The new file type I is essentially Intel HEX that, on download, inserts
comments next to data records with the resolved effective address and an
ASCII dump of that same record. On upload the `I` format is permissive
with respect to check sum errors, eg, after manipulated an Intel HEX file
for debugging.
Usbtiny has a protocol or firmware problem that prevents it from reading
flash above 64 kB in page mode (used by -U flash:r:... and -U flash✌️...).
This commit fixes that problem by falling back on byte access for flash paged
reads above 64k. It also issues the correct load extended address command for
parts with more than 128 kB flash thus extending support to ATmega2560 et al.
Some C libraries assign true to isalpha(0xff), isdigit(0xff) or
ispunct(0xff), which means that the Operating System terminal sees a
character 0xff which it may not have a useful display character for.
This commit only outputs printable ASCII characters for an AVRDUDE
terminal dump reducing the risk of the OS terminal not being able
to print the character properly.
Error messages are written to stderr whilst normal terminal output is stdout.
When redirecting output to pipelines or files these two streams can get
separated as they are buffered separately. To avoid this, term.c now provides
a function terminal_message() that works just like avrdude_message() but
flushes stderr and stdout before printing on stderr, and it flushes stderr
afterwards.
This commit replaces all avrdude_message() calls except for progress report
with terminal_message() to ensure stdout and stderr streams keep together.
This enables the new quell terminal command to switch on and off progress
reports to the terminal. The code for this was moved from main.c to term.c.
It can be used as library call for other frontends than main.c
Sets the quell_progress global variable that can be, and is, consulted by
programmers.
Setting quell_progress to a positive number also switches off progress
bars. It is currently not possible to switch on progress bars again: that
is enabled in main.c once at the start of AVRDUDE.
That code in main should move to avr.c to enable report_update() to consult
quell_progress directly. Will do at another time when touching main.c and
avr.c. smr
The code no longer accepts valid mantissa-only doubles that are integer
rejects, eg, 078 or ULL overflows. These are most likely input errors by
the user: 8 is not an octal digit, they might have typed 17 hex digits,
not 16. It's just too hard to explain that 0xffffFFFFffffFFFFf writes
0x4430000000000000, which is the correct double representation of the
valid 17-digit hex mantissa that strtod() is perfectly happy to accept.
Integers can be hexadecimal, decimal or octal. An optional case-insensitive
suffix specifies their size: HH: 8 bit, H/S: 16 bit, L: 32 bit, LL: 64 bit
An optional U suffix makes a number unsigned. Ordinary 0x hex numbers are
always treated as unsigned. +0x or -0x hex numbers are treated as signed
unless they have a U suffix. Unsigned integers cannot be larger than 2^64-1.
If n is an unsigned integer then -n is also a valid unsigned integer as in C.
Signed integers must fall into the [-2^63, 2^63-1] range or a correspondingly
smaller range when a suffix specifies a smaller type. Out of range signed
numbers trigger a warning.
Ordinary 0x hex numbers with n hex digits (counting leading zeros) use
the smallest size of 1, 2, 4 and 8 bytes that can accommodate any n-digit hex
number. If a suffix specifies a size explicitly the corresponding number of
least significant bytes are written. Otherwise, signed and unsigned integers
alike occupy the smallest of 1, 2, 4, or 8 bytes needed to accommodate them
in their respective representation.