will update only the table in pgm_type.c.
* config_gram.y, lexer.l: removed programmer type keywords,
use now locate_programmer_type() function
* pgm_type.[ch]: added new files for table of programmer types
* main.c: allow list of programmer types by -c ?type
* avrdude.conf.in: changed all type keywords to quoted strings
* doc/avrdude.texi: changed description of type definition, list
of valid types is now included from generated file
* doc/Makefile.am: generate list of programmer types for doc
* all programmers [hc]: add xxx_desc string for description of programmer
git-svn-id: svn://svn.savannah.nongnu.org/avrdude/trunk/avrdude@1051 81a1dc3b-b13d-400b-aceb-764788c761c2
"classic" AVRs (AT90, ATtiny, ATmega) in both,
ISP and high-voltage programming modes.
* Makefile.am: Add -lm.
* avrdude.conf.in: Add stk600, stk600pp, and stk600hvsp.
* config_gram.y: Add support for the stk600* keywords.
* lexer.l: (Ditto.)
* pgm.h: Add the "chan" parameter to set_varef().
* stk500.c: (Ditto.)
* serial.h: Add USB endpoint support to struct filedescriptor.
* stk500v2.c: Implement the meat of the STK600 support.
* stk500v2.h: Add new prototypes for stk600*() programmers.
* stk500v2_private.h: Add new constants used in the STK600.
* term.c: Add AREF channel support.
* usb_libusb.c: Automatically determine the correct write
endpoint ID, the STK600 uses 0x83 while all other tools use
0x82. Propagate the EP to use through struct filedescriptor.
* usbdevs.h: Add the STK600 USB product ID.
* tools/get-stk600-cards.xsl: XSL transformation for
targetboards.xml to obtain the list of socket and routing
card IDs, to be used in stk500v2.c (for displaying the
names).
* tools/get-stk600-devices.xsl: XSL transformation for
targetboards.xml to obtain the table of socket/routing cards
and their respective AVR device support for doc/avrdude.texi.
* avrdude.1: Document all the STK600 stuff.
* doc/avrdude.texi: Ditto. Added a new chapter for
Programmer Specific Information.
Thanks to Eirik Rasmussen from Atmel Norway for his support in
getting this code running within that short amount of time!
git-svn-id: svn://svn.savannah.nongnu.org/avrdude/trunk/avrdude@768 81a1dc3b-b13d-400b-aceb-764788c761c2
- Make all internal functions "static".
- Make sure each module's header and implementation file match.
- Remove all library-like functionality from main.c, so only
the actual frontend remains in main.c.
- Add C++ brackets to all header files.
That effectively leaves the various module C files as something like
an "avrdude library", with main.c being the currently only frontend
program for that library. In theory, it should be possible to write
different frontends using the same library backend functions though.
git-svn-id: svn://svn.savannah.nongnu.org/avrdude/trunk/avrdude@722 81a1dc3b-b13d-400b-aceb-764788c761c2
* stk500v2.c: Add new functions for HVSP support.
* stk500v2.h: Add prototype for the stk500hvsp programmer.
* avrpart.h: Add fields to struct avrpart for new features.
* config_gram.y: Extend the configuration syntax for new
features required for HVSP support.
* lexer.l: (Ditto.)
* avrdude.conf.in: Add HVSP support for ATtiny13 and
ATtiny45 as an example.
* avrdude.1: Document stk500hvsp.
* doc/avrdude.texi: (Ditto.)
git-svn-id: svn://svn.savannah.nongnu.org/avrdude/trunk/avrdude@595 81a1dc3b-b13d-400b-aceb-764788c761c2
Walthinsen, as well as JTAG ICE mkII support (by me).
Erik's submission has been cleaned up a little bit, mostly to add his
name and the current year to the copyright of the new file, remove
trailing white space before importing the files, and fix the minor
syntax errors in his avrdude.conf.in additions (missing semicolons).
The JTAG ICE mkII support should be considered alpha to beta quality
at this point. Few things are still to be done, like defering the
hfuse (OCDEN) tweaks until they are really required. Also, for
reasons not yet known, the target MCU doesn't start to run after
signing off from the ICE, it needs a power-cycle first (at least on my
STK500).
Note that for the JTAG ICE, I did change a few things in the internal
API. Notably I made the serial receive timeout configurable by the
backends via an exported variable (done in both the Posix and the
Win32 implementation), and I made the serial_recv() function return a
-1 instead of bailing out with exit(1) upon encountering a receive
timeout (currently only done in the Posix implementation). Both
measures together allow me to receive a datastreem from the ICE at 115
kbps on a somewhat lossy PCI multi-UART card that occasionally drops a
character. The JTAG ICE mkII protocol has enough of safety layers to
allow recovering from these events, but the previous code wasn't
prepared for any kind of recovery. The Win32 change for this still
has to be done, and the traditional drivers need to be converted to
exit(1) upon encountering a timeout (as they're now getting a -1
returned they didn't see before in that case).
git-svn-id: svn://svn.savannah.nongnu.org/avrdude/trunk/avrdude@451 81a1dc3b-b13d-400b-aceb-764788c761c2