(intcmp, "0x%02x", stk500_devcode); _if_partout(intcmp, "0x%02x", avr910_devcode); _if_partout(intcmp, "%d", chip_erase_delay); _if_partout(intcmp, "0x%02x", pagel); _if_partout(intcmp, "0x%02x", bs2); _if_n_partout_str(memcmp, sizeof p->signature, dev_sprintf("0x%02x 0x%02x 0x%02x", p->signature[0], p->signature[1], p->signature[2]), signature); _if_partout(intcmp, "0x%04x", usbpid); if(!base || base->reset_disposition != p->reset_disposition) _partout_str(strdup(p->reset_disposition == RESET_DEDICATED? "dedicated": p->reset_disposition == RESET_IO? "io": "unknown"), reset); _if_partout_str(intcmp, strdup(p->retry_pulse == PIN_AVR_RESET? "reset": p->retry_pulse == PIN_AVR_SCK? "sck": "unknown"), retry_pulse); if(!base || base->flags != p->flags) { if(tsv) { _partout("0x%04x", flags); } else { _if_flagout(AVRPART_HAS_JTAG, has_jtag); _if_flagout(AVRPART_HAS_DW, has_debugwire); _if_flagout(AVRPART_HAS_PDI, has_pdi); _if_flagout(AVRPART_HAS_UPDI, has_updi); _if_flagout(AVRPART_HAS_TPI, has_tpi); _if_flagout(AVRPART_IS_AT90S1200, is_at90s1200); _if_flagout(AVRPART_AVR32, is_avr32); _if_flagout(AVRPART_ALLOWFULLPAGEBITSTREAM, allowfullpagebitstream); _if_flagout(AVRPART_ENABLEPAGEPROGRAMMING, enablepageprogramming); _if_flagout(AVRPART_SERIALOK, serial); if(!base || (base->flags & (AVRPART_PARALLELOK | AVRPART_PSEUDOPARALLEL)) != (p->flags & (AVRPART_PARALLELOK | AVRPART_PSEUDOPARALLEL))) { int par = p->flags & (AVRPART_PARALLELOK | AVRPART_PSEUDOPARALLEL); _partout_str(strdup(par == 0? "no": par == AVRPART_PSEUDOPARALLEL? "unknown": AVRPART_PARALLELOK? "yes": "pseudo"), parallel); } } } _if_partout(intcmp, "%d", timeout); _if_partout(intcmp, "%d", stabdelay); _if_partout(intcmp, "%d", cmdexedelay); _if_partout(intcmp, "%d", synchloops); _if_partout(intcmp, "%d", bytedelay); _if_partout(intcmp, "%d", pollindex); _if_partout(intcmp, "0x%02x", pollvalue); _if_partout(intcmp, "%d", predelay); _if_partout(intcmp, "%d", postdelay); _if_partout(intcmp, "%d", pollmethod); if(!base && p->ctl_stack_type != CTL_STACK_NONE) dev_stack_out(tsv, p, dev_controlstack_name(p), p->controlstack, CTL_STACK_SIZE); // @@@ may need to remove controlstack and set p->ctl_stack_type to CTL_STACK_NONE if base has controlstack? if(base && (p->ctl_stack_type != base->ctl_stack_type || memcmp(base->controlstack, p->controlstack, sizeof base->controlstack))) dev_stack_out(tsv, p, dev_controlstack_name(p), p->controlstack, CTL_STACK_SIZE); if(!base || memcmp(base->flash_instr, p->flash_instr, sizeof base->flash_instr)) dev_stack_out(tsv, p, "flash_instr", p->flash_instr, FLASH_INSTR_SIZE); if(!base || memcmp(base->eeprom_instr, p->eeprom_instr, sizeof base->eeprom_instr)) dev_stack_out(tsv, p, "eeprom_instr", p->eeprom_instr, EEPROM_INSTR_SIZE); _if_partout(intcmp, "%d", hventerstabdelay); _if_partout(intcmp, "%d", progmodedelay); _if_partout(intcmp, "%d", latchcycles); _if_partout(intcmp, "%d", togglevtg); _if_partout(intcmp, "%d", poweroffdelay); _if_partout(intcmp, "%d", resetdelayms); _if_partout(intcmp, "%d", resetdelayus); _if_partout(intcmp, "%d", hvleavestabdelay); _if_partout(intcmp, "%d", resetdelay); _if_partout(intcmp, "%d", chiperasepulsewidth); _if_partout(intcmp, "%d", chiperasepolltimeout); _if_partout(intcmp, "%d", chiperasetime); _if_partout(intcmp, "%d", programfusepulsewidth); _if_partout(intcmp, "%d", programfusepolltimeout); _if_partout(intcmp, "%d", programlockpulsewidth); _if_partout(intcmp, "%d", programlockpolltimeout); _if_partout(intcmp, "%d", synchcycles); _if_partout(intcmp, "%d", hvspcmdexedelay); _if_partout(intcmp, "0x%02x", idr); _if_partout(intcmp, "0x%02x", rampz); _if_partout(intcmp, "0x%02x", spmcr); _if_partout(intcmp, "0x%02x", eecr); // why is eecr an unsigned short? _if_partout(intcmp, "0x%04x", mcu_base); _if_partout(intcmp, "0x%04x", nvm_base); _if_partout(intcmp, "0x%04x", ocd_base); _if_partout(intcmp, "%d", ocdrev); for(int i=0; i < AVR_OP_MAX; i++) if(!base || opcodecmp(p->op[i], base->op[i])) dev_part_strct_entry(tsv, ".ptop", p->desc, "part", opcodename(i), opcode2str(p->op[i], !tsv)); for(int mi=0; mi < sizeof mem_order/sizeof *mem_order && mem_order[mi]; mi++) { AVRMEM *m, *bm; m = p->mem? avr_locate_mem(p, mem_order[mi]): NULL; bm = base && base->mem? avr_locate_mem(base, mem_order[mi]): NULL; if(!m && bm && !tsv) dev_info("\n memory \"%s\" = NULL;\n", bm->desc); if(!m) continue; if(base && !bm) bm = avr_new_memtype(); if(!tsv) { if(!memorycmp(bm, m)) // same memory bit for bit, no need to instantiate continue; dev_info("\n memory \"%s\"\n", m->desc); } _if_memout_yn(paged); _if_memout(intcmp, m->size > 8192? "0x%x": "%d", size); _if_memout(intcmp, "%d", page_size); _if_memout(intcmp, "%d", num_pages); // why can AVRDUDE not compute this? _if_memout(intcmp, "0x%x", offset); _if_memout(intcmp, "%d", min_write_delay); _if_memout(intcmp, "%d", max_write_delay); _if_memout_yn(pwroff_after_write); _if_n_memout_str(memcmp, 2, dev_sprintf("0x%02x 0x%02x", m->readback[0], m->readback[1]), readback); _if_memout(intcmp, "%d", mode); _if_memout(intcmp, "%d", delay); _if_memout(intcmp, "%d", blocksize); _if_memout(intcmp, "%d", readsize); _if_memout(intcmp, "%d", pollindex); for(int i=0; i < AVR_OP_MAX; i++) if(!bm || opcodecmp(bm->op[i], m->op[i])) dev_part_strct_entry(tsv, ".ptmmop", p->desc, m->desc, opcodename(i), opcode2str(m->op[i], !tsv)); if(!tsv) dev_info(" ;\n"); for(LNODEID lnm=lfirst(p->mem_alias); lnm; lnm=lnext(lnm)) { AVRMEM_ALIAS *ma = ldata(lnm); if(ma->aliased_mem && !strcmp(ma->aliased_mem->desc, m->desc)) { if(tsv) dev_info(".ptmm\t%s\t%s\talias\t%s\n", p->desc, ma->desc, m->desc); else dev_info("\n memory \"%s\"\n alias \"%s\";\n ;\n", ma->desc, m->desc); } } } if(!tsv) dev_info(";\n"); } // -p */[cdosw*] void dev_output_part_defs(char *partdesc) { bool cmdok, waits, opspi, descs, strct, cmpst, raw, all, tsv; char *flags; int nprinted; AVRPART *nullpart = avr_new_part(); if((flags = strchr(partdesc, '/'))) *flags++ = 0; if(!flags && !strcmp(partdesc, "*")) // treat -p * as if it was -p */* flags = "*"; if(!*flags || !strchr("cdosSrw*t", *flags)) { dev_info("%s: flags for developer option -p / not recognised\n", progname); dev_info( "Wildcard examples:\n" " * all known parts\n" " ATtiny10 just this part\n" " *32[0-9] matches ATmega329, ATmega325 and ATmega328\n" " *32? matches ATmega329, ATmega32A, ATmega325 and ATmega328\n" "Flags (one or more of the characters below):\n" " c check address bits in SPI commands and output errors\n" " d description of core part features\n" " o opcodes for SPI programming parts and memories\n" " S show entries of avrdude.conf parts with all values\n" " s show entries of avrdude.conf parts with necessary values\n" " r show entries of avrdude.conf parts as raw dump\n" " w wd_... constants for ISP parts\n" " * all of the above except s\n" " t use tab separated values as much as possible\n" "Note:\n" " -p * same as -p */*\n" ); return; } // redirect stderr to stdout fflush(stderr); fflush(stdout); dup2(1, 2); all = *flags == '*'; cmdok = all || !!strchr(flags, 'c'); descs = all || !!strchr(flags, 'd'); opspi = all || !!strchr(flags, 'o'); waits = all || !!strchr(flags, 'w'); strct = all || !!strchr(flags, 'S'); raw = all || !!strchr(flags, 'r'); cmpst = !!strchr(flags, 's'); tsv = !!strchr(flags, 't'); // go through all memories and add them to the memory order list for(LNODEID ln1 = lfirst(part_list); ln1; ln1 = lnext(ln1)) { AVRPART *p = ldata(ln1); if(p->mem) for(LNODEID lnm=lfirst(p->mem); lnm; lnm=lnext(lnm)) add_mem_order(((AVRMEM *) ldata(lnm))->desc); // same for aliased memories (though probably not needed) if(p->mem_alias) for(LNODEID lnm=lfirst(p->mem_alias); lnm; lnm=lnext(lnm)) add_mem_order(((AVRMEM_ALIAS *) ldata(lnm))->desc); } nprinted = dev_nprinted; for(LNODEID ln1 = lfirst(part_list); ln1; ln1 = lnext(ln1)) { AVRPART *p = ldata(ln1); int flashsize, flashoffset, flashpagesize, eepromsize , eepromoffset, eeprompagesize; if(!descs || tsv) if(dev_nprinted > nprinted) { dev_info("\n"); nprinted = dev_nprinted; } // pattern match the name of the part with command line: FMP_CASEFOLD not available here :( if(fnmatch(partdesc, p->desc, 0) && fnmatch(partdesc, p->id, 0)) continue; if(strct || cmpst) dev_part_strct(p, tsv, cmpst? nullpart: NULL); if(raw) dev_part_raw(p); // identify core flash and eeprom parameters flashsize = flashoffset = flashpagesize = eepromsize = eepromoffset = eeprompagesize = 0; if(p->mem) { for(LNODEID lnm=lfirst(p->mem); lnm; lnm=lnext(lnm)) { AVRMEM *m = ldata(lnm); if(!flashsize && m->desc && 0==strcmp(m->desc, "flash")) { flashsize = m->size; flashpagesize = m->page_size; flashoffset = m->offset; } if(!eepromsize && m->desc && 0==strcmp(m->desc, "eeprom")) { eepromsize = m->size; eepromoffset = m->offset; eeprompagesize = m->page_size; } } } // "real" entries don't seem to have a space in their desc (a bit hackey) if(flashsize && !index(p->desc, ' ')) { int ok, nfuses; AVRMEM *m; OPCODE *oc; ok = 2047; nfuses = 0; if(!p->op[AVR_OP_PGM_ENABLE]) ok &= ~DEV_SPI_EN_CE_SIG; if(!p->op[AVR_OP_CHIP_ERASE]) ok &= ~DEV_SPI_EN_CE_SIG; if((m = avr_locate_mem(p, "flash"))) { if((oc = m->op[AVR_OP_LOAD_EXT_ADDR])) { // @@@ to do: check whether address is put at lsb of third byte } else ok &= ~DEV_SPI_LOAD_EXT_ADDR; if((oc = m->op[AVR_OP_READ_HI])) { if(cmdok) checkaddr(m->size>>1, 1, AVR_OP_READ_HI, oc, p, m); } else ok &= ~DEV_SPI_PROGMEM; if((oc = m->op[AVR_OP_READ_LO])) { if(cmdok) checkaddr(m->size>>1, 1, AVR_OP_READ_LO, oc, p, m); } else ok &= ~DEV_SPI_PROGMEM; if((oc = m->op[AVR_OP_WRITE_HI])) { if(cmdok) checkaddr(m->size>>1, 1, AVR_OP_WRITE_HI, oc, p, m); } else ok &= ~DEV_SPI_PROGMEM; if((oc = m->op[AVR_OP_WRITE_LO])) { if(cmdok) checkaddr(m->size>>1, 1, AVR_OP_WRITE_LO, oc, p, m); } else ok &= ~DEV_SPI_PROGMEM; if((oc = m->op[AVR_OP_LOADPAGE_HI])) { if(cmdok) checkaddr(m->page_size>>1, 1, AVR_OP_LOADPAGE_HI, oc, p, m); } else ok &= ~DEV_SPI_PROGMEM_PAGED; if((oc = m->op[AVR_OP_LOADPAGE_LO])) { if(cmdok) checkaddr(m->page_size>>1, 1, AVR_OP_LOADPAGE_LO, oc, p, m); } else ok &= ~DEV_SPI_PROGMEM_PAGED; if((oc = m->op[AVR_OP_WRITEPAGE])) { if(cmdok) checkaddr(m->size>>1, m->page_size>>1, AVR_OP_WRITEPAGE, oc, p, m); } else ok &= ~DEV_SPI_PROGMEM_PAGED; } else ok &= ~(DEV_SPI_PROGMEM_PAGED | DEV_SPI_PROGMEM); if((m = avr_locate_mem(p, "eeprom"))) { if((oc = m->op[AVR_OP_READ])) { if(cmdok) checkaddr(m->size, 1, AVR_OP_READ, oc, p, m); } else ok &= ~DEV_SPI_EEPROM; if((oc = m->op[AVR_OP_WRITE])) { if(cmdok) checkaddr(m->size, 1, AVR_OP_WRITE, oc, p, m); } else ok &= ~DEV_SPI_EEPROM; if((oc = m->op[AVR_OP_LOADPAGE_LO])) { if(cmdok) checkaddr(m->page_size, 1, AVR_OP_LOADPAGE_LO, oc, p, m); } else ok &= ~DEV_SPI_EEPROM_PAGED; if((oc = m->op[AVR_OP_WRITEPAGE])) { if(cmdok) checkaddr(m->size, m->page_size, AVR_OP_WRITEPAGE, oc, p, m); } else ok &= ~DEV_SPI_EEPROM_PAGED; } else ok &= ~(DEV_SPI_EEPROM_PAGED | DEV_SPI_EEPROM); if((m = avr_locate_mem(p, "signature")) && (oc = m->op[AVR_OP_READ])) { if(cmdok) checkaddr(m->size, 1, AVR_OP_READ, oc, p, m); } else ok &= ~DEV_SPI_EN_CE_SIG; if((m = avr_locate_mem(p, "calibration")) && (oc = m->op[AVR_OP_READ])) { if(cmdok) checkaddr(m->size, 1, AVR_OP_READ, oc, p, m); } else ok &= ~DEV_SPI_CALIBRATION; // actually, some AT90S... parts cannot read, only write lock bits :-0 if( ! ((m = avr_locate_mem(p, "lock")) && m->op[AVR_OP_WRITE])) ok &= ~DEV_SPI_LOCK; if(((m = avr_locate_mem(p, "fuse")) || (m = avr_locate_mem(p, "lfuse"))) && m->op[AVR_OP_READ] && m->op[AVR_OP_WRITE]) nfuses++; else ok &= ~DEV_SPI_LFUSE; if((m = avr_locate_mem(p, "hfuse")) && m->op[AVR_OP_READ] && m->op[AVR_OP_WRITE]) nfuses++; else ok &= ~DEV_SPI_HFUSE; if((m = avr_locate_mem(p, "efuse")) && m->op[AVR_OP_READ] && m->op[AVR_OP_WRITE]) nfuses++; else ok &= ~DEV_SPI_EFUSE; if(descs) { int len = 16-strlen(p->desc); dev_info("%s '%s' =>%*s [0x%02X, 0x%02X, 0x%02X, 0x%08x, 0x%05x, 0x%03x, 0x%06x, 0x%04x, 0x%03x, %d, 0x%03x, 0x%04x, '%s'], # %s %d\n", tsv || all? ".desc": " ", p->desc, len > 0? len: 0, "", p->signature[0], p->signature[1], p->signature[2], flashoffset, flashsize, flashpagesize, eepromoffset, eepromsize, eeprompagesize, nfuses, ok, p->flags, parttype(p), p->config_file, p->lineno ); } } if(opspi) { printallopcodes(p, "part", p->op); if(p->mem) { for(LNODEID lnm=lfirst(p->mem); lnm; lnm=lnext(lnm)) { AVRMEM *m = ldata(lnm); if(m) printallopcodes(p, m->desc, m->op); } } } // print wait delays for AVR family parts if(waits) { if(!(p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI | AVRPART_HAS_TPI | AVRPART_AVR32))) dev_info(".wd_chip_erase %.3f ms %s\n", p->chip_erase_delay/1000.0, p->desc); if(p->mem) { for(LNODEID lnm=lfirst(p->mem); lnm; lnm=lnext(lnm)) { AVRMEM *m = ldata(lnm); // write delays not needed for read-only calibration and signature memories if(strcmp(m->desc, "calibration") && strcmp(m->desc, "signature")) { if(!(p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI | AVRPART_HAS_TPI | AVRPART_AVR32))) { if(m->min_write_delay == m->max_write_delay) dev_info(".wd_%s %.3f ms %s\n", m->desc, m->min_write_delay/1000.0, p->desc); else { dev_info(".wd_min_%s %.3f ms %s\n", m->desc, m->min_write_delay/1000.0, p->desc); dev_info(".wd_max_%s %.3f ms %s\n", m->desc, m->max_write_delay/1000.0, p->desc); } } } } } } } }