/* * Copyright 2000 Brian S. Dean * All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY BRIAN S. DEAN ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BRIAN S. DEAN BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * */ /* $Id$ */ /* * Code to program an Atmel AVR AT90S device using the parallel port. * * Make the following connections: * * Parallel Port Atmel AVR * ------------- ---------------------------- * Pin 2 -> Vcc (see NOTE below) * Pin 3 -> SCK CLOCK IN * Pin 4 -> MOSI Instruction input * Pin 5 -> /RESET * Pin 6,7,8,9 -> Vcc (Can be tied together with Schottky diodes) * Pin 10 <- MISO Data out * Pin 18 <- GND * * NOTE on Vcc connection: make sure your parallel port can supply an * adequate amount of current to power your device. 6-10 mA is * common for parallel port signal lines, but is not guaranteed, * especially for notebook computers. Optionally, you can tie pins * 6, 7, 8, and 9 also to Vcc with Schottky diodes to supply * additional current. If in doubt, don't risk damaging your * parallel port, use an external power supply. */ #include #include #include #include #include #include #include #include #include #include #include #include #define DEFAULT_PARALLEL "/dev/ppi0" char * version = "$Id$"; char * progname; char progbuf[PATH_MAX]; /* temporary buffer of spaces the same length as progname; used for lining up multiline messages */ /* * bit definitions for AVR device connections */ #define AVR_POWER 0xf1 /* bit 0 and 4...7 of data register */ #define AVR_CLOCK 0x02 /* bit 1 of data register */ #define AVR_INSTR 0x04 /* bit 2 of data register */ #define AVR_RESET 0x08 /* bit 3 of data register */ #define AVR_DATA 0x40 /* bit 6 of status register */ /* * PPI registers */ enum { PPIDATA, PPICTRL, PPISTATUS }; /* * AVR memory designations */ typedef enum { AVR_EEPROM, AVR_FLASH, AVR_FLASH_LO, AVR_FLASH_HI } AVRMEM; typedef enum { FMT_AUTO, FMT_SREC, FMT_IHEX, FMT_RBIN } FILEFMT; struct avrpart { char * partdesc; /* long part name */ char * optiontag; /* short part name */ int flash_size; /* size in bytes of flash */ int eeprom_size; /* size in bytes of eeprom */ unsigned char f_readback; /* flash write polled readback value */ unsigned char e_readback[2]; /* eeprom write polled readback values */ int min_write_delay; /* microseconds */ int max_write_delay; /* microseconds */ int chip_erase_delay; /* microseconds */ unsigned char * flash; unsigned char * eeprom; }; /* Need to add information for 2323, 2343, and 4414 */ struct avrpart parts[] = { { "AT90S1200", "1200", 1024, 64, 0xff, { 0x00, 0xff }, 9000, 20000, 20000, NULL, NULL }, { "AT90S2313", "2313", 2048, 128, 0x7f, { 0x80, 0x7f }, 9000, 20000, 20000, NULL, NULL }, { "AT90S2333", "2333", 2048, 128, 0xff, { 0x00, 0xff }, 9000, 20000, 20000, NULL, NULL }, { "AT90S4433", "4433", 4096, 256, 0xff, { 0x00, 0xff }, 9000, 20000, 20000, NULL, NULL }, { "AT90S4434", "4434", 4096, 256, 0xff, { 0x00, 0xff }, 9000, 20000, 20000, NULL, NULL }, { "AT90S8515", "8515", 8192, 512, 0x7f, { 0x80, 0x7f }, 9000, 20000, 20000, NULL, NULL }, { "AT90S8535", "8535", 8192, 512, 0xff, { 0x00, 0xff }, 9000, 20000, 20000, NULL, NULL }, }; #define N_AVRPARTS (sizeof(parts)/sizeof(struct avrpart)) struct fioparms { int op; char * mode; char * iodesc; char * dir; char * rw; }; enum { FIO_READ, FIO_WRITE }; int cmd_dump(int fd, struct avrpart * p, int argc, char *argv[]); int cmd_write(int fd, struct avrpart * p, int argc, char *argv[]); int cmd_quit(int fd, struct avrpart * p, int argc, char *argv[]); struct command { char * name; int (*func)(int fd, struct avrpart * p, int argc, char *argv[]); }; struct command cmd[] = { { "dump", cmd_dump }, { "write", cmd_write }, { "quit", cmd_quit } }; #define NCMDS (sizeof(cmd)/sizeof(struct command)) #define MAX_LINE_LEN 256 /* max line length for ASCII format input files */ char * usage_text = "\n" "Usage: avrprog [options]\n" "\n" " Available Options:\n" "\n" " -m MemType : select memory type for reading or writing\n" " \"e\", \"eeprom\" = EEPROM\n" " \"f\", \"flash\" = FLASH (default)\n" "\n" " -i Filename : select input file, \"-\" = stdin\n" "\n" " -o Filename : select output file, \"-\" = stdout\n" "\n" " -f Format : select input / output file format\n" " \"i\" = Intel Hex\n" " \"s\" = Motorola S-Record\n" " \"r\" = Raw binary (default for output)\n" " \"a\" = Auto detect (default for input)\n" " (valid for input only)\n" " \n" "\n" " -p Part : select Atmel part number (see below for valid parts)\n" "\n" " -P Parallel : select parallel port device name (default = /dev/ppi0)\n" "\n" " -F : override invalid device signature check\n" "\n" " -t : enter terminal mode (or read commands from stdin)\n" "\n" " -e : perform a chip erase (required before programming)\n" "\n"; int list_valid_parts ( FILE * f, char * prefix ) { int i; for (i=0; i> (7-i)) & 0x01; r = avr_txrx_bit ( fd, b ); rbyte = rbyte | (r << (7-i)); } return rbyte; } /* * transmit an AVR device command and return the results; 'cmd' and * 'res' must point to at least a 4 byte data buffer */ int avr_cmd ( int fd, unsigned char cmd[4], unsigned char res[4] ) { int i; for (i=0; i<4; i++) { res[i] = avr_txrx(fd, cmd[i]); } return 0; } /* * read a byte of data from the indicated memory region */ unsigned char avr_read_byte ( int fd, struct avrpart * p, AVRMEM memtype, unsigned short addr ) { unsigned char cmd[4]; unsigned char res[4]; switch (memtype) { case AVR_FLASH_LO: cmd[0] = 0x20; break; case AVR_FLASH_HI: cmd[0] = 0x28; break; case AVR_EEPROM: cmd[0] = 0xa0; break; default: fprintf(stderr, "%s: avr_read_byte(); internal error: invalid memtype=%d\n", progname, memtype); exit(1); break; } cmd[1] = addr >> 8; /* high order bits of address */ cmd[2] = addr & 0x0ff; /* low order bits of address */ cmd[3] = 0; /* don't care */ avr_cmd(fd, cmd, res); return res[3]; } /* * read the entirety of the specified memory type into the * corresponding buffer of the avrpart pointed to by 'p'. */ int avr_read ( int fd, struct avrpart * p, AVRMEM memtype ) { unsigned char rbyte, memt; unsigned short n, start, end, i, bi; unsigned char * buf; int bufsize; start = 0; switch (memtype) { case AVR_FLASH : memt = AVR_FLASH_LO; buf = p->flash; n = p->flash_size/2; bufsize = p->flash_size; break; case AVR_EEPROM : memt = memtype; buf = p->eeprom; n = p->eeprom_size; bufsize = p->eeprom_size; break; default: fprintf(stderr, "%s: avr_read(); internal error: invalid memtype=%d\n", progname, memtype); exit(1); break; } end = start+n; bi = 0; for (i=start; i> 8; /* high order bits of address */ cmd[2] = addr & 0x0ff; /* low order bits of address */ cmd[3] = data; /* data */ avr_cmd(fd, cmd, res); tries = 0; ready = 0; while (!ready) { usleep(p->min_write_delay); /* typical flash/eeprom write delay */ r = avr_read_byte(fd, p, memtype, addr); if ((data == p->f_readback) || (data == p->e_readback[0]) || (data == p->e_readback[1])) { /* * use an extra long delay when we happen to be writing values * used for polled data read-back. In this case, polling * doesn't work, and we need to delay the worst case write time * specified for the chip. */ usleep(p->max_write_delay); ready = 1; } else if (r == data) { ready = 1; } tries++; if (!ready && tries > 10) { /* * we couldn't write the data, indicate our displeasure by * returning an error code */ return -1; } } return 0; } /* * Write the whole memory region (flash or eeprom, specified by * 'memtype') from the corresponding buffer of the avrpart pointed to * by 'p'. All of the memory is updated, however, input data of 0xff * is not actually written out, because empty flash and eeprom * contains 0xff, and you can't actually write 1's, only 0's. */ int avr_write ( int fd, struct avrpart * p, AVRMEM memtype ) { unsigned char data, memt; unsigned short start, end, i, bi; int nl; int rc; unsigned char * buf; int bufsize; start = 0; switch (memtype) { case AVR_FLASH : buf = p->flash; bufsize = p->flash_size; end = start+bufsize/2; memt = AVR_FLASH_LO; break; case AVR_EEPROM : buf = p->eeprom; bufsize = p->eeprom_size; end = start+bufsize; memt = memtype; break; default: fprintf(stderr, "%s: avr_write(); internal error: invalid memtype=%d\n", progname, memtype); exit(1); break; } bi = 0; for (i=start; ichip_erase_delay); return 0; } /* * read the AVR device's signature bytes */ int avr_signature ( int fd, unsigned char sig[4] ) { unsigned char cmd[4] = {0x30, 0x00, 0x00, 0x00}; unsigned char res[4]; int i; for (i=0; i<4; i++) { cmd[2] = i; avr_cmd(fd, cmd, res); sig[i] = res[3]; } return 0; } /* * apply power to the AVR processor */ void avr_powerup ( int fd ) { ppi_set(fd, PPIDATA, AVR_POWER); /* power up */ usleep(100000); } /* * remove power from the AVR processor */ void avr_powerdown ( int fd ) { ppi_clr(fd, PPIDATA, AVR_POWER); /* power down */ } /* * initialize the AVR device and prepare it to accept commands */ int avr_initialize ( int fd, struct avrpart * p ) { int rc; int tries; avr_powerup(fd); ppi_clr(fd, PPIDATA, AVR_CLOCK); ppi_clr(fd, PPIDATA, AVR_RESET); ppi_pulse(fd, PPIDATA, AVR_RESET); usleep(20000); /* 20 ms XXX should be a per-chip parameter */ /* * Enable programming mode. If we are programming an AT90S1200, we * can only issue the command and hope it worked. If we are using * one of the other chips, the chip will echo 0x53 when issuing the * third byte of the command. In this case, try up to 32 times in * order to possibly get back into sync with the chip if we are out * of sync. */ if (strcmp(p->partdesc, "AT90S1200")==0) { avr_program_enable ( fd ); } else { tries = 0; do { rc = avr_program_enable ( fd ); if (rc == 0) break; ppi_pulse(fd, PPIDATA, AVR_CLOCK); tries++; } while (tries < 32); /* * can't sync with the device, maybe it's not attached? */ if (tries == 32) { fprintf ( stderr, "%s: AVR device not responding\n", progname ); return -1; } } return 0; } /* * infinite loop, sensing on the pin that we use to read data out of * the device; this is a debugging aid, you can insert a call to this * function in 'main()' and can use it to determine whether your sense * pin is actually sensing. */ int ppi_sense_test ( int fd ) { unsigned char v, pv; pv = 1; do { usleep(100000); /* check every 100 ms */ v = ppi_get(fd, PPISTATUS, AVR_DATA); if (v != pv) { fprintf ( stderr, "sense bit = %d\n", v ); } pv = v; } while(1); return 0; } /* * usage message */ void usage ( void ) { fprintf ( stderr, "%s", usage_text ); fprintf(stderr, " Valid Parts for the -p option are:\n"); list_valid_parts(stderr, " "); fprintf(stderr, "\n"); } char * fmtstr ( FILEFMT format ) { switch (format) { case FMT_AUTO : return "auto-detect"; break; case FMT_SREC : return "Motorola S-Record"; break; case FMT_IHEX : return "Intel Hex"; break; case FMT_RBIN : return "raw binary"; break; default : return "invalid format"; break; }; } int b2ihex ( unsigned char * inbuf, int bufsize, int recsize, int startaddr, char * outfile, FILE * outf ) { unsigned char * buf; unsigned int nextaddr; int n; int i; unsigned char cksum; if (recsize > 255) { fprintf ( stderr, "%s: recsize=%d, must be < 256\n", progname, recsize ); return -1; } nextaddr = startaddr; buf = inbuf; while (bufsize) { n = recsize; if (n > bufsize) n = bufsize; if (n) { cksum = 0; fprintf ( outf, ":%02X%04X00", n, nextaddr ); cksum += n + ((nextaddr >> 8) & 0x0ff) + (nextaddr & 0x0ff); for (i=0; i> 8) & 0x0ff) + (nextaddr & 0x0ff); cksum = -cksum; fprintf ( outf, "%02X\n", cksum ); return 0; } int ihex2b ( char * infile, FILE * inf, unsigned char * outbuf, int bufsize ) { unsigned char buffer [ MAX_LINE_LEN ]; unsigned char * buf; unsigned int prevaddr, nextaddr; unsigned int b; int n; int i, j; unsigned int cksum, rectype; int lineno; lineno = 0; prevaddr = 0; buf = outbuf; while (fgets((char *)buffer,MAX_LINE_LEN,inf)!=NULL) { lineno++; if (buffer[0] != ':') continue; if (sscanf((char *)&buffer[1], "%02x%04x%02x", &n, &nextaddr, &rectype) != 3) { fprintf(stderr, "%s: invalid record at line %d of \"%s\"\n", progname, lineno, infile); exit(1); } if ((rectype != 0) && (rectype != 1)) { fprintf(stderr, "%s: don't know how to deal with rectype=%d " "at line %d of %s\n", progname, rectype, lineno, infile); exit(1); } if (n && ((nextaddr + n) > bufsize)) { fprintf(stderr, "%s: address 0x%04x out of range at line %d of %s\n", progname, nextaddr+n, lineno, infile); return -1; } /* start computing a checksum */ cksum = n + ((nextaddr >> 8 ) & 0x0ff) + (nextaddr & 0x0ff); for (i=0; iop) { case FIO_READ: rc = fread(buf, 1, size, f); break; case FIO_WRITE: rc = fwrite(buf, 1, size, f); break; default: fprintf(stderr, "%s: fileio: invalid operation=%d\n", progname, fio->op); return -1; } if (rc < size) { fprintf(stderr, "%s: %s error %s %s: %s; %s %d of the expected %d bytes\n", progname, fio->iodesc, fio->dir, filename, strerror(errno), fio->rw, rc, size); return -1; } return rc; } int fileio_ihex ( struct fioparms * fio, char * filename, FILE * f, unsigned char * buf, int size ) { int rc; switch (fio->op) { case FIO_WRITE: rc = b2ihex(buf, size, 32, 0, filename, f); if (rc) { return -1; } break; case FIO_READ: rc = ihex2b(filename, f, buf, size); if (rc) return -1; break; default: fprintf(stderr, "%s: invalid Intex Hex file I/O operation=%d\n", progname, fio->op); return -1; break; } return 0; } int fileio_srec ( struct fioparms * fio, char * filename, FILE * f, unsigned char * buf, int size ) { fprintf(stderr, "%s: Motorola S-Record %s format not yet supported\n", progname, fio->iodesc); return -1; } int fileio_setparms ( int op, struct fioparms * fp ) { fp->op = op; switch (op) { case FIO_READ: fp->mode = "r"; fp->iodesc = "input"; fp->dir = "from"; fp->rw = "read"; break; case FIO_WRITE: fp->mode = "w"; fp->iodesc = "output"; fp->dir = "to"; fp->rw = "wrote"; break; default: fprintf(stderr, "%s: invalid I/O operation %d\n", progname, op); return -1; break; } return 0; } int fmt_autodetect ( char * fname ) { FILE * f; unsigned char buf[MAX_LINE_LEN]; int i; int len; int found; f = fopen(fname, "r"); if (f == NULL) { fprintf(stderr, "%s: error opening %s: %s\n", progname, fname, strerror(errno)); return -1; } while (fgets((char *)buf, MAX_LINE_LEN, f)!=NULL) { buf[MAX_LINE_LEN-1] = 0; len = strlen((char *)buf); if (buf[len-1] == '\n') buf[--len] = 0; /* check for binary data */ found = 0; for (i=0; i 127) { found = 1; break; } } if (found) return FMT_RBIN; /* check for lines that look like intel hex */ if ((buf[0] == ':') && (len >= 11)) { found = 1; for (i=1; i= 10) && isdigit(buf[1])) { found = 1; for (i=1; ieeprom; size = p->eeprom_size; break; case AVR_FLASH: buf = p->flash; size = p->flash_size; break; default: fprintf(stderr, "%s: invalid memory type for %s: %d\n", progname, fio.iodesc, memtype); return -1; } if (fio.op == FIO_READ) { /* 0xff fill unspecified memory */ for (i=0; i> 4]; b[j++] = hexdata[(p[i] & 0x0f)]; if (i < 15) b[j++] = ' '; } for (i=j; i len) n = len; hexdump_line(dst1, p, n, 48); chardump_line(dst2, p, n, 16); fprintf(stdout, "%04x %s |%s|\n", addr, dst1, dst2); len -= n; addr += n; p += n; } return 0; } int cmd_dump ( int fd, struct avrpart * p, int argc, char * argv[] ) { char * e; int i, j; int len, maxsize; AVRMEM memtype; unsigned short addr, daddr; char * buf; if (argc != 4) { fprintf(stderr, "Usage: dump flash|eeprom \n"); return -1; } if (strcmp(argv[1],"flash")==0) { memtype = AVR_FLASH; maxsize = p->flash_size; } else if (strcmp(argv[1],"eeprom")==0) { memtype = AVR_EEPROM; maxsize = p->eeprom_size; } else { fprintf(stderr, "%s (dump): invalid memory type \"%s\"\n", progname, argv[1]); return -1; } addr = strtoul(argv[2], &e, 0); if (*e || (e == argv[2])) { fprintf(stderr, "%s (dump): can't parse address \"%s\"\n", progname, argv[2]); return -1; } len = strtol(argv[3], &e, 0); if (*e || (e == argv[3])) { fprintf(stderr, "%s (dump): can't parse length \"%s\"\n", progname, argv[3]); return -1; } if (addr > maxsize) { fprintf(stderr, "%s (dump): address 0x%04x is out of range for %s memory\n", progname, addr, memtypestr(memtype)); return -1; } if ((addr + len) > maxsize) { fprintf(stderr, "%s (dump): selected address and length exceed " "range for %s memory\n", progname, memtypestr(memtype)); return -1; } buf = malloc(len); if (buf == NULL) { fprintf(stderr, "%s (dump): out of memory\n", progname); return -1; } j = 0; daddr = addr; if (memtype == AVR_FLASH) { daddr = addr / 2; if (addr & 0x01) { buf[j++] = avr_read_byte( fd, p, AVR_FLASH_HI, daddr); daddr++; } } i = daddr; while (j < len) { if (memtype == AVR_FLASH) { buf[j++] = avr_read_byte( fd, p, AVR_FLASH_LO, i); if (j < len) { buf[j++] = avr_read_byte( fd, p, AVR_FLASH_HI, i); } } else { buf[j++] = avr_read_byte( fd, p, AVR_EEPROM, i); } i++; } hexdump_buf(stdout, addr, buf, len); fprintf(stdout, "\n"); free(buf); return 0; } int cmd_write ( int fd, struct avrpart * p, int argc, char * argv[] ) { char * e; int i, j; int len, maxsize; AVRMEM memtype; unsigned short addr, daddr; char * buf; int rc; if (argc < 4) { fprintf(stderr, "Usage: write flash|eeprom ... byteN>\n"); return -1; } if (strcmp(argv[1],"flash")==0) { memtype = AVR_FLASH; maxsize = p->flash_size; } else if (strcmp(argv[1],"eeprom")==0) { memtype = AVR_EEPROM; maxsize = p->eeprom_size; } else { fprintf(stderr, "%s (write): invalid memory type \"%s\"\n", progname, argv[1]); return -1; } addr = strtoul(argv[2], &e, 0); if (*e || (e == argv[2])) { fprintf(stderr, "%s (write): can't parse address \"%s\"\n", progname, argv[2]); return -1; } if (addr > maxsize) { fprintf(stderr, "%s (write): address 0x%04x is out of range for %s memory\n", progname, addr, memtypestr(memtype)); return -1; } /* number of bytes to write at the specified address */ len = argc - 3; if ((addr + len) > maxsize) { fprintf(stderr, "%s (write): selected address and # bytes exceed " "range for %s memory\n", progname, memtypestr(memtype)); return -1; } buf = malloc(len); if (buf == NULL) { fprintf(stderr, "%s (write): out of memory\n", progname); return -1; } for (i=3; i "); while (fgets(cmdbuf, MAX_LINE_LEN, stdin) != NULL) { len = strlen(cmdbuf); if (cmdbuf[len-1] == '\n') cmdbuf[--len] = 0; /* * find the start of the command, skipping any white space */ q = cmdbuf; while (*q && isspace(*q)) q++; /* skip blank lines and comments */ if (!*q || (*q == '#')) continue; /* tokenize command line */ argc = tokenize(q, &argv); fprintf(stdout, ">>> "); for (i=0; i 0) { rc = 0; break; } fprintf(stdout, "avrprog> "); } return rc; } int avr_initmem ( struct avrpart * p ) { p->flash = (unsigned char *) malloc(p->flash_size); if (p->flash == NULL) { fprintf(stderr, "%s: can't alloc buffer for flash size of %d bytes\n", progname, p->flash_size); exit(1); } p->eeprom = (unsigned char *) malloc(p->eeprom_size); if (p->eeprom == NULL) { fprintf(stderr, "%s: can't alloc buffer for eeprom size of %d bytes\n", progname, p->eeprom_size); exit(1); } return 0; } int verify_data(struct avrpart * p, struct avrpart * v, AVRMEM memtype) { int i; unsigned char * buf1, * buf2; int size; switch (memtype) { case AVR_FLASH: buf1 = p->flash; buf2 = v->flash; size = p->flash_size; break; case AVR_EEPROM: buf1 = p->eeprom; buf2 = v->eeprom; size = p->eeprom_size; break; default: fprintf(stderr, "%s: invalid memory type = %d for data verification\n", progname, memtype); return -1; } for (i=0; ipartdesc, progbuf, p->flash_size, progbuf, p->eeprom_size, progbuf, p->min_write_delay, p->max_write_delay, progbuf, p->chip_erase_delay, progbuf, p->f_readback, progbuf, p->e_readback[0], p->e_readback[1]); fprintf(stderr, "\n"); /* * open the parallel port */ fd = open ( parallel, O_RDWR ); if (fd < 0) { fprintf ( stderr, "%s: can't open device \"%s\": %s\n\n", progname, parallel, strerror(errno) ); return 1; } exitrc = 0; /* * initialize the chip in preperation for accepting commands */ rc = avr_initialize(fd,p); if (rc < 0) { fprintf ( stderr, "%s: initialization failed, rc=%d\n", progname, rc ); exitrc = 1; goto main_exit; } fprintf ( stderr, "%s: AVR device initialized and ready to accept instructions\n", progname ); /* * Let's read the signature bytes to make sure there is at least a * chip on the other end that is responding correctly. A check * against 0xffffffff should ensure that the signature bytes are * valid. */ avr_signature(fd, sig); fprintf(stderr, "%s: Device signature = 0x", progname); for (i=0; i<4; i++) fprintf(stderr, "%02x", sig[i]); fprintf(stderr, "\n"); memset(nulldev,0xff,4); if (memcmp(sig,nulldev,4)==0) { fprintf(stderr, "%s: Yikes! Invalid device signature.\n", progname); if (!ovsigck) { fprintf(stderr, "%sDouble check connections and try again, or use -F to override\n" "%sthis check.\n\n", progbuf, progbuf ); exit(1); } } fprintf(stderr, "\n"); if (erase) { /* * erase the chip's flash and eeprom memories, this is required * before the chip can accept new programming */ fprintf(stderr, "%s: erasing chip\n", progname ); avr_chip_erase(fd,p); avr_initialize(fd,p); fprintf(stderr, "%s: done.\n", progname ); } if (!terminal && ((inputf==NULL) && (outputf==NULL))) { /* * Check here to see if any other operations were selected and * generate an error message because if they were, we need either * an input or and output file, but one was not selected. * Otherwise, we just shut down. */ if (readorwrite) { fprintf(stderr, "%s: you must specify an input or an output file\n", progname); exitrc = 1; } goto main_exit; } if (terminal) { /* * terminal mode */ exitrc = go_interactive(fd, p); } else if (doread) { /* * read out the specified device memory and write it to a file */ fprintf(stderr, "%s: reading %s memory:\n", progname, memtypestr(memtype)); rc = avr_read ( fd, p, memtype ); if (rc) { fprintf(stderr, "%s: failed to read all of %s memory, rc=%d\n", progname, memtypestr(memtype), rc); exitrc = 1; goto main_exit; } fprintf(stderr, "%s: writing output file \"%s\"\n", progname, outputf); rc = fileio(FIO_WRITE, outputf, filefmt, p, memtype); if (rc < 0) { fprintf(stderr, "%s: terminating\n", progname); exitrc = 1; goto main_exit; } } else { /* * write the selected device memory using data from a file; first * read the data from the specified file */ fprintf(stderr, "%s: reading input file \"%s\"\n", progname, inputf); rc = fileio(FIO_READ, inputf, filefmt, p, memtype ); if (rc < 0) { fprintf(stderr, "%s: terminating\n", progname); exitrc = 1; goto main_exit; } size = rc; /* * write the buffer contents to the selected memory type */ fprintf(stderr, "%s: writing %s:\n", progname, memtypestr(memtype)); if (!nowrite) { rc = avr_write ( fd, p, memtype ); } else { /* * test mode, don't actually write to the chip, output the buffer * to stdout in intel hex instead */ rc = fileio(FIO_WRITE, "-", FMT_IHEX, p, memtype); } if (rc) { fprintf ( stderr, "%s: failed to write flash memory, rc=%d\n", progname, rc ); exitrc = 1; goto main_exit; } } if (!doread && verify) { /* * verify that the in memory file (p->flash or p->eeprom) is the * same as what is on the chip */ fprintf(stderr, "%s: verifying %s memory against %s:\n", progname, memtypestr(memtype), inputf); fprintf(stderr, "%s: reading on-chip %s data:\n", progname, memtypestr(memtype)); rc = avr_read ( fd, v, memtype ); if (rc) { fprintf(stderr, "%s: failed to read all of %s memory, rc=%d\n", progname, memtypestr(memtype), rc); exitrc = 1; goto main_exit; } fprintf(stderr, "%s: verifying\n", progname); rc = verify_data(p, v, memtype); if (rc) { fprintf(stderr, "%s: verification error; content mismatch\n", progname); exitrc = 1; goto main_exit; } fprintf(stderr, "%s: data verified\n", progname); } main_exit: /* * program complete */ avr_powerdown(fd); ppi_clr(fd, PPIDATA, 0xff); ppi_clr(fd, PPIDATA, AVR_RESET); close(fd); fprintf(stderr, "\n%s done. Thank you.\n\n", progname); return exitrc; }