/* * Copyright 2000 Brian S. Dean * All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY BRIAN S. DEAN ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BRIAN S. DEAN BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * */ /* $Id$ */ /* * Code to program an Atmel AVR AT90S device using the parallel port. * * Make the following connections: * * Parallel Port Atmel AVR * ------------- ---------------------------- * Pin 2 -> Vcc (see NOTE below) * Pin 3 -> SCK CLOCK IN * Pin 4 -> MOSI Instruction input * Pin 5 -> /RESET * Pin 6,7,8,9 -> Vcc (Can be tied together with Schottky diodes) * Pin 10 <- MISO Data out * Pin 18 <- GND * * NOTE on Vcc connection: make sure your parallel port can supply an * adequate amount of current to power your device. 6-10 mA is * common for parallel port signal lines, but is not guaranteed, * especially for notebook computers. Optionally, you can tie pins * 6, 7, 8, and 9 also to Vcc with Schottky diodes to supply * additional current. If in doubt, don't risk damaging your * parallel port, use an external power supply. */ #include #include #include #include #include #include #include #include #include #include #define PARALLEL "/dev/ppi0" char * version = "$Id$"; char * progname; /* * bit definitions for AVR device connections */ #define AVR_POWER 0xf1 /* bit 0 and 4...7 of data register */ #define AVR_CLOCK 0x02 /* bit 1 of data register */ #define AVR_INSTR 0x04 /* bit 2 of data register */ #define AVR_RESET 0x08 /* bit 3 of data register */ #define AVR_DATA 0x40 /* bit 6 of status register */ /* * PPI registers */ enum { PPIDATA, PPICTRL, PPISTATUS }; /* * AVR memory designations */ typedef enum { AVR_EEPROM, AVR_FLASH, AVR_FLASH_LO, AVR_FLASH_HI } AVRMEM; struct avrpart { char * partdesc; char * optiontag; int flash_size; int eeprom_size; }; struct avrpart parts[] = { { "AT90S8515", "8515", 8192, 512 }, { "AT90S2313", "2313", 2048, 128 }, { "AT90S1200", "1200", 1024, 64 } }; /* * set 'get' and 'set' appropriately for subsequent passage to ioctl() * to get/set the specified PPI registers. */ int ppi_getops ( int reg, unsigned long * get, unsigned long * set ) { switch (reg) { case PPIDATA: *set = PPISDATA; *get = PPIGDATA; break; case PPICTRL: *set = PPISCTRL; *get = PPIGCTRL; break; case PPISTATUS: *set = PPISSTATUS; *get = PPIGSTATUS; break; default: fprintf ( stderr, "%s: avr_set(): invalid register=%d\n", progname, reg ); return -1; break; } return 0; } /* * set the indicated bit of the specified register. */ int ppi_set ( int fd, int reg, int bit ) { unsigned char v; unsigned long get, set; int rc; rc = ppi_getops ( reg, &get, &set ); if (rc) return -1; ioctl(fd, get, &v); v |= bit; ioctl(fd, set, &v); return 0; } /* * clear the indicated bit of the specified register. */ int ppi_clr ( int fd, int reg, int bit ) { unsigned char v; unsigned long get, set; int rc; rc = ppi_getops ( reg, &get, &set ); if (rc) return -1; ioctl(fd, get, &v); v &= ~bit; ioctl(fd, set, &v); return 0; } /* * get the indicated bit of the specified register. */ int ppi_get ( int fd, int reg, int bit ) { unsigned char v; unsigned long get, set; int rc; rc = ppi_getops ( reg, &get, &set ); if (rc) return -1; ioctl(fd, get, &v); v &= bit; return (v == bit); } /* * toggle the indicated bit of the specified register. */ int ppi_toggle ( int fd, int reg, int bit ) { unsigned char v; unsigned long get, set; int rc; rc = ppi_getops ( reg, &get, &set ); if (rc) return -1; ioctl(fd, get, &v); v ^= bit; ioctl(fd, set, &v); return 0; } /* * pulse the indicated bit of the specified register. */ int ppi_pulse ( int fd, int reg, int bit ) { ppi_toggle(fd, reg, bit); ppi_toggle(fd, reg, bit); return 0; } /* * transmit and receive a bit of data to/from the AVR device */ int avr_txrx_bit ( int fd, int bit ) { int r; /* * read the result bit (it is either valid from a previous clock * pulse or it is ignored in the current context) */ r = ppi_get(fd, PPISTATUS, AVR_DATA); /* set the data input line as desired */ if (bit) ppi_set(fd, PPIDATA, AVR_INSTR); else ppi_clr(fd, PPIDATA, AVR_INSTR); /* * pulse the clock line, clocking in the MOSI data, and clocking out * the next result bit */ ppi_pulse(fd, PPIDATA, AVR_CLOCK); return r; } /* * transmit and receive a byte of data to/from the AVR device */ unsigned char avr_txrx ( int fd, unsigned char byte ) { int i; unsigned char r, b, rbyte; rbyte = 0; for (i=0; i<8; i++) { b = (byte >> (7-i)) & 0x01; r = avr_txrx_bit ( fd, b ); rbyte = rbyte | (r << (7-i)); } return rbyte; } /* * transmit an AVR device command and return the results; 'cmd' and * 'res' must point to at least a 4 byte data buffer */ int avr_cmd ( int fd, unsigned char cmd[4], unsigned char res[4] ) { int i; for (i=0; i<4; i++) { res[i] = avr_txrx(fd, cmd[i]); } return 0; } /* * read a byte of data from the indicated memory region */ unsigned char avr_read_byte ( int fd, AVRMEM memtype, unsigned short addr ) { unsigned char cmd[4]; unsigned char res[4]; switch (memtype) { case AVR_FLASH_LO: cmd[0] = 0x20; break; case AVR_FLASH_HI: cmd[0] = 0x28; break; case AVR_EEPROM: cmd[0] = 0xa0; /* addr &= 0x7f; */ break; default: fprintf(stderr, "%s: avr_read_byte(); internal error: invalid memtype=%d\n", progname, memtype); exit(1); break; } cmd[1] = addr >> 8; /* high order bits of address */ cmd[2] = addr & 0x0ff; /* low order bits of address */ cmd[3] = 0; /* don't care */ avr_cmd(fd, cmd, res); return res[3]; } /* * read 'n' words of data from the indicated memory region. If the * flash memory is being read, n*2 bytes will be read into 'buf'; if * the eeprom is being read, 'n' bytes will be read into 'buf'. */ int avr_read ( int fd, AVRMEM memtype, unsigned start, unsigned n, unsigned char * buf, int bufsize ) { unsigned char rbyte, memt; unsigned short end, i, bi; switch (memtype) { case AVR_FLASH : memt = AVR_FLASH_LO; break; case AVR_EEPROM : memt = memtype; break; default: fprintf(stderr, "%s: avr_read(); internal error: invalid memtype=%d\n", progname, memtype); exit(1); break; } end = start+n; bi = 0; for (i=start; i> 8; /* high order bits of address */ cmd[2] = addr & 0x0ff; /* low order bits of address */ cmd[3] = data; /* data */ avr_cmd(fd, cmd, res); tries = 0; ready = 0; while (!ready) { usleep(5000); /* flash write delay */ r = avr_read_byte(fd, memtype, addr); if (data == 0x7f) { usleep(20000); /* long delay for 0x7f since polling doesn't work */ ready = 1; } else if (r == data) { ready = 1; } tries++; if (!ready && tries > 10) { /* * we couldn't write the data, indicate our displeasure by * returning an error code */ return -1; } } return 0; } /* * write 'bufsize' bytes of data to the indicated memory region. */ int avr_write ( int fd, AVRMEM memtype, unsigned start, unsigned char * buf, int bufsize ) { unsigned char data, memt; unsigned short end, i, bi; int nl; int rc; switch (memtype) { case AVR_FLASH : end = start+bufsize/2; memt = AVR_FLASH_LO; break; case AVR_EEPROM : end = start+bufsize; memt = memtype; break; default: fprintf(stderr, "%s: avr_write(); internal error: invalid memtype=%d\n", progname, memtype); exit(1); break; } bi = 0; for (i=start; ipartdesc, "AT90S1200")==0) { avr_program_enable ( fd ); } else { tries = 0; do { rc = avr_program_enable ( fd ); if (rc == 0) break; ppi_pulse(fd, PPIDATA, AVR_CLOCK); tries++; } while (tries < 32); /* * can't sync with the device, maybe it's not attached? */ if (tries == 32) { fprintf ( stderr, "%s: AVR device not responding\n", progname ); return -1; } } return 0; } /* * infinite loop, sensing on the pin that we use to read data out of * the device; this is a debugging aid, you can insert a call to this * function in 'main()' and can use it to determine whether your sense * pin is actually sensing. */ int ppi_sense_test ( int fd ) { unsigned char v, pv; pv = 1; do { usleep(100000); /* check every 100 ms */ v = ppi_get(fd, PPISTATUS, AVR_DATA); if (v != pv) { fprintf ( stderr, "sense bit = %d\n", v ); } pv = v; } while(1); return 0; } /* * usage message */ void usage ( void ) { int i; fprintf ( stderr, "\nUsage: %s [options]\n" "\n" " Available Options:\n" " -r : erase the flash and eeprom (required before programming)\n" " -e : select eeprom for reading or writing\n" " -f : select flash for reading or writing\n" " -p Part : see below for valid parts\n" " -u InputFile : write data from this file\n" " -o OutputFile : write data to this file\n" " -F : override invalid device signature check\n" " -s : read device signature bytes\n" "\n", progname ); fprintf(stderr, " Valid Parts for the -p option are:\n"); for (i=0; ipartdesc, p->flash_size, p->eeprom_size); fprintf(stderr, "\n"); if (p->flash_size >= p->eeprom_size) size = p->flash_size; else size = p->eeprom_size; buf = (unsigned char *) malloc(size); if (buf == NULL) { fprintf(stderr, "%s: out of memory allocating %d bytes for on-chip memory buffer\n", progname, size); return 1; } /* * open the parallel port */ fd = open ( PARALLEL, O_RDWR ); if (fd < 0) { fprintf ( stderr, "%s: can't open device \"%s\": %s\n", progname, PARALLEL, strerror(errno) ); return 1; } exitrc = 0; /* * initialize the chip in preperation for accepting commands */ rc = avr_initialize(fd,p); if (rc < 0) { fprintf ( stderr, "%s: initialization failed, rc=%d\n", progname, rc ); exitrc = 1; goto main_exit; } fprintf ( stderr, "%s: AVR device initialized and ready to accept instructions\n", progname ); /* * Let's read the signature bytes to make sure there is at least a * chip on the other end that is responding correctly. A check * against 0xffffffff should ensure that the signature bytes are * valid. */ avr_signature(fd, sig); fprintf(stderr, "%s: Device signature = 0x", progname); for (i=0; i<4; i++) fprintf(stderr, "%02x", sig[i]); fprintf(stderr, "\n"); memset(nulldev,0xff,4); if (memcmp(sig,nulldev,4)==0) { len = strlen(progname) + 2; for (i=0; iflash_size; fprintf ( stderr, "%s: reading flash memory:\n", progname ); rc = avr_read ( fd, AVR_FLASH, 0, size/2, buf, size ); if (rc) { fprintf ( stderr, "%s: failed to read all of flash memory, rc=%d\n", progname, rc ); exitrc = 1; goto main_exit; } } else if (eeprom) { size = p->eeprom_size; fprintf ( stderr, "%s: reading eeprom memory:\n", progname ); rc = avr_read ( fd, AVR_EEPROM, 0, size, buf, size ); if (rc) { fprintf ( stderr, "%s: failed to read all of eeprom memory, rc=%d\n", progname, rc ); exitrc = 1; goto main_exit; } } /* * write it out to the specified file */ rc = write ( iofd, buf, size ); if (rc < 0) { fprintf(stderr, "%s: write error: %s\n", progname, strerror(errno)); exitrc = 1; goto main_exit; } else if (rc != size) { fprintf(stderr, "%s: wrote only %d bytes of the expected %d\n", progname, rc, size); exitrc = 1; goto main_exit; } } else { /* * write the selected device memory using data from a file */ if (flash) { size = p->flash_size; } else if (eeprom) { size = p->eeprom_size; } /* * read in the data file that will be used to write into the chip */ rc = read(iofd, buf, size); if (rc < 0) { fprintf(stderr, "%s: read error from \"%s\": %s\n", progname, inputf, strerror(errno)); exitrc = 1; goto main_exit; } size = rc; /* * write the buffer contents to the selected memory type */ if (flash) { fprintf(stderr, "%s: writing %d bytes into flash memory:\n", progname, size); rc = avr_write ( fd, AVR_FLASH, 0, buf, size ); if (rc) { fprintf ( stderr, "%s: failed to write flash memory, rc=%d\n", progname, rc ); exitrc = 1; goto main_exit; } } else if (eeprom) { fprintf(stderr, "%s: writing %d bytes into eeprom memory:\n", progname, size); rc = avr_write ( fd, AVR_EEPROM, 0, buf, size ); if (rc) { fprintf ( stderr, "%s: failed to write eeprom memory, rc=%d\n", progname, rc ); exitrc = 1; goto main_exit; } } } main_exit: /* * program complete */ avr_powerdown(fd); ppi_clr(fd, PPIDATA, 0xff); ppi_clr(fd, PPIDATA, AVR_RESET); close(fd); close(iofd); fprintf(stderr, "\n" ); return exitrc; }