So any programmer that knows exactly which part it is connected to
can set the -p part option should the user not have done so.
Also no longer exits main without closing open programmer.
* Change avrdude_message(MSG_XYZ, ...) to msg_xyz(...)
* Define and use pmsg_xyz(...) instead of msg_xyz("%s: ...", progname, ...)
* Review and change avrdude_message() levels
- Introduce new levels warning, error and ext_error
- Distribute info level to info, warning, error, ext_error
- Assign levels (more) consistently
- Unify grammar, punctuation and style of messages
* Use imsg_xyz() to print indented messages
* Show function name in errors and warnings on -v
* Reduce effective verbosity level by number of -q above one
* Fix writing of last word on DWORD TPI parts
* Add n_word_writes AVRMEM config option
* TPI word chunk mode in avr_write_mem
* Simplify addition of n_words_write mem component to grammar
Co-authored-by: Stefan Rueger <stefan.rueger@urclocks.com>
flags now just hold parameters of the JTAG interface and some secondary
serial, parallel, pseudo parallel info. This separation brings clarity. It
used to be hard to augur whether a part has an ISP interface:
(part->flags & (AVRPART_HAS_PDI | AVRPART_AVR32 | AVRPART_HAS_TPI
| AVRPART_HAS_UPDI)) == 0 && (part->flags & AVRPART_SERIALOK) != 0
or had HVSP or HVPP capability, for that matter. Now it is just, eg,
part->prog_modes & PM_ISP
part->prog_modes & PM_HVPP
- Add prog_modes to part and programmer definitions; prog_mode is a bitwise
or of programming modes
+ PM_SPM: Bootloaders, self-programming with SPM/NVM Controllers
+ PM_TPI: t4, t5, t9, t10, t20, t40, t102, t104
+ PM_ISP: SPI programming for In-System Programming (typ classic parts)
+ PM_PDI: Program and Debug Interface (xmega parts)
+ PM_UPDI: Unified Program and Debug Interface
+ PM_HVSP: High Voltage Serial Programming (some classic parts)
+ PM_HVPP: High Voltage Parallel Programming (most non-HVSP classic parts)
+ PM_debugWIRE: Simpler alternative to JTAG (a subset of HVPP/HVSP parts)
+ PM_JTAG: some classic parts, some xmega
+ PM_aWire: AVR32 parts
- Add mcuid, a unique id in 0..2039, to part definition for urclock programmer
- Add n_interrupts, the number of interrupts, to part definition
- Add n_page_erase to part definition (# of pages erased during NVM erase)
- Implement a simple calculator in config_gram.y so numeric values can be
expressed as simple expressions such as PM_SPM | PM_UPDI
- Introduce a new method of assigning simple components to the grammar without
touching config_gram.y via an eligible-component list in config.c; numeric
expressions on the rhs of an assignment resolve to integer values
- Update documentation in avrdude.conf.in and avrdude.texi
Done by adding code in developer_opts.c that allows to inject part
or memory parameters into a semi-automated rewrite of avrdude.conf
This is a generic method, whereby an external program can, eg.,
scrape atdf files for the right parameters and put them into a
source table into developer_opts.c
- Then write parts description with -p*/i
- Use the output in a new avrdude.conf
- Output again with -p* (no /i) and use that for final avrdude.conf
- Remove table entries
Some manual editing is still necessary to cater for the
@HAVE_PARPORT_BEGIN@ etc sections. This commit also fixes
superfluous whitesapce at the end of avrdude.conf.in lines
Although the avrdude.conf file has changed much, the internal
representation in avrdude has not. This can be verified by
exporting the raw internal data through
avrdude -c*/r -p*/r >/tmp/avrdude.raw
before the change and by comparing again after the change:
avrdude -c*/r -p*/r | diff - /tmp/avrdude.raw
This commit replaces fixed-string buffers in PROGRAMMER, AVRPART and AVRMEM
that are dealt with by the parser and grammar. Now, string assignments are
always to const char *, ie, these are read-only strings with arbitrary
length.
config_gram.y now only needs to consider one type of string assignment.
This commit also
- Replaces the simple linear-search cache_string() function with faster
hashed cache_string(). Either way, the returned value is likely to be
shared, so should never be free()'d.
- Duplicates hvupdi_support list in pgm_dup() and frees it in pgm_free()
- Adds const qualifier to some function args in avrpart.c and pgm.c
- Hardens some functions against being called with NULL pointers
- Ensures _new() and _dup() functions for parts, programmers and memory
return a suitable memory. Out of memory triggers exit in one of three
functions, cfg_malloc(), cfg_realloc() and cfg_strdup(); there is
rarely anything useful that AVRDUDE or, for that matter, any
application compiled against libavrdude can do once you run out of
memory as AVRDUDE/libavrdude rely heavily on allocation of memory.
- Replace strdup(s) with cfg_strdup(funname, s) that exits on out of mem
- Replace malloc(n) with cfg_malloc(funname, n) that exits on out of mem
- Change multiline string scanning in lexer.l to avoid core dump
- Remove global variables string_buf and string_bug_ptr
- Ensure reading strings unescapes strings C-Style
- Ensure writing strings escapes strings C-Style again
Commit looks longer than needed as unescape() and auxiliary functions needed
to be moved from term.c (not in libavrdude) to config.c (in libavrdude).
Also changed usbdev, usbsn, usbvendor and usbproduct components from
PROGRAMMER structure to be cached string pointers rather than fixed-size
arrays. These will be initialised by pgm_new() with a pointer to nul;
Introduced -p <part>/A, which prints what -p <part>/S used to print, ie, all
components of the part structures including the default ones. Now -p <part>/S
prints the expanded part structure without use of parent and without printing
default values. This functionality is new and predominantly needed for
checking specific avrdude.conf entries, eg, avrdude -p*/St | grep pollindex
The option -p <part>/s continues to print a short entry of `avrdude.conf`
using its parent if so defined:
$ avrdude -p m328p/s
part parent "m328"
desc = "ATmega328P";
id = "m328p";
signature = 0x1e 0x95 0x0f;
;
The function avr_set_addr_mem(AVRMEM *mem, int opnum, unsigned char *cmd,
unsigned long addr) is meant to replace avr_set_addr(OPCODE *op, unsigned
char *cmd, unsigned long addr) in future.
avr_set_addr_mem() has more information about the context of the task in that
it knows the memory size, memory page size, whether or not the memory is a
flash memory (which gets words addressees supplied) and, crucially, knows
which SPI operation it is meant to compute the address bits for.
avr_set_addr_mem() first computes the interval of bit numbers that must be
supplied for the SPI command to stand a chance to work. The function only
sets those address bits that are needed. Once all avr_set_addr() function
calls have been replaced by avr_set_addr_mem(), the SPI commands that need an
address can afford to declare in avrdude.conf all 16 address bits in the
middle two bytes of the SPI command. This over-declaration will be corrected
during runtime by avr_set_addr_mem(). One consequence of this is that parts
can inherit smaller or larger memories from parents without the need to use
different SPI codes in avrdude.conf. Another consequence is that
avr_set_addr_mem() can, and does, tell the caller whether vital address bits
were not declared in the SPI opcode. During parsing of avrdude.conf this
might be utilised to generate a corresponding warning. This will uncover
problematic SPI codes in avrdude.conf that in the past went undetected.
-p \*/c check address bits in SPI commands
-p \*/d description of core part features
-p \*/o opcodes for SPI programming parts and memories
-p \*/s show avrdude.conf entries of parts
-p \*/ss show full avrdude.conf entry as tab separated table
-p \*/w wd_... constants for ISP parts
-p \*/\* all of the above except -p \*/s
-p \* same as -p\*/\*