Seperate programmer operations out into a driver-like interface so

that programmers other than the direct parallel port connection can be
supported.


git-svn-id: svn://svn.savannah.nongnu.org/avrdude/trunk/avrdude@159 81a1dc3b-b13d-400b-aceb-764788c761c2
This commit is contained in:
Brian S. Dean 2002-11-30 14:09:12 +00:00
parent 39b1f7d02b
commit a193330803
15 changed files with 868 additions and 546 deletions

View File

@ -18,6 +18,7 @@ DIRS = ${BINDIR} ${MANDIR} ${DOCDIR} ${CONFIGDIR}
INSTALL = /usr/bin/install -c -o root -g wheel INSTALL = /usr/bin/install -c -o root -g wheel
CFLAGS += -Wall -DCONFIG_DIR=\"${CONFIGDIR}\" ${YYDEF} CFLAGS += -Wall -DCONFIG_DIR=\"${CONFIGDIR}\" ${YYDEF}
#CFLAGS = -g -Wall -DCONFIG_DIR=\"${CONFIGDIR}\" ${YYDEF}
LDFLAGS = LDFLAGS =
YFLAGS = -t -d -v YFLAGS = -t -d -v

313
avr.c
View File

@ -177,65 +177,6 @@ AVRMEM * avr_locate_mem(AVRPART * p, char * desc)
/*
* transmit and receive a byte of data to/from the AVR device
*/
unsigned char avr_txrx(int fd, unsigned char byte)
{
int i;
unsigned char r, b, rbyte;
rbyte = 0;
for (i=0; i<8; i++) {
b = (byte >> (7-i)) & 0x01;
/*
* read the result bit (it is either valid from a previous clock
* pulse or it is ignored in the current context)
*/
r = ppi_getpin(fd, pgm->pinno[PIN_AVR_MISO]);
/* set the data input line as desired */
ppi_setpin(fd, pgm->pinno[PIN_AVR_MOSI], b);
/*
* pulse the clock line, clocking in the MOSI data, and clocking out
* the next result bit
*/
ppi_pulsepin(fd, pgm->pinno[PIN_AVR_SCK]);
rbyte = rbyte | (r << (7-i));
}
return rbyte;
}
/*
* transmit an AVR device command and return the results; 'cmd' and
* 'res' must point to at least a 4 byte data buffer
*/
int avr_cmd(int fd, unsigned char cmd[4], unsigned char res[4])
{
int i;
for (i=0; i<4; i++) {
res[i] = avr_txrx(fd, cmd[i]);
}
#if 0
fprintf(stderr, "avr_cmd(): [ ");
for (i=0; i<4; i++)
fprintf(stderr, "%02x ", cmd[i]);
fprintf(stderr, "] [ ");
for (i=0; i<4; i++)
fprintf(stderr, "%02x ", res[i]);
fprintf(stderr, "]\n");
#endif
return 0;
}
/* /*
* avr_set_bits() * avr_set_bits()
@ -354,16 +295,16 @@ int avr_get_output(OPCODE * op, unsigned char * res, unsigned char * data)
/* /*
* read a byte of data from the indicated memory region * read a byte of data from the indicated memory region
*/ */
int avr_read_byte(int fd, AVRPART * p, AVRMEM * mem, unsigned long addr, int avr_read_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned char * value) unsigned long addr, unsigned char * value)
{ {
unsigned char cmd[4]; unsigned char cmd[4];
unsigned char res[4]; unsigned char res[4];
unsigned char data; unsigned char data;
OPCODE * readop; OPCODE * readop;
LED_ON(fd, pgm->pinno[PIN_LED_PGM]); pgm->pgm_led(pgm, ON);
LED_OFF(fd, pgm->pinno[PIN_LED_ERR]); pgm->err_led(pgm, OFF);
/* /*
* figure out what opcode to use * figure out what opcode to use
@ -392,11 +333,11 @@ int avr_read_byte(int fd, AVRPART * p, AVRMEM * mem, unsigned long addr,
avr_set_bits(readop, cmd); avr_set_bits(readop, cmd);
avr_set_addr(readop, cmd, addr); avr_set_addr(readop, cmd, addr);
avr_cmd(fd, cmd, res); pgm->cmd(pgm, cmd, res);
data = 0; data = 0;
avr_get_output(readop, res, &data); avr_get_output(readop, res, &data);
LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); pgm->pgm_led(pgm, OFF);
*value = data; *value = data;
@ -411,7 +352,8 @@ int avr_read_byte(int fd, AVRPART * p, AVRMEM * mem, unsigned long addr,
* *
* Return the number of bytes read, or < 0 if an error occurs. * Return the number of bytes read, or < 0 if an error occurs.
*/ */
int avr_read(int fd, AVRPART * p, char * memtype, int size, int verbose) int avr_read(PROGRAMMER * pgm, AVRPART * p, char * memtype, int size,
int verbose)
{ {
unsigned char rbyte; unsigned char rbyte;
unsigned long i; unsigned long i;
@ -435,7 +377,7 @@ int avr_read(int fd, AVRPART * p, char * memtype, int size, int verbose)
printed = 0; printed = 0;
for (i=0; i<size; i++) { for (i=0; i<size; i++) {
rc = avr_read_byte(fd, p, mem, i, &rbyte); rc = avr_read_byte(pgm, p, mem, i, &rbyte);
if (rc != 0) { if (rc != 0) {
fprintf(stderr, "avr_read(): error reading address 0x%04lx\n", i); fprintf(stderr, "avr_read(): error reading address 0x%04lx\n", i);
if (rc == -1) if (rc == -1)
@ -464,7 +406,7 @@ int avr_read(int fd, AVRPART * p, char * memtype, int size, int verbose)
/* /*
* write a page data at the specified address * write a page data at the specified address
*/ */
int avr_write_page(int fd, AVRPART * p, AVRMEM * mem, int avr_write_page(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr) unsigned long addr)
{ {
unsigned char cmd[4]; unsigned char cmd[4];
@ -486,14 +428,14 @@ int avr_write_page(int fd, AVRPART * p, AVRMEM * mem,
if (mem->op[AVR_OP_LOADPAGE_LO]) if (mem->op[AVR_OP_LOADPAGE_LO])
addr = addr / 2; addr = addr / 2;
LED_ON(fd, pgm->pinno[PIN_LED_PGM]); pgm->pgm_led(pgm, ON);
LED_OFF(fd, pgm->pinno[PIN_LED_ERR]); pgm->err_led(pgm, OFF);
memset(cmd, 0, sizeof(cmd)); memset(cmd, 0, sizeof(cmd));
avr_set_bits(wp, cmd); avr_set_bits(wp, cmd);
avr_set_addr(wp, cmd, addr); avr_set_addr(wp, cmd, addr);
avr_cmd(fd, cmd, res); pgm->cmd(pgm, cmd, res);
/* /*
* since we don't know what voltage the target AVR is powered by, be * since we don't know what voltage the target AVR is powered by, be
@ -501,7 +443,7 @@ int avr_write_page(int fd, AVRPART * p, AVRMEM * mem,
*/ */
usleep(mem->max_write_delay); usleep(mem->max_write_delay);
LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); pgm->pgm_led(pgm, OFF);
return 0; return 0;
} }
@ -509,7 +451,7 @@ int avr_write_page(int fd, AVRPART * p, AVRMEM * mem,
/* /*
* write a byte of data at the specified address * write a byte of data at the specified address
*/ */
int avr_write_byte(int fd, AVRPART * p, AVRMEM * mem, int avr_write_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char data) unsigned long addr, unsigned char data)
{ {
unsigned char cmd[4]; unsigned char cmd[4];
@ -529,7 +471,7 @@ int avr_write_byte(int fd, AVRPART * p, AVRMEM * mem,
* value and only write if we are changing the value; we can't * value and only write if we are changing the value; we can't
* use this optimization for paged addressing. * use this optimization for paged addressing.
*/ */
rc = avr_read_byte(fd, p, mem, addr, &b); rc = avr_read_byte(pgm, p, mem, addr, &b);
if (rc != 0) { if (rc != 0) {
if (rc != -1) { if (rc != -1) {
return -2; return -2;
@ -578,15 +520,15 @@ int avr_write_byte(int fd, AVRPART * p, AVRMEM * mem,
} }
LED_ON(fd, pgm->pinno[PIN_LED_PGM]); pgm->pgm_led(pgm, ON);
LED_OFF(fd, pgm->pinno[PIN_LED_ERR]); pgm->err_led(pgm, OFF);
memset(cmd, 0, sizeof(cmd)); memset(cmd, 0, sizeof(cmd));
avr_set_bits(writeop, cmd); avr_set_bits(writeop, cmd);
avr_set_addr(writeop, cmd, caddr); avr_set_addr(writeop, cmd, caddr);
avr_set_input(writeop, cmd, data); avr_set_input(writeop, cmd, data);
avr_cmd(fd, cmd, res); pgm->cmd(pgm, cmd, res);
if (mem->paged) { if (mem->paged) {
/* /*
@ -594,7 +536,7 @@ int avr_write_byte(int fd, AVRPART * p, AVRMEM * mem,
* page complete immediately, we only need to delay when we commit * page complete immediately, we only need to delay when we commit
* the whole page via the avr_write_page() routine. * the whole page via the avr_write_page() routine.
*/ */
LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); pgm->pgm_led(pgm, OFF);
return 0; return 0;
} }
@ -604,7 +546,7 @@ int avr_write_byte(int fd, AVRPART * p, AVRMEM * mem,
* the max programming time and then return * the max programming time and then return
*/ */
usleep(mem->max_write_delay); /* maximum write delay */ usleep(mem->max_write_delay); /* maximum write delay */
LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); pgm->pgm_led(pgm, OFF);
return 0; return 0;
} }
@ -612,10 +554,10 @@ int avr_write_byte(int fd, AVRPART * p, AVRMEM * mem,
ready = 0; ready = 0;
while (!ready) { while (!ready) {
usleep(mem->min_write_delay); usleep(mem->min_write_delay);
rc = avr_read_byte(fd, p, mem, addr, &r); rc = avr_read_byte(pgm, p, mem, addr, &r);
if (rc != 0) { if (rc != 0) {
LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); pgm->pgm_led(pgm, OFF);
LED_ON(fd, pgm->pinno[PIN_LED_ERR]); pgm->err_led(pgm, ON);
return -4; return -4;
} }
@ -628,10 +570,10 @@ int avr_write_byte(int fd, AVRPART * p, AVRMEM * mem,
* specified for the chip. * specified for the chip.
*/ */
usleep(mem->max_write_delay); usleep(mem->max_write_delay);
rc = avr_read_byte(fd, p, mem, addr, &r); rc = avr_read_byte(pgm, p, mem, addr, &r);
if (rc != 0) { if (rc != 0) {
LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); pgm->pgm_led(pgm, OFF);
LED_ON(fd, pgm->pinno[PIN_LED_ERR]); pgm->err_led(pgm, OFF);
return -5; return -5;
} }
} }
@ -648,15 +590,15 @@ int avr_write_byte(int fd, AVRPART * p, AVRMEM * mem,
* device if the data read back does not match what we wrote. * device if the data read back does not match what we wrote.
*/ */
usleep(mem->max_write_delay); /* maximum write delay */ usleep(mem->max_write_delay); /* maximum write delay */
LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); pgm->pgm_led(pgm, OFF);
fprintf(stderr, fprintf(stderr,
"%s: this device must be powered off and back on to continue\n", "%s: this device must be powered off and back on to continue\n",
progname); progname);
if (pgm->pinno[PPI_AVR_VCC]) { if (pgm->pinno[PPI_AVR_VCC]) {
fprintf(stderr, "%s: attempting to do this now ...\n", progname); fprintf(stderr, "%s: attempting to do this now ...\n", progname);
avr_powerdown(fd); pgm->powerdown(pgm);
usleep(250000); usleep(250000);
rc = avr_initialize(fd, p); rc = pgm->initialize(pgm, p);
if (rc < 0) { if (rc < 0) {
fprintf(stderr, "%s: initialization failed, rc=%d\n", progname, rc); fprintf(stderr, "%s: initialization failed, rc=%d\n", progname, rc);
fprintf(stderr, fprintf(stderr,
@ -682,14 +624,14 @@ int avr_write_byte(int fd, AVRPART * p, AVRMEM * mem,
* been plenty of time, the memory cell still doesn't match what * been plenty of time, the memory cell still doesn't match what
* we wrote. Indicate a write error. * we wrote. Indicate a write error.
*/ */
LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); pgm->pgm_led(pgm, OFF);
LED_ON(fd, pgm->pinno[PIN_LED_ERR]); pgm->err_led(pgm, ON);
return -6; return -6;
} }
} }
LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); pgm->pgm_led(pgm, OFF);
return 0; return 0;
} }
@ -703,7 +645,8 @@ int avr_write_byte(int fd, AVRPART * p, AVRMEM * mem,
* *
* Return the number of bytes written, or -1 if an error occurs. * Return the number of bytes written, or -1 if an error occurs.
*/ */
int avr_write(int fd, AVRPART * p, char * memtype, int size, int verbose) int avr_write(PROGRAMMER * pgm, AVRPART * p, char * memtype, int size,
int verbose)
{ {
int rc; int rc;
int wsize; int wsize;
@ -720,7 +663,7 @@ int avr_write(int fd, AVRPART * p, char * memtype, int size, int verbose)
return -1; return -1;
} }
LED_OFF(fd, pgm->pinno[PIN_LED_ERR]); pgm->err_led(pgm, OFF);
printed = 0; printed = 0;
werror = 0; werror = 0;
@ -745,11 +688,11 @@ int avr_write(int fd, AVRPART * p, char * memtype, int size, int verbose)
printed = 1; printed = 1;
} }
} }
rc = avr_write_byte(fd, p, m, i, data); rc = avr_write_byte(pgm, p, m, i, data);
if (rc) { if (rc) {
fprintf(stderr, " ***failed; "); fprintf(stderr, " ***failed; ");
fprintf(stderr, "\n"); fprintf(stderr, "\n");
LED_ON(fd, pgm->pinno[PIN_LED_ERR]); pgm->err_led(pgm, ON);
werror = 1; werror = 1;
} }
@ -760,7 +703,7 @@ int avr_write(int fd, AVRPART * p, char * memtype, int size, int verbose)
*/ */
if (((i % m->page_size) == m->page_size-1) || if (((i % m->page_size) == m->page_size-1) ||
(i == wsize-1)) { (i == wsize-1)) {
rc = avr_write_page(fd, p, m, i); rc = avr_write_page(pgm, p, m, i);
if (rc) { if (rc) {
fprintf(stderr, fprintf(stderr,
" *** page %ld (addresses 0x%04lx - 0x%04lx) failed " " *** page %ld (addresses 0x%04lx - 0x%04lx) failed "
@ -768,7 +711,7 @@ int avr_write(int fd, AVRPART * p, char * memtype, int size, int verbose)
i % m->page_size, i % m->page_size,
i - m->page_size + 1, i); i - m->page_size + 1, i);
fprintf(stderr, "\n"); fprintf(stderr, "\n");
LED_ON(fd, pgm->pinno[PIN_LED_ERR]); pgm->err_led(pgm, ON);
werror = 1; werror = 1;
} }
} }
@ -779,7 +722,7 @@ int avr_write(int fd, AVRPART * p, char * memtype, int size, int verbose)
* make sure the error led stay on if there was a previous write * make sure the error led stay on if there was a previous write
* error, otherwise it gets cleared in avr_write_byte() * error, otherwise it gets cleared in avr_write_byte()
*/ */
LED_ON(fd, pgm->pinno[PIN_LED_ERR]); pgm->err_led(pgm, ON);
} }
} }
@ -790,93 +733,15 @@ int avr_write(int fd, AVRPART * p, char * memtype, int size, int verbose)
} }
/*
* issue the 'program enable' command to the AVR device
*/
int avr_program_enable(int fd, AVRPART * p)
{
unsigned char cmd[4];
unsigned char res[4];
if (p->op[AVR_OP_PGM_ENABLE] == NULL) {
fprintf(stderr, "program enable instruction not defined for part \"%s\"\n",
p->desc);
return -1;
}
memset(cmd, 0, sizeof(cmd));
avr_set_bits(p->op[AVR_OP_PGM_ENABLE], cmd);
avr_cmd(fd, cmd, res);
if (res[2] != cmd[1])
return -2;
return 0;
}
/*
* issue the 'chip erase' command to the AVR device
*/
int avr_chip_erase(int fd, AVRPART * p)
{
unsigned char cmd[4];
unsigned char res[4];
int cycles;
int rc;
if (p->op[AVR_OP_CHIP_ERASE] == NULL) {
fprintf(stderr, "chip erase instruction not defined for part \"%s\"\n",
p->desc);
return -1;
}
rc = avr_get_cycle_count(fd, p, &cycles);
/*
* only print out the current cycle count if we aren't going to
* display it below
*/
if (!do_cycles && ((rc >= 0) && (cycles != 0xffffffff))) {
fprintf(stderr,
"%s: current erase-rewrite cycle count is %d%s\n",
progname, cycles,
do_cycles ? "" : " (if being tracked)");
}
LED_ON(fd, pgm->pinno[PIN_LED_PGM]);
memset(cmd, 0, sizeof(cmd));
avr_set_bits(p->op[AVR_OP_CHIP_ERASE], cmd);
avr_cmd(fd, cmd, res);
usleep(p->chip_erase_delay);
avr_initialize(fd, p);
LED_OFF(fd, pgm->pinno[PIN_LED_PGM]);
if (do_cycles && (cycles != -1)) {
if (cycles == 0x00ffff) {
cycles = 0;
}
cycles++;
fprintf(stderr, "%s: erase-rewrite cycle count is now %d\n",
progname, cycles);
avr_put_cycle_count(fd, p, cycles);
}
return 0;
}
/* /*
* read the AVR device's signature bytes * read the AVR device's signature bytes
*/ */
int avr_signature(int fd, AVRPART * p) int avr_signature(PROGRAMMER * pgm, AVRPART * p)
{ {
int rc; int rc;
rc = avr_read(fd, p, "signature", 0, 0); rc = avr_read(pgm, p, "signature", 0, 0);
if (rc < 0) { if (rc < 0) {
fprintf(stderr, fprintf(stderr,
"%s: error reading signature data for part \"%s\", rc=%d\n", "%s: error reading signature data for part \"%s\", rc=%d\n",
@ -888,78 +753,6 @@ int avr_signature(int fd, AVRPART * p)
} }
/*
* apply power to the AVR processor
*/
void avr_powerup(int fd)
{
ppi_set(fd, PPIDATA, pgm->pinno[PPI_AVR_VCC]); /* power up */
usleep(100000);
}
/*
* remove power from the AVR processor
*/
void avr_powerdown(int fd)
{
ppi_clr(fd, PPIDATA, pgm->pinno[PPI_AVR_VCC]); /* power down */
}
/*
* initialize the AVR device and prepare it to accept commands
*/
int avr_initialize(int fd, AVRPART * p)
{
int rc;
int tries;
avr_powerup(fd);
usleep(20000);
ppi_setpin(fd, pgm->pinno[PIN_AVR_SCK], 0);
ppi_setpin(fd, pgm->pinno[PIN_AVR_RESET], 0);
usleep(20000);
ppi_pulsepin(fd, pgm->pinno[PIN_AVR_RESET]);
usleep(20000); /* 20 ms XXX should be a per-chip parameter */
/*
* Enable programming mode. If we are programming an AT90S1200, we
* can only issue the command and hope it worked. If we are using
* one of the other chips, the chip will echo 0x53 when issuing the
* third byte of the command. In this case, try up to 32 times in
* order to possibly get back into sync with the chip if we are out
* of sync.
*/
if (strcmp(p->desc, "AT90S1200")==0) {
avr_program_enable(fd, p);
}
else {
tries = 0;
do {
rc = avr_program_enable(fd, p);
if ((rc == 0)||(rc == -1))
break;
ppi_pulsepin(fd, pgm->pinno[PIN_AVR_SCK]);
tries++;
} while (tries < 65);
/*
* can't sync with the device, maybe it's not attached?
*/
if (rc) {
fprintf(stderr, "%s: AVR device not responding\n", progname);
return -1;
}
}
return 0;
}
/* /*
* Allocate and initialize memory buffers for each of the device's * Allocate and initialize memory buffers for each of the device's
* defined memory regions. * defined memory regions.
@ -1043,7 +836,7 @@ int avr_verify(AVRPART * p, AVRPART * v, char * memtype, int size)
} }
int avr_get_cycle_count(int fd, AVRPART * p, int * cycles) int avr_get_cycle_count(PROGRAMMER * pgm, AVRPART * p, int * cycles)
{ {
AVRMEM * a; AVRMEM * a;
int cycle_count; int cycle_count;
@ -1055,28 +848,28 @@ int avr_get_cycle_count(int fd, AVRPART * p, int * cycles)
return -1; return -1;
} }
rc = avr_read_byte(fd, p, a, a->size-4, &v1); rc = avr_read_byte(pgm, p, a, a->size-4, &v1);
if (rc < 0) { if (rc < 0) {
fprintf(stderr, "%s: WARNING: can't read memory for cycle count, rc=%d\n", fprintf(stderr, "%s: WARNING: can't read memory for cycle count, rc=%d\n",
progname, rc); progname, rc);
return -1; return -1;
} }
rc = avr_read_byte(fd, p, a, a->size-3, &v2); rc = avr_read_byte(pgm, p, a, a->size-3, &v2);
if (rc < 0) { if (rc < 0) {
fprintf(stderr, "%s: WARNING: can't read memory for cycle count, rc=%d\n", fprintf(stderr, "%s: WARNING: can't read memory for cycle count, rc=%d\n",
progname, rc); progname, rc);
return -1; return -1;
} }
rc = avr_read_byte(fd, p, a, a->size-2, &v3); rc = avr_read_byte(pgm, p, a, a->size-2, &v3);
if (rc < 0) { if (rc < 0) {
fprintf(stderr, "%s: WARNING: can't read memory for cycle count, rc=%d\n", fprintf(stderr, "%s: WARNING: can't read memory for cycle count, rc=%d\n",
progname, rc); progname, rc);
return -1; return -1;
} }
rc = avr_read_byte(fd, p, a, a->size-1, &v4); rc = avr_read_byte(pgm, p, a, a->size-1, &v4);
if (rc < 0) { if (rc < 0) {
fprintf(stderr, "%s: WARNING: can't read memory for cycle count, rc=%d\n", fprintf(stderr, "%s: WARNING: can't read memory for cycle count, rc=%d\n",
progname, rc); progname, rc);
@ -1099,7 +892,7 @@ int avr_get_cycle_count(int fd, AVRPART * p, int * cycles)
} }
int avr_put_cycle_count(int fd, AVRPART * p, int cycles) int avr_put_cycle_count(PROGRAMMER * pgm, AVRPART * p, int cycles)
{ {
AVRMEM * a; AVRMEM * a;
unsigned char v1, v2, v3, v4; unsigned char v1, v2, v3, v4;
@ -1115,25 +908,25 @@ int avr_put_cycle_count(int fd, AVRPART * p, int cycles)
v2 = (cycles & 0x0ff0000) >> 16; v2 = (cycles & 0x0ff0000) >> 16;
v1 = (cycles & 0x0ff000000) >> 24; v1 = (cycles & 0x0ff000000) >> 24;
rc = avr_write_byte(fd, p, a, a->size-4, v1); rc = avr_write_byte(pgm, p, a, a->size-4, v1);
if (rc < 0) { if (rc < 0) {
fprintf(stderr, "%s: WARNING: can't write memory for cycle count, rc=%d\n", fprintf(stderr, "%s: WARNING: can't write memory for cycle count, rc=%d\n",
progname, rc); progname, rc);
return -1; return -1;
} }
rc = avr_write_byte(fd, p, a, a->size-3, v2); rc = avr_write_byte(pgm, p, a, a->size-3, v2);
if (rc < 0) { if (rc < 0) {
fprintf(stderr, "%s: WARNING: can't write memory for cycle count, rc=%d\n", fprintf(stderr, "%s: WARNING: can't write memory for cycle count, rc=%d\n",
progname, rc); progname, rc);
return -1; return -1;
} }
rc = avr_write_byte(fd, p, a, a->size-2, v3); rc = avr_write_byte(pgm, p, a, a->size-2, v3);
if (rc < 0) { if (rc < 0) {
fprintf(stderr, "%s: WARNING: can't write memory for cycle count, rc=%d\n", fprintf(stderr, "%s: WARNING: can't write memory for cycle count, rc=%d\n",
progname, rc); progname, rc);
return -1; return -1;
} }
rc = avr_write_byte(fd, p, a, a->size-1, v4); rc = avr_write_byte(pgm, p, a, a->size-1, v4);
if (rc < 0) { if (rc < 0) {
fprintf(stderr, "%s: WARNING: can't write memory for cycle count, rc=%d\n", fprintf(stderr, "%s: WARNING: can't write memory for cycle count, rc=%d\n",
progname, rc); progname, rc);

87
avr.h
View File

@ -34,48 +34,9 @@
#include <stdio.h> #include <stdio.h>
#include "avrpart.h"
#include "lists.h" #include "lists.h"
#include "pgm.h"
/*
* AVR serial programming instructions
*/
enum {
AVR_OP_READ,
AVR_OP_WRITE,
AVR_OP_READ_LO,
AVR_OP_READ_HI,
AVR_OP_WRITE_LO,
AVR_OP_WRITE_HI,
AVR_OP_LOADPAGE_LO,
AVR_OP_LOADPAGE_HI,
AVR_OP_WRITEPAGE,
AVR_OP_CHIP_ERASE,
AVR_OP_PGM_ENABLE,
AVR_OP_MAX
};
enum {
AVR_CMDBIT_IGNORE, /* bit is ignored on input and output */
AVR_CMDBIT_VALUE, /* bit is set to 0 or 1 for input or output */
AVR_CMDBIT_ADDRESS, /* this bit represents an input address bit */
AVR_CMDBIT_INPUT, /* this bit is an input bit */
AVR_CMDBIT_OUTPUT /* this bit is an output bit */
};
/*
* serial programming instruction bit specifications
*/
typedef struct cmdbit {
int type; /* AVR_CMDBIT_* */
int bitno; /* which input bit to use for this command bit */
int value; /* bit value if type == AVR_CMDBIT_VALUD */
} CMDBIT;
typedef struct opcode {
CMDBIT bit[32]; /* opcode bit specs */
} OPCODE;
#define AVR_MEMDESCLEN 64 #define AVR_MEMDESCLEN 64
@ -97,18 +58,6 @@ typedef struct avrmem {
} AVRMEM; } AVRMEM;
#define AVR_DESCLEN 64
#define AVR_IDLEN 32
typedef struct avrpart {
char desc[AVR_DESCLEN]; /* long part name */
char id[AVR_IDLEN]; /* short part name */
int chip_erase_delay; /* microseconds */
OPCODE * op[AVR_OP_MAX]; /* opcodes */
LISTID mem; /* avr memory definitions */
} AVRPART;
extern struct avrpart parts[]; extern struct avrpart parts[];
@ -129,32 +78,24 @@ int avr_txrx_bit(int fd, int bit);
unsigned char avr_txrx(int fd, unsigned char byte); unsigned char avr_txrx(int fd, unsigned char byte);
int avr_cmd(int fd, unsigned char cmd[4], unsigned char res[4]); int avr_set_bits(OPCODE * op, unsigned char * cmd);
int avr_read_byte(int fd, AVRPART * p, AVRMEM * mem, unsigned long addr, int avr_read_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned char * value); unsigned long addr, unsigned char * value);
int avr_read(int fd, AVRPART * p, char * memtype, int size, int verbose); int avr_read(PROGRAMMER * pgm, AVRPART * p, char * memtype, int size,
int verbose);
int avr_write_page(int fd, AVRPART * p, AVRMEM * mem, int avr_write_page(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr); unsigned long addr);
int avr_write_byte(int fd, AVRPART * p, AVRMEM * mem, int avr_write_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char data); unsigned long addr, unsigned char data);
int avr_write(int fd, AVRPART * p, char * memtype, int size, int verbose); int avr_write(PROGRAMMER * pgm, AVRPART * p, char * memtype, int size,
int verbose);
int avr_program_enable(int fd, AVRPART * p); int avr_signature(PROGRAMMER * pgm, AVRPART * p);
int avr_chip_erase(int fd, AVRPART * p);
int avr_signature(int fd, AVRPART * p);
void avr_powerup(int fd);
void avr_powerdown(int fd);
int avr_initialize(int fd, AVRPART * p);
char * avr_memtstr(int memtype); char * avr_memtstr(int memtype);
@ -167,8 +108,8 @@ void avr_mem_display(char * prefix, FILE * f, AVRMEM * m, int type,
void avr_display(FILE * f, AVRPART * p, char * prefix, int verbose); void avr_display(FILE * f, AVRPART * p, char * prefix, int verbose);
int avr_get_cycle_count(int fd, AVRPART * p, int * cycles); int avr_get_cycle_count(PROGRAMMER * pgm, AVRPART * p, int * cycles);
int avr_put_cycle_count(int fd, AVRPART * p, int cycles); int avr_put_cycle_count(PROGRAMMER * pgm, AVRPART * p, int cycles);;
#endif #endif

View File

@ -110,6 +110,7 @@
programmer programmer
id = "bsd", "default"; id = "bsd", "default";
desc = "Brian Dean's Programmer"; desc = "Brian Dean's Programmer";
type = ppi;
vcc = 2, 3, 4, 5; vcc = 2, 3, 4, 5;
reset = 7; reset = 7;
sck = 8; sck = 8;
@ -120,6 +121,7 @@ programmer
programmer programmer
id = "stk200"; id = "stk200";
desc = "STK200"; desc = "STK200";
type = ppi;
buff = 4, 5; buff = 4, 5;
sck = 6; sck = 6;
mosi = 7; mosi = 7;
@ -130,6 +132,7 @@ programmer
programmer programmer
id = "dt006"; id = "dt006";
desc = "Dontronics DT006"; desc = "Dontronics DT006";
type = ppi;
reset = 4; reset = 4;
sck = 5; sck = 5;
mosi = 2; mosi = 2;
@ -139,6 +142,7 @@ programmer
programmer programmer
id = "alf"; id = "alf";
desc = "Tony Friebel's Programmer"; desc = "Tony Friebel's Programmer";
type = ppi;
vcc = 2, 3, 4, 5; vcc = 2, 3, 4, 5;
buff = 6; buff = 6;
reset = 7; reset = 7;

View File

@ -274,29 +274,6 @@ void pyytext(void)
} }
PROGRAMMER * new_programmer(void)
{
PROGRAMMER * p;
int i;
p = (PROGRAMMER *)malloc(sizeof(PROGRAMMER));
if (p == NULL) {
fprintf(stderr, "new_programmer(): out of memory\n");
exit(1);
}
memset(p, 0, sizeof(*p));
p->id = lcreat(NULL, 0);
p->desc[0] = 0;
for (i=0; i<N_PINS; i++)
p->pinno[i] = 0;
return p;
}
char * dup_string(char * str) char * dup_string(char * str)
{ {
char * s; char * s;

View File

@ -53,13 +53,6 @@ typedef struct token_t {
} TOKEN; } TOKEN;
#define PGM_DESCLEN 80
typedef struct programmer_t {
LISTID id;
char desc[PGM_DESCLEN];
unsigned int pinno[N_PINS];
} PROGRAMMER;
extern FILE * yyin; extern FILE * yyin;
extern PROGRAMMER * current_prog; extern PROGRAMMER * current_prog;
extern AVRPART * current_part; extern AVRPART * current_part;

View File

@ -60,8 +60,9 @@
%token K_NUM_PAGES %token K_NUM_PAGES
%token K_PART %token K_PART
%token K_PGMLED %token K_PGMLED
%token K_PWROFF_AFTER_WRITE %token K_PPI
%token K_PROGRAMMER %token K_PROGRAMMER
%token K_PWROFF_AFTER_WRITE
%token K_RDYLED %token K_RDYLED
%token K_READBACK_P1 %token K_READBACK_P1
%token K_READBACK_P2 %token K_READBACK_P2
@ -69,6 +70,8 @@
%token K_RESET %token K_RESET
%token K_SCK %token K_SCK
%token K_SIZE %token K_SIZE
%token K_STK500
%token K_TYPE
%token K_VCC %token K_VCC
%token K_VFYLED %token K_VFYLED
%token K_WRITEPAGE %token K_WRITEPAGE
@ -102,7 +105,7 @@ def :
prog_def : prog_def :
K_PROGRAMMER K_PROGRAMMER
{ current_prog = new_programmer(); } { current_prog = pgm_new(); }
prog_parms prog_parms
{ {
if (lsize(current_prog->id) == 0) { if (lsize(current_prog->id) == 0) {
@ -111,6 +114,11 @@ prog_def :
progname, infile, lineno); progname, infile, lineno);
exit(1); exit(1);
} }
if (current_prog->type[0] == 0) {
fprintf(stderr, "%s: error at %s:%d: programmer type not specified\n",
progname, infile, lineno);
exit(1);
}
ladd(programmers, current_prog); ladd(programmers, current_prog);
current_prog = NULL; current_prog = NULL;
} }
@ -205,6 +213,18 @@ prog_parm :
} }
} | } |
K_TYPE TKN_EQUAL K_PPI {
{
ppi_initpgm(current_prog);
}
} |
K_TYPE TKN_EQUAL K_STK500 {
{
fprintf(stderr, "%s: programmer 'stk500' not yet supported\n", progname);
}
} |
K_DESC TKN_EQUAL TKN_STRING { K_DESC TKN_EQUAL TKN_STRING {
strncpy(current_prog->desc, $3->value.string, PGM_DESCLEN); strncpy(current_prog->desc, $3->value.string, PGM_DESCLEN);
current_prog->desc[PGM_DESCLEN-1] = 0; current_prog->desc[PGM_DESCLEN-1] = 0;
@ -441,6 +461,7 @@ mem_spec :
#include "config.h" #include "config.h"
#include "lists.h" #include "lists.h"
#include "pindefs.h" #include "pindefs.h"
#include "pgm.h"
#include "avr.h" #include "avr.h"
extern char * progname; extern char * progname;

View File

@ -142,14 +142,17 @@ page_size { yylval=NULL; return K_PAGE_SIZE; }
paged { yylval=NULL; return K_PAGED; } paged { yylval=NULL; return K_PAGED; }
part { yylval=NULL; return K_PART; } part { yylval=NULL; return K_PART; }
pgmled { yylval=NULL; return K_PGMLED; } pgmled { yylval=NULL; return K_PGMLED; }
pwroff_after_write { yylval=NULL; return K_PWROFF_AFTER_WRITE; } ppi { yylval=NULL; return K_PPI; }
programmer { yylval=NULL; return K_PROGRAMMER; } programmer { yylval=NULL; return K_PROGRAMMER; }
pwroff_after_write { yylval=NULL; return K_PWROFF_AFTER_WRITE; }
rdyled { yylval=NULL; return K_RDYLED; } rdyled { yylval=NULL; return K_RDYLED; }
readback_p1 { yylval=NULL; return K_READBACK_P1; } readback_p1 { yylval=NULL; return K_READBACK_P1; }
readback_p2 { yylval=NULL; return K_READBACK_P2; } readback_p2 { yylval=NULL; return K_READBACK_P2; }
reset { yylval=NULL; return K_RESET; } reset { yylval=NULL; return K_RESET; }
sck { yylval=NULL; return K_SCK; } sck { yylval=NULL; return K_SCK; }
size { yylval=NULL; return K_SIZE; } size { yylval=NULL; return K_SIZE; }
stk500 { yylval=NULL; return K_STK500; }
type { yylval=NULL; return K_TYPE; }
vcc { yylval=NULL; return K_VCC; } vcc { yylval=NULL; return K_VCC; }
vfyled { yylval=NULL; return K_VFYLED; } vfyled { yylval=NULL; return K_VFYLED; }

206
main.c
View File

@ -94,16 +94,18 @@
#define DEFAULT_PARALLEL "/dev/ppi0" #define DEFAULT_PARALLEL "/dev/ppi0"
#define DEFAULT_SERIAL "/dev/cuaa0"
extern char * avr_version; extern char * avr_version;
extern char * config_version; extern char * config_version;
extern char * fileio_version; extern char * fileio_version;
extern char * lists_version; extern char * lists_version;
extern char * main_version; extern char * main_version;
extern char * pgm_version;
extern char * ppi_version; extern char * ppi_version;
extern char * term_version; extern char * term_version;
#define N_MODULES 7 #define N_MODULES 8
char ** modules[N_MODULES] = { char ** modules[N_MODULES] = {
&avr_version, &avr_version,
@ -111,6 +113,7 @@ char ** modules[N_MODULES] = {
&fileio_version, &fileio_version,
&lists_version, &lists_version,
&main_version, &main_version,
&pgm_version,
&ppi_version, &ppi_version,
&term_version &term_version
}; };
@ -126,7 +129,7 @@ char progbuf[PATH_MAX]; /* temporary buffer of spaces the same
PROGRAMMER * pgm = NULL; PROGRAMMER * pgm = NULL;
PROGRAMMER compiled_in_pgm; PROGRAMMER * compiled_in_pgm;
/* /*
* global options * global options
@ -142,7 +145,7 @@ void usage(void)
fprintf(stderr, fprintf(stderr,
"\nUsage: %s -p partno [-e] [-E exitspec[,exitspec]] [-f format] " "\nUsage: %s -p partno [-e] [-E exitspec[,exitspec]] [-f format] "
"[-F]\n" "[-F]\n"
" %s[-i filename] [-m memtype] [-o filename] [-P parallel] " " %s[-i filename] [-m memtype] [-o filename] [-P port] "
"[-t]\n" "[-t]\n"
" %s[-c programmer] [-C config-file] [-v [-v]] [-n]\n\n", " %s[-c programmer] [-C config-file] [-v [-v]] [-n]\n\n",
progname, progbuf, progbuf); progname, progbuf, progbuf);
@ -306,75 +309,11 @@ int read_config(char * file)
static char vccpins_buf[64];
char * vccpins_str(unsigned int pmask)
{
unsigned int mask;
int pin;
char b2[8];
char * b;
b = vccpins_buf;
b[0] = 0;
for (pin = 2, mask = 1; mask < 0x80; mask = mask << 1, pin++) {
if (pmask & mask) {
sprintf(b2, "%d", pin);
if (b[0] != 0)
strcat(b, ",");
strcat(b, b2);
}
}
return b;
}
void pinconfig_display(char * p) void pinconfig_display(char * p)
{ {
char vccpins[64]; fprintf(stderr, "%sProgrammer Type: %s\n", p, pgm->type);
char buffpins[64];
if (pgm->pinno[PPI_AVR_VCC]) { pgm->display(pgm, p);
snprintf(vccpins, sizeof(vccpins), " = pins %s",
vccpins_str(pgm->pinno[PPI_AVR_VCC]));
}
else {
strcpy(vccpins, " (not used)");
}
if (pgm->pinno[PPI_AVR_BUFF]) {
snprintf(buffpins, sizeof(buffpins), " = pins %s",
vccpins_str(pgm->pinno[PPI_AVR_BUFF]));
}
else {
strcpy(buffpins, " (not used)");
}
fprintf(stderr, "%sProgrammer Pin Configuration: %s (%s)\n", p,
(char *)ldata(lfirst(pgm->id)), pgm->desc);
fprintf(stderr,
"%s VCC = 0x%02x%s\n"
"%s BUFF = 0x%02x%s\n"
"%s RESET = %d\n"
"%s SCK = %d\n"
"%s MOSI = %d\n"
"%s MISO = %d\n"
"%s ERR LED = %d\n"
"%s RDY LED = %d\n"
"%s PGM LED = %d\n"
"%s VFY LED = %d\n",
p, pgm->pinno[PPI_AVR_VCC], vccpins,
p, pgm->pinno[PPI_AVR_BUFF], buffpins,
p, pgm->pinno[PIN_AVR_RESET],
p, pgm->pinno[PIN_AVR_SCK],
p, pgm->pinno[PIN_AVR_MOSI],
p, pgm->pinno[PIN_AVR_MISO],
p, pgm->pinno[PIN_LED_ERR],
p, pgm->pinno[PIN_LED_RDY],
p, pgm->pinno[PIN_LED_PGM],
p, pgm->pinno[PIN_LED_VFY]);
} }
@ -457,7 +396,6 @@ void list_parts(FILE * f, char * prefix, LISTID parts)
*/ */
int main(int argc, char * argv []) int main(int argc, char * argv [])
{ {
int fd; /* file descriptor for parallel port */
int rc; /* general return code checking */ int rc; /* general return code checking */
int exitrc; /* exit code for main() */ int exitrc; /* exit code for main() */
int i; /* general loop counter */ int i; /* general loop counter */
@ -479,7 +417,7 @@ int main(int argc, char * argv [])
char * outputf; /* output file name */ char * outputf; /* output file name */
char * inputf; /* input file name */ char * inputf; /* input file name */
int ovsigck; /* 1=override sig check, 0=don't */ int ovsigck; /* 1=override sig check, 0=don't */
char * parallel; /* parallel port device */ char * port; /* device port (/dev/xxx) */
int terminal; /* 1=enter terminal mode, 0=don't */ int terminal; /* 1=enter terminal mode, 0=don't */
FILEFMT filefmt; /* FMT_AUTO, FMT_IHEX, FMT_SREC, FMT_RBIN */ FILEFMT filefmt; /* FMT_AUTO, FMT_IHEX, FMT_SREC, FMT_RBIN */
int nowrite; /* don't actually write anything to the chip */ int nowrite; /* don't actually write anything to the chip */
@ -505,7 +443,7 @@ int main(int argc, char * argv [])
partdesc = NULL; partdesc = NULL;
readorwrite = 0; readorwrite = 0;
parallel = DEFAULT_PARALLEL; port = DEFAULT_PARALLEL;
outputf = NULL; outputf = NULL;
inputf = NULL; inputf = NULL;
doread = 1; doread = 1;
@ -535,12 +473,11 @@ int main(int argc, char * argv [])
/* /*
* initialize compiled-in default programmer * initialize compiled-in default programmer
*/ */
pgm = &compiled_in_pgm; compiled_in_pgm = pgm_new();
pgm->id = lcreat(NULL, 0); pgm = compiled_in_pgm;
ppi_initpgm(pgm);
ladd(pgm->id, dup_string("avrprog")); ladd(pgm->id, dup_string("avrprog"));
strcpy(pgm->desc, "avrprog compiled-in default"); strcpy(pgm->desc, "avrprog compiled-in default");
for (i=0; i<N_PINS; i++)
pgm->pinno[i] = 0;
pgm->pinno[PPI_AVR_VCC] = 0x0f; /* ppi pins 2-5, data reg bits 0-3 */ pgm->pinno[PPI_AVR_VCC] = 0x0f; /* ppi pins 2-5, data reg bits 0-3 */
pgm->pinno[PPI_AVR_BUFF] = 0; pgm->pinno[PPI_AVR_BUFF] = 0;
pgm->pinno[PIN_AVR_RESET] = 7; pgm->pinno[PIN_AVR_RESET] = 7;
@ -674,7 +611,7 @@ int main(int argc, char * argv [])
break; break;
case 'P': case 'P':
parallel = optarg; port = optarg;
break; break;
case 'v': case 'v':
@ -739,7 +676,7 @@ int main(int argc, char * argv [])
pgm = locate_pinconfig(programmers, "default"); pgm = locate_pinconfig(programmers, "default");
if (pgm == NULL) { if (pgm == NULL) {
/* no default config listed, use the compile-in default */ /* no default config listed, use the compile-in default */
pgm = &compiled_in_pgm; pgm = compiled_in_pgm;
} }
} }
else { else {
@ -776,7 +713,14 @@ int main(int argc, char * argv [])
if (exitspecs != NULL) { if (exitspecs != NULL) {
if (getexitspecs(exitspecs, &ppisetbits, &ppiclrbits) < 0) { if (strcmp(pgm->type, "PPI") != 0) {
fprintf(stderr,
"%s: WARNING: -E option is only valid with \"PPI\" "
"programmer types\n",
progname);
exitspecs = NULL;
}
else if (getexitspecs(exitspecs, &ppisetbits, &ppiclrbits) < 0) {
usage(); usage();
exit(1); exit(1);
} }
@ -799,70 +743,50 @@ int main(int argc, char * argv [])
fprintf(stderr, "\n"); fprintf(stderr, "\n");
if (strcmp(pgm->type, "PPI") == 0) {
verify_pin_assigned(PIN_AVR_RESET, "AVR RESET"); verify_pin_assigned(PIN_AVR_RESET, "AVR RESET");
verify_pin_assigned(PIN_AVR_SCK, "AVR SCK"); verify_pin_assigned(PIN_AVR_SCK, "AVR SCK");
verify_pin_assigned(PIN_AVR_MISO, "AVR MISO"); verify_pin_assigned(PIN_AVR_MISO, "AVR MISO");
verify_pin_assigned(PIN_AVR_MOSI, "AVR MOSI"); verify_pin_assigned(PIN_AVR_MOSI, "AVR MOSI");
}
/* /*
* open the parallel port * open the programmer
*/ */
fd = open(parallel, O_RDWR); pgm->open(pgm, port);
if (fd < 0) {
fprintf(stderr, "%s: can't open device \"%s\": %s\n\n",
progname, parallel, strerror(errno));
return 1;
}
exitrc = 0; exitrc = 0;
#if 0 rc = pgm->save(pgm);
ppi_sense(fd); if (rc < 0) {
#endif
ppidata = ppi_getall(fd, PPIDATA);
if (ppidata < 0) {
fprintf(stderr, "%s: error reading status of ppi data port\n", progname);
exitrc = 1; exitrc = 1;
ppidata = 0; /* clear all bits at exit */ ppidata = 0; /* clear all bits at exit */
goto main_exit; goto main_exit;
} }
ppidata &= ~ppiclrbits; if (strcmp(pgm->type, "PPI") == 0) {
ppidata |= ppisetbits; pgm->ppidata &= ~ppiclrbits;
pgm->ppidata |= ppisetbits;
}
/*
* enable the programmer
*/
pgm->enable(pgm);
/* /*
* turn off all the status leds * turn off all the status leds
*/ */
LED_OFF(fd, pgm->pinno[PIN_LED_RDY]); pgm->rdy_led(pgm, OFF);
LED_OFF(fd, pgm->pinno[PIN_LED_ERR]); pgm->err_led(pgm, OFF);
LED_OFF(fd, pgm->pinno[PIN_LED_PGM]); pgm->pgm_led(pgm, OFF);
LED_OFF(fd, pgm->pinno[PIN_LED_VFY]); pgm->vfy_led(pgm, OFF);
/*
* Prepare to start talking to the connected device - pull reset low
* first, delay a few milliseconds, then enable the buffer. This
* sequence allows the AVR to be reset before the buffer is enabled
* to avoid a short period of time where the AVR may be driving the
* programming lines at the same time the programmer tries to. Of
* course, if a buffer is being used, then the /RESET line from the
* programmer needs to be directly connected to the AVR /RESET line
* and not via the buffer chip.
*/
ppi_setpin(fd, pgm->pinno[PIN_AVR_RESET], 0);
usleep(1);
/*
* enable the 74367 buffer, if connected; this signal is active low
*/
ppi_clr(fd, PPIDATA, pgm->pinno[PPI_AVR_BUFF]);
/* /*
* initialize the chip in preperation for accepting commands * initialize the chip in preperation for accepting commands
*/ */
rc = avr_initialize(fd,p); rc = pgm->initialize(pgm, p);
if (rc < 0) { if (rc < 0) {
fprintf(stderr, "%s: initialization failed, rc=%d\n", progname, rc); fprintf(stderr, "%s: initialization failed, rc=%d\n", progname, rc);
exitrc = 1; exitrc = 1;
@ -870,7 +794,7 @@ int main(int argc, char * argv [])
} }
/* indicate ready */ /* indicate ready */
LED_ON(fd, pgm->pinno[PIN_LED_RDY]); pgm->rdy_led(pgm, ON);
fprintf(stderr, fprintf(stderr,
"%s: AVR device initialized and ready to accept instructions\n", "%s: AVR device initialized and ready to accept instructions\n",
@ -882,7 +806,7 @@ int main(int argc, char * argv [])
* against 0xffffffff should ensure that the signature bytes are * against 0xffffffff should ensure that the signature bytes are
* valid. * valid.
*/ */
rc = avr_signature(fd, p); rc = avr_signature(pgm, p);
if (rc != 0) { if (rc != 0) {
fprintf(stderr, "%s: error reading signature data, rc=%d\n", fprintf(stderr, "%s: error reading signature data, rc=%d\n",
progname, rc); progname, rc);
@ -923,7 +847,7 @@ int main(int argc, char * argv [])
} }
if (set_cycles != -1) { if (set_cycles != -1) {
rc = avr_get_cycle_count(fd, p, &cycles); rc = avr_get_cycle_count(pgm, p, &cycles);
if (rc == 0) { if (rc == 0) {
/* /*
* only attempt to update the cycle counter if we can actually * only attempt to update the cycle counter if we can actually
@ -932,7 +856,7 @@ int main(int argc, char * argv [])
cycles = set_cycles; cycles = set_cycles;
fprintf(stderr, "%s: setting erase-rewrite cycle count to %d\n", fprintf(stderr, "%s: setting erase-rewrite cycle count to %d\n",
progname, cycles); progname, cycles);
rc = avr_put_cycle_count(fd, p, cycles); rc = avr_put_cycle_count(pgm, p, cycles);
if (rc < 0) { if (rc < 0) {
fprintf(stderr, fprintf(stderr,
"%s: WARNING: failed to update the erase-rewrite cycle " "%s: WARNING: failed to update the erase-rewrite cycle "
@ -948,7 +872,7 @@ int main(int argc, char * argv [])
* before the chip can accept new programming * before the chip can accept new programming
*/ */
fprintf(stderr, "%s: erasing chip\n", progname); fprintf(stderr, "%s: erasing chip\n", progname);
avr_chip_erase(fd,p); pgm->chip_erase(pgm, p);
fprintf(stderr, "%s: done.\n", progname); fprintf(stderr, "%s: done.\n", progname);
} }
else if (set_cycles == -1) { else if (set_cycles == -1) {
@ -960,7 +884,7 @@ int main(int argc, char * argv [])
* see if the cycle count in the last four bytes of eeprom seems * see if the cycle count in the last four bytes of eeprom seems
* reasonable * reasonable
*/ */
rc = avr_get_cycle_count(fd, p, &cycles); rc = avr_get_cycle_count(pgm, p, &cycles);
if ((rc >= 0) && (cycles != 0xffffffff)) { if ((rc >= 0) && (cycles != 0xffffffff)) {
fprintf(stderr, fprintf(stderr,
"%s: current erase-rewrite cycle count is %d%s\n", "%s: current erase-rewrite cycle count is %d%s\n",
@ -990,7 +914,7 @@ int main(int argc, char * argv [])
/* /*
* terminal mode * terminal mode
*/ */
exitrc = terminal_mode(fd, p); exitrc = terminal_mode(pgm, p);
} }
else if (doread) { else if (doread) {
/* /*
@ -998,7 +922,7 @@ int main(int argc, char * argv [])
*/ */
fprintf(stderr, "%s: reading %s memory:\n", fprintf(stderr, "%s: reading %s memory:\n",
progname, memtype); progname, memtype);
rc = avr_read(fd, p, memtype, 0, 1); rc = avr_read(pgm, p, memtype, 0, 1);
if (rc < 0) { if (rc < 0) {
fprintf(stderr, "%s: failed to read all of %s memory, rc=%d\n", fprintf(stderr, "%s: failed to read all of %s memory, rc=%d\n",
progname, memtype, rc); progname, memtype, rc);
@ -1039,7 +963,7 @@ int main(int argc, char * argv [])
progname, memtype, size); progname, memtype, size);
if (!nowrite) { if (!nowrite) {
rc = avr_write(fd, p, memtype, size, 1); rc = avr_write(pgm, p, memtype, size, 1);
} }
else { else {
/* /*
@ -1068,17 +992,17 @@ int main(int argc, char * argv [])
* verify that the in memory file (p->mem[AVR_M_FLASH|AVR_M_EEPROM]) * verify that the in memory file (p->mem[AVR_M_FLASH|AVR_M_EEPROM])
* is the same as what is on the chip * is the same as what is on the chip
*/ */
LED_ON(fd, pgm->pinno[PIN_LED_VFY]); pgm->vfy_led(pgm, ON);
fprintf(stderr, "%s: verifying %s memory against %s:\n", fprintf(stderr, "%s: verifying %s memory against %s:\n",
progname, memtype, inputf); progname, memtype, inputf);
fprintf(stderr, "%s: reading on-chip %s data:\n", fprintf(stderr, "%s: reading on-chip %s data:\n",
progname, memtype); progname, memtype);
rc = avr_read(fd, v, memtype, vsize, 1); rc = avr_read(pgm, v, memtype, vsize, 1);
if (rc < 0) { if (rc < 0) {
fprintf(stderr, "%s: failed to read all of %s memory, rc=%d\n", fprintf(stderr, "%s: failed to read all of %s memory, rc=%d\n",
progname, memtype, rc); progname, memtype, rc);
LED_ON(fd, pgm->pinno[PIN_LED_ERR]); pgm->err_led(pgm, ON);
exitrc = 1; exitrc = 1;
goto main_exit; goto main_exit;
} }
@ -1088,7 +1012,7 @@ int main(int argc, char * argv [])
if (rc < 0) { if (rc < 0) {
fprintf(stderr, "%s: verification error; content mismatch\n", fprintf(stderr, "%s: verification error; content mismatch\n",
progname); progname);
LED_ON(fd, pgm->pinno[PIN_LED_ERR]); pgm->err_led(pgm, ON);
exitrc = 1; exitrc = 1;
goto main_exit; goto main_exit;
} }
@ -1096,7 +1020,7 @@ int main(int argc, char * argv [])
fprintf(stderr, "%s: %d bytes of %s verified\n", fprintf(stderr, "%s: %d bytes of %s verified\n",
progname, rc, memtype); progname, rc, memtype);
LED_OFF(fd, pgm->pinno[PIN_LED_VFY]); pgm->vfy_led(pgm, OFF);
} }
@ -1107,19 +1031,15 @@ int main(int argc, char * argv [])
* program complete * program complete
*/ */
avr_powerdown(fd); pgm->powerdown(pgm);
ppi_setall(fd, PPIDATA, ppidata); pgm->restore(pgm);
/* pgm->disable(pgm);
* disable the 74367 buffer, if connected; this signal is active low
*/
/* ppi_setpin(fd, pgm->pinno[PIN_AVR_BUFF], 1); */
ppi_set(fd, PPIDATA, pgm->pinno[PPI_AVR_BUFF]);
LED_OFF(fd, pgm->pinno[PIN_LED_RDY]); pgm->rdy_led(pgm, OFF);
close(fd); pgm->close(pgm);
fprintf(stderr, "\n%s done. Thank you.\n\n", progname); fprintf(stderr, "\n%s done. Thank you.\n\n", progname);

135
pgm.c Normal file
View File

@ -0,0 +1,135 @@
/*
* Copyright 2002 Brian S. Dean <bsd@bsdhome.com>
* All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY BRIAN S. DEAN ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BRIAN S. DEAN BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
*/
/* $Id$ */
#include <stdlib.h>
#include <stdio.h>
#include "pgm.h"
extern char * progname;
int pgm_default_1 (struct programmer_t *, int);
int pgm_default_2 (struct programmer_t *, AVRPART *);
int pgm_default_3 (struct programmer_t *);
void pgm_default_4 (struct programmer_t *);
int pgm_default_5 (struct programmer_t *, unsigned char cmd[4],
unsigned char res[4]);
void pgm_default_6 (struct programmer_t *, char *);
char * pgm_version = "$Id$";
PROGRAMMER * pgm_new(void)
{
int i;
PROGRAMMER * pgm;
pgm = (PROGRAMMER *)malloc(sizeof(*pgm));
if (pgm == NULL) {
fprintf(stderr, "%s: out of memory allocating programmer structure\n",
progname);
exit(1);
}
memset(pgm, 0, sizeof(*pgm));
pgm->id = lcreat(NULL, 0);
pgm->desc[0] = 0;
pgm->type[0] = 0;
for (i=0; i<N_PINS; i++)
pgm->pinno[i] = 0;
pgm->rdy_led = pgm_default_1;
pgm->err_led = pgm_default_1;
pgm->pgm_led = pgm_default_1;
pgm->vfy_led = pgm_default_1;
pgm->initialize = pgm_default_2;
pgm->display = pgm_default_6;
pgm->save = pgm_default_3;
pgm->restore = pgm_default_4;
pgm->enable = pgm_default_4;
pgm->disable = pgm_default_4;
pgm->powerup = pgm_default_4;
pgm->powerdown = pgm_default_4;
pgm->program_enable = pgm_default_2;
pgm->chip_erase = pgm_default_2;
pgm->cmd = pgm_default_5;
pgm->open = pgm_default_6;
pgm->close = pgm_default_4;
return pgm;
}
void pgm_default(void)
{
fprintf(stderr, "%s: programmer operation not supported\n", progname);
}
int pgm_default_1 (struct programmer_t * pgm, int value)
{
pgm_default();
return -1;
}
int pgm_default_2 (struct programmer_t * pgm, AVRPART * p)
{
pgm_default();
return -1;
}
int pgm_default_3 (struct programmer_t * pgm)
{
pgm_default();
return -1;
}
void pgm_default_4 (struct programmer_t * pgm)
{
pgm_default();
}
int pgm_default_5 (struct programmer_t * pgm, unsigned char cmd[4],
unsigned char res[4])
{
pgm_default();
return -1;
}
void pgm_default_6 (struct programmer_t * pgm, char * p)
{
pgm_default();
}

75
pgm.h Normal file
View File

@ -0,0 +1,75 @@
/*
* Copyright (c) 2000, 2001, 2002 Brian S. Dean <bsd@bsdhome.com>
* All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY BRIAN S. DEAN ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BRIAN S. DEAN BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
*/
/* $Id$ */
#ifndef __pgm_h__
#define __pgm_h__
#include "avrpart.h"
#include "lists.h"
#include "pindefs.h"
#define ON 1
#define OFF 0
#define PGM_DESCLEN 80
#define PGM_TYPELEN 32
typedef struct programmer_t {
LISTID id;
char desc[PGM_DESCLEN];
char type[PGM_TYPELEN];
unsigned int pinno[N_PINS];
int ppidata;
int fd;
int (*rdy_led) (struct programmer_t * pgm, int value);
int (*err_led) (struct programmer_t * pgm, int value);
int (*pgm_led) (struct programmer_t * pgm, int value);
int (*vfy_led) (struct programmer_t * pgm, int value);
int (*initialize) (struct programmer_t * pgm, AVRPART * p);
void (*display) (struct programmer_t * pgm, char * p);
int (*save) (struct programmer_t * pgm);
void (*restore) (struct programmer_t * pgm);
void (*enable) (struct programmer_t * pgm);
void (*disable) (struct programmer_t * pgm);
void (*powerup) (struct programmer_t * pgm);
void (*powerdown) (struct programmer_t * pgm);
int (*program_enable) (struct programmer_t * pgm, AVRPART * p);
int (*chip_erase) (struct programmer_t * pgm, AVRPART * p);
int (*cmd) (struct programmer_t * pgm, unsigned char cmd[4],
unsigned char res[4]);
void (*open) (struct programmer_t * pgm, char * port);
void (*close) (struct programmer_t * pgm);
} PROGRAMMER;
PROGRAMMER * pgm_new(void);
#endif

413
ppi.c
View File

@ -30,14 +30,21 @@
/* $Id$ */ /* $Id$ */
#include <stdio.h> #include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h> #include <unistd.h>
#include <errno.h>
#include <dev/ppbus/ppi.h> #include <dev/ppbus/ppi.h>
#include "avr.h"
#include "pindefs.h"
#include "pgm.h"
#include "ppi.h" #include "ppi.h"
#define SLOW_TOGGLE 0 #define SLOW_TOGGLE 0
extern char * progname; extern char * progname;
extern int do_cycles;
struct ppipins_t { struct ppipins_t {
int pin; int pin;
@ -71,6 +78,32 @@ static struct ppipins_t pins[] = {
char * ppi_version = "$Id$"; char * ppi_version = "$Id$";
static char vccpins_buf[64];
char * vccpins_str(unsigned int pmask)
{
unsigned int mask;
int pin;
char b2[8];
char * b;
b = vccpins_buf;
b[0] = 0;
for (pin = 2, mask = 1; mask < 0x80; mask = mask << 1, pin++) {
if (pmask & mask) {
sprintf(b2, "%d", pin);
if (b[0] != 0)
strcat(b, ",");
strcat(b, b2);
}
}
return b;
}
/* /*
* set 'get' and 'set' appropriately for subsequent passage to ioctl() * set 'get' and 'set' appropriately for subsequent passage to ioctl()
* to get/set the specified PPI registers. * to get/set the specified PPI registers.
@ -367,3 +400,383 @@ int ppi_sense(int fd)
} }
/*
* transmit and receive a byte of data to/from the AVR device
*/
unsigned char ppi_txrx(PROGRAMMER * pgm, unsigned char byte)
{
int i;
unsigned char r, b, rbyte;
rbyte = 0;
for (i=0; i<8; i++) {
b = (byte >> (7-i)) & 0x01;
/*
* read the result bit (it is either valid from a previous clock
* pulse or it is ignored in the current context)
*/
r = ppi_getpin(pgm->fd, pgm->pinno[PIN_AVR_MISO]);
/* set the data input line as desired */
ppi_setpin(pgm->fd, pgm->pinno[PIN_AVR_MOSI], b);
/*
* pulse the clock line, clocking in the MOSI data, and clocking out
* the next result bit
*/
ppi_pulsepin(pgm->fd, pgm->pinno[PIN_AVR_SCK]);
rbyte = rbyte | (r << (7-i));
}
return rbyte;
}
int ppi_rdy_led(PROGRAMMER * pgm, int value)
{
ppi_setpin(pgm->fd, pgm->pinno[PIN_LED_RDY], !value);
return 0;
}
int ppi_err_led(PROGRAMMER * pgm, int value)
{
ppi_setpin(pgm->fd, pgm->pinno[PIN_LED_ERR], !value);
return 0;
}
int ppi_pgm_led(PROGRAMMER * pgm, int value)
{
ppi_setpin(pgm->fd, pgm->pinno[PIN_LED_PGM], !value);
return 0;
}
int ppi_vfy_led(PROGRAMMER * pgm, int value)
{
ppi_setpin(pgm->fd, pgm->pinno[PIN_LED_VFY], !value);
return 0;
}
/*
* transmit an AVR device command and return the results; 'cmd' and
* 'res' must point to at least a 4 byte data buffer
*/
int ppi_cmd(PROGRAMMER * pgm, unsigned char cmd[4], unsigned char res[4])
{
int i;
for (i=0; i<4; i++) {
res[i] = ppi_txrx(pgm, cmd[i]);
}
#if 0
fprintf(stderr, "avr_cmd(): [ ");
for (i=0; i<4; i++)
fprintf(stderr, "%02x ", cmd[i]);
fprintf(stderr, "] [ ");
for (i=0; i<4; i++)
fprintf(stderr, "%02x ", res[i]);
fprintf(stderr, "]\n");
#endif
return 0;
}
/*
* issue the 'chip erase' command to the AVR device
*/
int ppi_chip_erase(PROGRAMMER * pgm, AVRPART * p)
{
unsigned char cmd[4];
unsigned char res[4];
int cycles;
int rc;
if (p->op[AVR_OP_CHIP_ERASE] == NULL) {
fprintf(stderr, "chip erase instruction not defined for part \"%s\"\n",
p->desc);
return -1;
}
rc = avr_get_cycle_count(pgm, p, &cycles);
/*
* only print out the current cycle count if we aren't going to
* display it below
*/
if (!do_cycles && ((rc >= 0) && (cycles != 0xffffffff))) {
fprintf(stderr,
"%s: current erase-rewrite cycle count is %d%s\n",
progname, cycles,
do_cycles ? "" : " (if being tracked)");
}
pgm->pgm_led(pgm, ON);
memset(cmd, 0, sizeof(cmd));
avr_set_bits(p->op[AVR_OP_CHIP_ERASE], cmd);
pgm->cmd(pgm, cmd, res);
usleep(p->chip_erase_delay);
pgm->initialize(pgm, p);
pgm->pgm_led(pgm, OFF);
if (do_cycles && (cycles != -1)) {
if (cycles == 0x00ffff) {
cycles = 0;
}
cycles++;
fprintf(stderr, "%s: erase-rewrite cycle count is now %d\n",
progname, cycles);
avr_put_cycle_count(pgm, p, cycles);
}
return 0;
}
/*
* issue the 'program enable' command to the AVR device
*/
int ppi_program_enable(PROGRAMMER * pgm, AVRPART * p)
{
unsigned char cmd[4];
unsigned char res[4];
if (p->op[AVR_OP_PGM_ENABLE] == NULL) {
fprintf(stderr, "program enable instruction not defined for part \"%s\"\n",
p->desc);
return -1;
}
memset(cmd, 0, sizeof(cmd));
avr_set_bits(p->op[AVR_OP_PGM_ENABLE], cmd);
pgm->cmd(pgm, cmd, res);
if (res[2] != cmd[1])
return -2;
return 0;
}
/*
* apply power to the AVR processor
*/
void ppi_powerup(PROGRAMMER * pgm)
{
ppi_set(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_VCC]); /* power up */
usleep(100000);
}
/*
* remove power from the AVR processor
*/
void ppi_powerdown(PROGRAMMER * pgm)
{
ppi_clr(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_VCC]); /* power down */
}
/*
* initialize the AVR device and prepare it to accept commands
*/
int ppi_initialize(PROGRAMMER * pgm, AVRPART * p)
{
int rc;
int tries;
pgm->powerup(pgm);
usleep(20000);
ppi_setpin(pgm->fd, pgm->pinno[PIN_AVR_SCK], 0);
ppi_setpin(pgm->fd, pgm->pinno[PIN_AVR_RESET], 0);
usleep(20000);
ppi_pulsepin(pgm->fd, pgm->pinno[PIN_AVR_RESET]);
usleep(20000); /* 20 ms XXX should be a per-chip parameter */
/*
* Enable programming mode. If we are programming an AT90S1200, we
* can only issue the command and hope it worked. If we are using
* one of the other chips, the chip will echo 0x53 when issuing the
* third byte of the command. In this case, try up to 32 times in
* order to possibly get back into sync with the chip if we are out
* of sync.
*/
if (strcmp(p->desc, "AT90S1200")==0) {
pgm->program_enable(pgm, p);
}
else {
tries = 0;
do {
rc = pgm->program_enable(pgm, p);
if ((rc == 0)||(rc == -1))
break;
ppi_pulsepin(pgm->fd, pgm->pinno[PIN_AVR_SCK]);
tries++;
} while (tries < 65);
/*
* can't sync with the device, maybe it's not attached?
*/
if (rc) {
fprintf(stderr, "%s: AVR device not responding\n", progname);
return -1;
}
}
return 0;
}
int ppi_save(PROGRAMMER * pgm)
{
int rc;
rc = ppi_getall(pgm->fd, PPIDATA);
if (rc < 0) {
fprintf(stderr, "%s: error reading status of ppi data port\n", progname);
return -1;
}
pgm->ppidata = rc;
return 0;
}
void ppi_restore(PROGRAMMER * pgm)
{
ppi_setall(pgm->fd, PPIDATA, pgm->ppidata);
}
void ppi_disable(PROGRAMMER * pgm)
{
ppi_set(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_BUFF]);
}
void ppi_enable(PROGRAMMER * pgm)
{
/*
* Prepare to start talking to the connected device - pull reset low
* first, delay a few milliseconds, then enable the buffer. This
* sequence allows the AVR to be reset before the buffer is enabled
* to avoid a short period of time where the AVR may be driving the
* programming lines at the same time the programmer tries to. Of
* course, if a buffer is being used, then the /RESET line from the
* programmer needs to be directly connected to the AVR /RESET line
* and not via the buffer chip.
*/
ppi_setpin(pgm->fd, pgm->pinno[PIN_AVR_RESET], 0);
usleep(1);
/*
* enable the 74367 buffer, if connected; this signal is active low
*/
ppi_clr(pgm->fd, PPIDATA, pgm->pinno[PPI_AVR_BUFF]);
}
void ppi_open(PROGRAMMER * pgm, char * port)
{
pgm->fd = open(port, O_RDWR);
if (pgm->fd < 0) {
fprintf(stderr, "%s: can't open device \"%s\": %s\n\n",
progname, port, strerror(errno));
exit(1);
}
}
void ppi_close(PROGRAMMER * pgm)
{
close(pgm->fd);
pgm->fd = -1;
}
void ppi_display(PROGRAMMER * pgm, char * p)
{
char vccpins[64];
char buffpins[64];
if (pgm->pinno[PPI_AVR_VCC]) {
snprintf(vccpins, sizeof(vccpins), " = pins %s",
vccpins_str(pgm->pinno[PPI_AVR_VCC]));
}
else {
strcpy(vccpins, " (not used)");
}
if (pgm->pinno[PPI_AVR_BUFF]) {
snprintf(buffpins, sizeof(buffpins), " = pins %s",
vccpins_str(pgm->pinno[PPI_AVR_BUFF]));
}
else {
strcpy(buffpins, " (not used)");
}
fprintf(stderr, "%sProgrammer Pin Configuration: %s (%s)\n", p,
(char *)ldata(lfirst(pgm->id)), pgm->desc);
fprintf(stderr,
"%s VCC = 0x%02x%s\n"
"%s BUFF = 0x%02x%s\n"
"%s RESET = %d\n"
"%s SCK = %d\n"
"%s MOSI = %d\n"
"%s MISO = %d\n"
"%s ERR LED = %d\n"
"%s RDY LED = %d\n"
"%s PGM LED = %d\n"
"%s VFY LED = %d\n",
p, pgm->pinno[PPI_AVR_VCC], vccpins,
p, pgm->pinno[PPI_AVR_BUFF], buffpins,
p, pgm->pinno[PIN_AVR_RESET],
p, pgm->pinno[PIN_AVR_SCK],
p, pgm->pinno[PIN_AVR_MOSI],
p, pgm->pinno[PIN_AVR_MISO],
p, pgm->pinno[PIN_LED_ERR],
p, pgm->pinno[PIN_LED_RDY],
p, pgm->pinno[PIN_LED_PGM],
p, pgm->pinno[PIN_LED_VFY]);
}
void ppi_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "PPI");
pgm->rdy_led = ppi_rdy_led;
pgm->err_led = ppi_err_led;
pgm->pgm_led = ppi_pgm_led;
pgm->vfy_led = ppi_vfy_led;
pgm->initialize = ppi_initialize;
pgm->display = ppi_display;
pgm->save = ppi_save;
pgm->restore = ppi_restore;
pgm->enable = ppi_enable;
pgm->disable = ppi_disable;
pgm->powerup = ppi_powerup;
pgm->powerdown = ppi_powerdown;
pgm->program_enable = ppi_program_enable;
pgm->chip_erase = ppi_chip_erase;
pgm->cmd = ppi_cmd;
pgm->open = ppi_open;
pgm->close = ppi_close;
}

44
ppi.h
View File

@ -32,6 +32,9 @@
#ifndef __ppi_h__ #ifndef __ppi_h__
#define __ppi_h__ #define __ppi_h__
#include "config.h"
/* /*
* PPI registers * PPI registers
*/ */
@ -69,6 +72,47 @@ int ppi_getpinreg (int pin);
int ppi_sense (int fd); int ppi_sense (int fd);
void ppi_initpgm (PROGRAMMER * pgm);
int ppi_rdy_led (PROGRAMMER * pgm, int value);
int ppi_err_led (PROGRAMMER * pgm, int value);
int ppi_pgm_led (PROGRAMMER * pgm, int value);
int ppi_vfy_led (PROGRAMMER * pgm, int value);
int ppi_cmd (PROGRAMMER * pgm, unsigned char cmd[4],
unsigned char res[4]);
int ppi_chip_erase (PROGRAMMER * pgm, AVRPART * p);
int ppi_program_enable (PROGRAMMER * pgm, AVRPART * p);
void ppi_powerup (PROGRAMMER * pgm);
void ppi_powerdown (PROGRAMMER * pgm);
int ppi_initialize (PROGRAMMER * pgm, AVRPART * p);
int ppi_save (PROGRAMMER * pgm);
void ppi_restore (PROGRAMMER * pgm);
void ppi_disable (PROGRAMMER * pgm);
void ppi_enable (PROGRAMMER * pgm);
void ppi_open (PROGRAMMER * pgm, char * port);
void ppi_close (PROGRAMMER * pgm);
void ppi_initpgm (PROGRAMMER * pgm);
#endif #endif

63
term.c
View File

@ -39,6 +39,7 @@
#include "avr.h" #include "avr.h"
#include "config.h" #include "config.h"
#include "lists.h" #include "lists.h"
#include "pgm.h"
#include "pindefs.h" #include "pindefs.h"
#include "ppi.h" #include "ppi.h"
@ -50,28 +51,28 @@ extern PROGRAMMER * pgm;
struct command { struct command {
char * name; char * name;
int (*func)(int fd, struct avrpart * p, int argc, char *argv[]); int (*func)(PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]);
char * desc; char * desc;
}; };
char * term_version = "$Id$"; char * term_version = "$Id$";
int cmd_dump (int fd, struct avrpart * p, int argc, char *argv[]); int cmd_dump (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]);
int cmd_write (int fd, struct avrpart * p, int argc, char *argv[]); int cmd_write (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]);
int cmd_erase (int fd, struct avrpart * p, int argc, char *argv[]); int cmd_erase (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]);
int cmd_sig (int fd, struct avrpart * p, int argc, char *argv[]); int cmd_sig (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]);
int cmd_part (int fd, struct avrpart * p, int argc, char *argv[]); int cmd_part (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]);
int cmd_help (int fd, struct avrpart * p, int argc, char *argv[]); int cmd_help (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]);
int cmd_quit (int fd, struct avrpart * p, int argc, char *argv[]); int cmd_quit (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]);
int cmd_send (int fd, struct avrpart * p, int argc, char *argv[]); int cmd_send (PROGRAMMER * pgm, struct avrpart * p, int argc, char *argv[]);
struct command cmd[] = { struct command cmd[] = {
@ -204,7 +205,7 @@ int hexdump_buf(FILE * f, int startaddr, unsigned char * buf, int len)
} }
int cmd_dump(int fd, struct avrpart * p, int argc, char * argv[]) int cmd_dump(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[])
{ {
static char prevmem[128] = {0}; static char prevmem[128] = {0};
char * e; char * e;
@ -280,7 +281,7 @@ int cmd_dump(int fd, struct avrpart * p, int argc, char * argv[])
} }
for (i=0; i<len; i++) { for (i=0; i<len; i++) {
rc = avr_read_byte(fd, p, mem, addr+i, &buf[i]); rc = avr_read_byte(pgm, p, mem, addr+i, &buf[i]);
if (rc != 0) { if (rc != 0) {
fprintf(stderr, "error reading %s address 0x%05lx of part %s\n", fprintf(stderr, "error reading %s address 0x%05lx of part %s\n",
mem->desc, addr+i, p->desc); mem->desc, addr+i, p->desc);
@ -303,7 +304,7 @@ int cmd_dump(int fd, struct avrpart * p, int argc, char * argv[])
} }
int cmd_write(int fd, struct avrpart * p, int argc, char * argv[]) int cmd_write(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[])
{ {
char * e; char * e;
int len, maxsize; int len, maxsize;
@ -373,10 +374,10 @@ int cmd_write(int fd, struct avrpart * p, int argc, char * argv[])
} }
} }
LED_OFF(fd, pgm->pinno[PIN_LED_ERR]); pgm->err_led(pgm, OFF);
for (werror=0, i=0; i<len; i++) { for (werror=0, i=0; i<len; i++) {
rc = avr_write_byte(fd, p, mem, addr+i, buf[i]); rc = avr_write_byte(pgm, p, mem, addr+i, buf[i]);
if (rc) { if (rc) {
fprintf(stderr, "%s (write): error writing 0x%02x at 0x%05lx, rc=%d\n", fprintf(stderr, "%s (write): error writing 0x%02x at 0x%05lx, rc=%d\n",
progname, buf[i], addr+i, rc); progname, buf[i], addr+i, rc);
@ -387,7 +388,7 @@ int cmd_write(int fd, struct avrpart * p, int argc, char * argv[])
werror = 1; werror = 1;
} }
rc = avr_read_byte(fd, p, mem, addr+i, &b); rc = avr_read_byte(pgm, p, mem, addr+i, &b);
if (b != buf[i]) { if (b != buf[i]) {
fprintf(stderr, fprintf(stderr,
"%s (write): error writing 0x%02x at 0x%05lx cell=0x%02x\n", "%s (write): error writing 0x%02x at 0x%05lx cell=0x%02x\n",
@ -396,7 +397,7 @@ int cmd_write(int fd, struct avrpart * p, int argc, char * argv[])
} }
if (werror) { if (werror) {
LED_ON(fd, pgm->pinno[PIN_LED_ERR]); pgm->err_led(pgm, ON);
} }
} }
@ -408,7 +409,7 @@ int cmd_write(int fd, struct avrpart * p, int argc, char * argv[])
} }
int cmd_send(int fd, struct avrpart * p, int argc, char * argv[]) int cmd_send(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[])
{ {
unsigned char cmd[4], res[4]; unsigned char cmd[4], res[4];
char * e; char * e;
@ -433,9 +434,9 @@ int cmd_send(int fd, struct avrpart * p, int argc, char * argv[])
} }
} }
LED_OFF(fd, pgm->pinno[PIN_LED_ERR]); pgm->err_led(pgm, OFF);
avr_cmd(fd, cmd, res); pgm->cmd(pgm, cmd, res);
/* /*
* display results * display results
@ -451,15 +452,15 @@ int cmd_send(int fd, struct avrpart * p, int argc, char * argv[])
} }
int cmd_erase(int fd, struct avrpart * p, int argc, char * argv[]) int cmd_erase(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[])
{ {
fprintf(stderr, "%s: erasing chip\n", progname); fprintf(stderr, "%s: erasing chip\n", progname);
avr_chip_erase(fd,p); pgm->chip_erase(pgm, p);
return 0; return 0;
} }
int cmd_part(int fd, struct avrpart * p, int argc, char * argv[]) int cmd_part(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[])
{ {
fprintf(stdout, "\n"); fprintf(stdout, "\n");
avr_display(stdout, p, "", 0); avr_display(stdout, p, "", 0);
@ -469,13 +470,13 @@ int cmd_part(int fd, struct avrpart * p, int argc, char * argv[])
} }
int cmd_sig(int fd, struct avrpart * p, int argc, char * argv[]) int cmd_sig(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[])
{ {
int i; int i;
int rc; int rc;
AVRMEM * m; AVRMEM * m;
rc = avr_signature(fd, p); rc = avr_signature(pgm, p);
if (rc != 0) { if (rc != 0) {
fprintf(stderr, "error reading signature data, rc=%d\n", fprintf(stderr, "error reading signature data, rc=%d\n",
rc); rc);
@ -498,13 +499,13 @@ int cmd_sig(int fd, struct avrpart * p, int argc, char * argv[])
} }
int cmd_quit(int fd, struct avrpart * p, int argc, char * argv[]) int cmd_quit(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[])
{ {
return 1; return 1;
} }
int cmd_help(int fd, struct avrpart * p, int argc, char * argv[]) int cmd_help(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[])
{ {
int i; int i;
@ -599,7 +600,7 @@ int tokenize(char * s, char *** argv)
} }
int do_cmd(int fd, struct avrpart * p, int argc, char * argv[]) int do_cmd(PROGRAMMER * pgm, struct avrpart * p, int argc, char * argv[])
{ {
int i; int i;
int hold; int hold;
@ -609,7 +610,7 @@ int do_cmd(int fd, struct avrpart * p, int argc, char * argv[])
hold = -1; hold = -1;
for (i=0; i<NCMDS; i++) { for (i=0; i<NCMDS; i++) {
if (strcasecmp(argv[0], cmd[i].name) == 0) { if (strcasecmp(argv[0], cmd[i].name) == 0) {
return cmd[i].func(fd, p, argc, argv); return cmd[i].func(pgm, p, argc, argv);
} }
else if (strncasecmp(argv[0], cmd[i].name, len)==0) { else if (strncasecmp(argv[0], cmd[i].name, len)==0) {
if (hold != -1) { if (hold != -1) {
@ -622,7 +623,7 @@ int do_cmd(int fd, struct avrpart * p, int argc, char * argv[])
} }
if (hold != -1) if (hold != -1)
return cmd[hold].func(fd, p, argc, argv); return cmd[hold].func(pgm, p, argc, argv);
fprintf(stderr, "%s: invalid command \"%s\"\n", fprintf(stderr, "%s: invalid command \"%s\"\n",
progname, argv[0]); progname, argv[0]);
@ -631,7 +632,7 @@ int do_cmd(int fd, struct avrpart * p, int argc, char * argv[])
} }
int terminal_mode(int fd, struct avrpart * p) int terminal_mode(PROGRAMMER * pgm, struct avrpart * p)
{ {
char * cmdbuf; char * cmdbuf;
int i, len; int i, len;
@ -666,7 +667,7 @@ int terminal_mode(int fd, struct avrpart * p)
fprintf(stdout, "\n"); fprintf(stdout, "\n");
/* run the command */ /* run the command */
rc = do_cmd(fd, p, argc, argv); rc = do_cmd(pgm, p, argc, argv);
free(argv); free(argv);
if (rc > 0) { if (rc > 0) {
rc = 0; rc = 0;

3
term.h
View File

@ -33,7 +33,8 @@
#define __term_h__ #define __term_h__
#include "avr.h" #include "avr.h"
#include "pgm.h"
int terminal_mode(int fd, struct avrpart * p); int terminal_mode(PROGRAMMER * pgm, struct avrpart * p);
#endif #endif