Implement developer options -p */[*cdosSrwt] for part descriptions

This commit is contained in:
Stefan Rueger
2022-07-07 18:32:19 +01:00
parent 3bd75e74c6
commit 9e2cea3ada
5 changed files with 690 additions and 251 deletions

View File

@@ -44,6 +44,7 @@
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <fnmatch.h>
#include "avrdude.h"
#include "libavrdude.h"
@@ -68,6 +69,19 @@ static char cmdbitchar(CMDBIT cb) {
}
}
static char *cmdbitstr(CMDBIT cb) {
char space[10];
*space = cmdbitchar(cb);
if(*space == 'a')
sprintf(space+1, "%d", cb.bitno);
else
space[1] = 0;
return strdup(space);
}
static const char *opcodename(int what) {
switch(what) {
@@ -101,9 +115,12 @@ static const char *opcodename(int what) {
}
char *opcode2str(OPCODE *op, int detailed) {
static char *opcode2str(OPCODE *op, int detailed) {
char cb, space[1024], *sp = space;
if(!op)
return strdup("NULL");
if(detailed)
*sp++ = '"';
for(int i=31; i >= 0; i--) {
@@ -126,6 +143,42 @@ char *opcode2str(OPCODE *op, int detailed) {
return strdup(space);
}
// return 0 if op code would encode (essentially) the same SPI command
static int opcodecmp(OPCODE *op1, OPCODE *op2) {
char *opstr1, *opstr2, *p;
int cmp;
if(!op1 && !op2)
return 0;
if(!op1 || !op2)
return op1? -1: 1;
opstr1 = opcode2str(op1, 1);
opstr2 = opcode2str(op2, 1);
if(!opstr1 || !opstr2) {
dev_info("%s: out of memory\n", progname);
exit(1);
}
// don't care x and 0 are functionally equivalent
for(p=opstr1; *p; p++)
if(*p == 'x')
*p = '0';
for(p=opstr2; *p; p++)
if(*p == 'x')
*p = '0';
cmp = strcmp(opstr1, opstr2);
free(opstr1);
free(opstr2);
return cmp;
}
static void printopcode(AVRPART *p, const char *d, OPCODE *op, int what) {
unsigned char cmd[4];
int i;
@@ -134,11 +187,11 @@ static void printopcode(AVRPART *p, const char *d, OPCODE *op, int what) {
memset(cmd, 0, sizeof cmd);
avr_set_bits(op, cmd);
dev_info(".op %s %s %s 0x%02x%02x%02x%02x ", p->desc, d, opcodename(what), cmd[0], cmd[1], cmd[2], cmd[3]);
dev_info(".op\t%s\t%s\t%s\t0x%02x%02x%02x%02x\t", p->desc, d, opcodename(what), cmd[0], cmd[1], cmd[2], cmd[3]);
for(i=31; i >= 0; i--) {
dev_info("%c", cmdbitchar(op->bit[i]));
if(i%8 == 0)
dev_info("%c", i? ' ': '\n');
dev_info("%c", i? '\t': '\n');
}
}
}
@@ -175,6 +228,7 @@ static char *parttype(AVRPART *p) {
case AVRPART_HAS_UPDI: strcpy(type, "UPDI"); break;
default: strcpy(type, "UNKNOWN"); break;
}
if((p->flags & AVRPART_SERIALOK) == 0)
strcat(type, "|NOTSERIAL");
if((p->flags & AVRPART_PARALLELOK) == 0)
@@ -210,248 +264,556 @@ static void checkaddr(int memsize, int pagesize, int what, OPCODE *op, AVRPART *
for(i=0; i<16; i++) { // ISP programming only deals with 16-bit addresses (words for flash, bytes for eeprom)
if(i < lo || i > hi) {
if(op->bit[i+8].type != AVR_CMDBIT_IGNORE && !(op->bit[i+8].type == AVR_CMDBIT_VALUE && op->bit[i+8].value == 0)) {
dev_info(".cmdbit%d %s %s-%s outside addressable space should be x or 0, but is %c", i+8, p->desc, m->desc, whatstr, cmdbitchar(op->bit[i+8]));
if(op->bit[i+8].type == AVR_CMDBIT_ADDRESS)
dev_info("%d", op->bit[i+8].bitno);
dev_info("\n");
char *cbs = cmdbitstr(op->bit[i+8]);
dev_info(".cmderr\t%s\t%s-%s\tbit %d outside addressable space should be x or 0 but is %s\n", p->desc, m->desc, whatstr, i+8, cbs? cbs: "NULL");
if(cbs)
free(cbs);
}
} else {
if(op->bit[i+8].type != AVR_CMDBIT_ADDRESS)
dev_info(".cmdbit%d %s %s-%s is %c but should be a\n", i+8, p->desc, m->desc, whatstr, cmdbitchar(op->bit[i+8]));
dev_info(".cmderr\t%s\t%s-%s\tbit %d is %c but should be a\n", p->desc, m->desc, whatstr, i+8, cmdbitchar(op->bit[i+8]));
else if(op->bit[i+8].bitno != i)
dev_info(".cmdbit%d %s %s-%s inconsistent: a%d specified as a%d\n", i+8, p->desc, m->desc, whatstr, i, op->bit[i+8].bitno);
dev_info(".cmderr\t%s\t%s-%s\tbit %d inconsistent: a%d specified as a%d\n", p->desc, m->desc, whatstr, i+8, i, op->bit[i+8].bitno);
}
}
for(i=0; i<32; i++) // command bits 8..23 should not contain address bits
if((i<8 || i>23) && op->bit[i].type == AVR_CMDBIT_ADDRESS)
dev_info(".cmdbit%d %s %s-%s contains a%d which it shouldn't\n", i, p->desc, m->desc, whatstr, op->bit[i].bitno);
dev_info(".cmderr\t%s\t%s-%s\tbit %d contains a%d which it shouldn't\n", p->desc, m->desc, whatstr, i, op->bit[i].bitno);
}
void dev_stack_out(bool dot, AVRPART *p, char *name, unsigned char *stack, int ns) {
if(dot)
dev_info("%s\t%s\t", p->desc, name);
static char *dev_sprintf(const char *fmt, ...) {
int size = 0;
char *p = NULL;
va_list ap;
// compute size
va_start(ap, fmt);
size = vsnprintf(p, size, fmt, ap);
va_end(ap);
if(size < 0)
return NULL;
size++; // for temrinating '\0'
if(!(p = malloc(size)))
return NULL;
va_start(ap, fmt);
size = vsnprintf(p, size, fmt, ap);
va_end(ap);
if(size < 0) {
free(p);
return NULL;
}
return p;
}
static int dev_nprinted;
int dev_message(int msglvl, const char *fmt, ...) {
va_list ap;
int rc = 0;
if(verbose >= msglvl) {
va_start(ap, fmt);
rc = vfprintf(stderr, fmt, ap);
va_end(ap);
if(rc > 0)
dev_nprinted += rc;
}
return rc;
}
static int dev_part_strct_entry(bool tsv, char *col0, char *col1, char *col2, const char *name, char *cont) {
const char *n = name? name: "name_error";
const char *c = cont? cont: "cont_error";
if(tsv) { // tab separated values
if(col0) {
dev_info("%s\t", col0);
if(col1) {
dev_info("%s\t", col1);
if(col2) {
dev_info("%s\t", col2);
}
}
}
dev_info("%s\t%s\n", n, c);
} else { // grammar conform
int indent = col2 && strcmp(col2, "part");
printf("%*s%-*s = %s;\n", indent? 8: 4, "", indent? 15: 19, n, c);
}
if(cont)
free(cont);
return 1;
}
static const char *dev_controlstack_name(AVRPART *p) {
return
p->ctl_stack_type == CTL_STACK_PP? "pp_controlstack":
p->ctl_stack_type == CTL_STACK_HVSP? "hvsp_controlstack":
p->ctl_stack_type == CTL_STACK_NONE? "NONE":
"unknown_controlstack";
}
static void dev_stack_out(bool tsv, AVRPART *p, const char *name, unsigned char *stack, int ns) {
if(!strcmp(name, "NONE")) {
name = "pp_controlstack";
ns = 0;
}
if(tsv)
dev_info(".pt\t%s\t%s\t", p->desc, name);
else
dev_info(" %-19s = ", name);
for(int i=0; i<ns; i++)
dev_info("0x%02x%s", stack[ns], i+1<ns? " ": dot? "\n": ";\n");
dev_info(" %-19s =%s", name, ns <=8? " ": "");
if(ns <= 0)
dev_info(tsv? "NULL\n": "NULL;\n");
else
for(int i=0; i<ns; i++)
dev_info("%s0x%02x%s", !tsv && ns > 8 && i%8 == 0? "\n ": "", stack[i], i+1<ns? ", ": tsv? "\n": ";\n");
}
// order in which memories are processed, runtime adds unknown ones
static const char *mem_order[100] = {
"eeprom", "flash", "application", "apptable",
"boot", "lfuse", "hfuse", "efuse",
"fuse", "fuse0", "wdtcfg", "fuse1",
"bodcfg", "fuse2", "osccfg", "fuse3",
"fuse4", "tcd0cfg", "fuse5", "syscfg0",
"fuse6", "syscfg1", "fuse7", "append",
"codesize", "fuse8", "fuse9", "bootend",
"bootsize", "fuses", "lock", "lockbits",
"tempsense", "signature", "prodsig", "sernum",
"calibration", "osccal16", "osccal20", "osc16err",
"osc20err", "usersig", "userrow", "data",
};
static void add_mem_order(const char *str) {
for(int i=0; i < sizeof mem_order/sizeof *mem_order; i++) {
if(mem_order[i] && !strcmp(mem_order[i], str))
return;
if(!mem_order[i]) {
mem_order[i] = strdup(str);
return;
}
}
dev_info("%s: mem_order[] under-dimensioned in developer_opts.c; increase and recompile\n", progname);
exit(1);
}
static int intcmp(int a, int b) {
return a-b;
}
// deep copies for comparison and raw output
typedef struct {
AVRMEM base;
OPCODE ops[AVR_OP_MAX];
} AVRMEMdeep;
static int avrmem_deep_copy(AVRMEMdeep *d, AVRMEM *m) {
int len;
d->base = *m;
// zap all bytes beyond terminating nul of desc array
len = strlen(m->desc)+1;
if(len < sizeof m->desc)
memset(d->base.desc + len, 0, sizeof m->desc - len);
// zap address values
d->base.buf = NULL;
d->base.tags = NULL;
for(int i=0; i<AVR_OP_MAX; i++)
d->base.op[i] = NULL;
// copy over the SPI operations themselves
memset(d->base.op, 0, sizeof d->base.op);
memset(d->ops, 0, sizeof d->ops);
for(int i=0; i<sizeof d->ops/sizeof *d->ops; i++)
if(m->op[i])
d->ops[i] = *m->op[i];
return 0;
}
static int memorycmp(AVRMEM *m1, AVRMEM *m2) {
AVRMEMdeep dm1, dm2;
if(!m1 && !m2)
return 0;
if(!m1 || !m2)
return m1? -1: 1;
avrmem_deep_copy(&dm1, m1);
avrmem_deep_copy(&dm2, m2);
return memcmp(&dm1, &dm2, sizeof dm1);
}
typedef struct {
AVRPART base;
OPCODE ops[AVR_OP_MAX];
AVRMEMdeep mems[40];
} AVRPARTdeep;
static int avrpart_deep_copy(AVRPARTdeep *d, AVRPART *p) {
AVRMEM *m;
int len, di;
memset(d, 0, sizeof *d);
d->base = *p;
// remove location info
memset(d->base.config_file, 0, sizeof d->base.config_file);
d->base.lineno = 0;
// zap all bytes beyond terminating nul of desc, id and family_id array
len = strlen(p->desc);
if(len < sizeof p->desc)
memset(d->base.desc + len, 0, sizeof p->desc - len);
len = strlen(p->family_id);
if(len < sizeof p->family_id)
memset(d->base.family_id + len, 0, sizeof p->family_id - len);
len = strlen(p->id);
if(len < sizeof p->id)
memset(d->base.id + len, 0, sizeof p->id - len);
// zap address values
d->base.mem = NULL;
d->base.mem_alias = NULL;
for(int i=0; i<AVR_OP_MAX; i++)
d->base.op[i] = NULL;
// copy over the SPI operations
memset(d->base.op, 0, sizeof d->base.op);
memset(d->ops, 0, sizeof d->ops);
for(int i=0; i<AVR_OP_MAX; i++)
if(p->op[i])
d->ops[i] = *p->op[i];
// fill in all memories we got in defined order
di = 0;
for(int mi=0; mi < sizeof mem_order/sizeof *mem_order && mem_order[mi]; mi++) {
m = p->mem? avr_locate_mem(p, mem_order[mi]): NULL;
if(m) {
if(di >= sizeof d->mems/sizeof *d->mems) {
avrdude_message(MSG_INFO, "%s: ran out of mems[] space, increase size in AVRMEMdeep of developer_opts.c and recompile\n", progname);
exit(1);
}
avrmem_deep_copy(d->mems+di, m);
di++;
}
}
return di;
}
static char txtchar(unsigned char in) {
in &= 0x7f;
return in == ' '? '_': in > ' ' && in < 0x7f? in: '.';
}
static void dev_raw_dump(unsigned char *p, int nbytes, const char *name, const char *sub, int idx) {
unsigned char *end = p+nbytes;
int n = ((end - p) + 15)/16;
for(int i=0; i<n; i++, p += 16) {
dev_info("%s\t%s\t%02x%04x: ", name, sub, idx, i*16);
for(int j=0; j<16; j++)
dev_info("%02x", p+i*16+j<end? p[i*16+j]: 0);
dev_info(" ");
for(int j=0; j<16; j++)
dev_info("%c", txtchar(p+i*16+j<end? p[i*16+j]: 0));
dev_info("\n");
}
}
static void dev_part_raw(AVRPART *part) {
AVRPARTdeep dp;
int di = avrpart_deep_copy(&dp, part);
dev_raw_dump((unsigned char *) &dp.base, sizeof dp.base, part->desc, "part", 0);
dev_raw_dump((unsigned char *) &dp.ops, sizeof dp.ops, part->desc, "ops", 1);
for(int i=0; i<di; i++)
dev_raw_dump((unsigned char *) (dp.mems+i), sizeof dp.mems[i], part->desc, dp.mems[i].base.desc, i+2);
}
static void dev_part_strct(AVRPART *p, bool tsv, AVRPART *base) {
char real_config_file[PATH_MAX];
if(!realpath(p->config_file, real_config_file))
memcpy(real_config_file, p->config_file, sizeof real_config_file);
dev_info("# %s %d\n", real_config_file, p->lineno);
if(!tsv)
dev_info("part\n");
__if_partout(strcmp, "\"%s\"", desc);
__if_partout(strcmp, "\"%s\"", id);
__if_partout(strcmp, "\"%s\"", family_id);
__if_partout(intcmp, "0x%02x", stk500_devcode);
__if_partout(intcmp, "0x%02x", avr910_devcode);
__if_partout(intcmp, "%d", chip_erase_delay);
__if_partout(intcmp, "0x%02x", pagel);
__if_partout(intcmp, "0x%02x", bs2);
__if_n_partout_str(memcmp, sizeof p->signature, dev_sprintf("0x%02x 0x%02x 0x%02x", p->signature[0], p->signature[1], p->signature[2]), signature);
__if_partout(intcmp, "0x%04x", usbpid);
if(!base || base->reset_disposition != p->reset_disposition)
__partout_str(strdup(p->reset_disposition == RESET_DEDICATED? "dedicated": p->reset_disposition == RESET_IO? "io": "unknown"), reset);
__if_partout_str(intcmp, strdup(p->retry_pulse == PIN_AVR_RESET? "reset": p->retry_pulse == PIN_AVR_SCK? "sck": "unknown"), retry_pulse);
if(!base || base->flags != p->flags) {
if(tsv) {
__partout("0x%04x", flags);
} else {
__if_flagout(AVRPART_HAS_JTAG, has_jtag);
__if_flagout(AVRPART_HAS_DW, has_debugwire);
__if_flagout(AVRPART_HAS_PDI, has_pdi);
__if_flagout(AVRPART_HAS_UPDI, has_updi);
__if_flagout(AVRPART_HAS_TPI, has_tpi);
__if_flagout(AVRPART_IS_AT90S1200, is_at90s1200);
__if_flagout(AVRPART_AVR32, is_avr32);
__if_flagout(AVRPART_ALLOWFULLPAGEBITSTREAM, allowfullpagebitstream);
__if_flagout(AVRPART_ENABLEPAGEPROGRAMMING, enablepageprogramming);
__if_flagout(AVRPART_SERIALOK, serial);
if(!base || (base->flags & (AVRPART_PARALLELOK | AVRPART_PSEUDOPARALLEL)) != (p->flags & (AVRPART_PARALLELOK | AVRPART_PSEUDOPARALLEL))) {
int par = p->flags & (AVRPART_PARALLELOK | AVRPART_PSEUDOPARALLEL);
__partout_str(strdup(par == 0? "no": par == AVRPART_PSEUDOPARALLEL? "unknown": AVRPART_PARALLELOK? "yes": "pseudo"), parallel);
}
}
}
__if_partout(intcmp, "%d", timeout);
__if_partout(intcmp, "%d", stabdelay);
__if_partout(intcmp, "%d", cmdexedelay);
__if_partout(intcmp, "%d", synchloops);
__if_partout(intcmp, "%d", bytedelay);
__if_partout(intcmp, "%d", pollindex);
__if_partout(intcmp, "0x%02x", pollvalue);
__if_partout(intcmp, "%d", predelay);
__if_partout(intcmp, "%d", postdelay);
__if_partout(intcmp, "%d", pollmethod);
if(!base && p->ctl_stack_type != CTL_STACK_NONE)
dev_stack_out(tsv, p, dev_controlstack_name(p), p->controlstack, CTL_STACK_SIZE);
// @@@ may need to remove controlstack and set p->ctl_stack_type to CTL_STACK_NONE if base has controlstack?
if(base && (p->ctl_stack_type != base->ctl_stack_type || memcmp(base->controlstack, p->controlstack, sizeof base->controlstack)))
dev_stack_out(tsv, p, dev_controlstack_name(p), p->controlstack, CTL_STACK_SIZE);
if(!base || memcmp(base->flash_instr, p->flash_instr, sizeof base->flash_instr))
dev_stack_out(tsv, p, "flash_instr", p->flash_instr, FLASH_INSTR_SIZE);
if(!base || memcmp(base->eeprom_instr, p->eeprom_instr, sizeof base->eeprom_instr))
dev_stack_out(tsv, p, "eeprom_instr", p->eeprom_instr, EEPROM_INSTR_SIZE);
__if_partout(intcmp, "%d", hventerstabdelay);
__if_partout(intcmp, "%d", progmodedelay);
__if_partout(intcmp, "%d", latchcycles);
__if_partout(intcmp, "%d", togglevtg);
__if_partout(intcmp, "%d", poweroffdelay);
__if_partout(intcmp, "%d", resetdelayms);
__if_partout(intcmp, "%d", resetdelayus);
__if_partout(intcmp, "%d", hvleavestabdelay);
__if_partout(intcmp, "%d", resetdelay);
__if_partout(intcmp, "%d", chiperasepulsewidth);
__if_partout(intcmp, "%d", chiperasepolltimeout);
__if_partout(intcmp, "%d", chiperasetime);
__if_partout(intcmp, "%d", programfusepulsewidth);
__if_partout(intcmp, "%d", programfusepolltimeout);
__if_partout(intcmp, "%d", programlockpulsewidth);
__if_partout(intcmp, "%d", programlockpolltimeout);
__if_partout(intcmp, "%d", synchcycles);
__if_partout(intcmp, "%d", hvspcmdexedelay);
__if_partout(intcmp, "0x%02x", idr);
__if_partout(intcmp, "0x%02x", rampz);
__if_partout(intcmp, "0x%02x", spmcr);
__if_partout(intcmp, "0x%02x", eecr); // why is eecr an unsigned short?
__if_partout(intcmp, "0x%04x", mcu_base);
__if_partout(intcmp, "0x%04x", nvm_base);
__if_partout(intcmp, "0x%04x", ocd_base);
__if_partout(intcmp, "%d", ocdrev);
for(int i=0; i < AVR_OP_MAX; i++)
if(!base || opcodecmp(p->op[i], base->op[i]))
dev_part_strct_entry(tsv, ".ptop", p->desc, "part", opcodename(i), opcode2str(p->op[i], !tsv));
for(int mi=0; mi < sizeof mem_order/sizeof *mem_order && mem_order[mi]; mi++) {
AVRMEM *m, *bm;
m = p->mem? avr_locate_mem(p, mem_order[mi]): NULL;
bm = base && base->mem? avr_locate_mem(base, mem_order[mi]): NULL;
if(!m && bm && !tsv)
dev_info("\n memory \"%s\" = NULL;\n", bm->desc);
if(!m)
continue;
if(base && !bm)
bm = avr_new_memtype();
if(!tsv) {
if(!memorycmp(bm, m)) // same memory bit for bit, no need to instantiate
continue;
dev_info("\n memory \"%s\"\n", m->desc);
}
__if_memout_yn(paged);
__if_memout(intcmp, m->size > 8192? "0x%x": "%d", size);
__if_memout(intcmp, "%d", page_size);
__if_memout(intcmp, "%d", num_pages); // why can AVRDUDE not compute this?
__if_memout(intcmp, "0x%x", offset);
__if_memout(intcmp, "%d", min_write_delay);
__if_memout(intcmp, "%d", max_write_delay);
__if_memout_yn(pwroff_after_write);
__if_n_memout_str(memcmp, 2, dev_sprintf("0x%02x 0x%02x", m->readback[0], m->readback[1]), readback);
__if_memout(intcmp, "%d", mode);
__if_memout(intcmp, "%d", delay);
__if_memout(intcmp, "%d", blocksize);
__if_memout(intcmp, "%d", readsize);
__if_memout(intcmp, "%d", pollindex);
for(int i=0; i < AVR_OP_MAX; i++)
if(!bm || opcodecmp(bm->op[i], m->op[i]))
dev_part_strct_entry(tsv, ".ptmmop", p->desc, m->desc, opcodename(i), opcode2str(m->op[i], !tsv));
if(!tsv)
dev_info(" ;\n");
for(LNODEID lnm=lfirst(p->mem_alias); lnm; lnm=lnext(lnm)) {
AVRMEM_ALIAS *ma = ldata(lnm);
if(ma->aliased_mem && !strcmp(ma->aliased_mem->desc, m->desc)) {
if(tsv)
dev_info(".ptmm\t%s\t%s\talias\t%s\n", p->desc, ma->desc, m->desc);
else
dev_info("\n memory \"%s\"\n alias \"%s\";\n ;\n", ma->desc, m->desc);
}
}
}
if(!tsv)
dev_info(";\n");
}
// -p */[cdosw*]
void dev_output_part_defs(char *partdesc) {
bool first = 1, cmdok, waits, opspi, descs, strct, all, dot;
bool cmdok, waits, opspi, descs, strct, cmpst, raw, all, tsv;
char *flags;
int nprinted;
AVRPART *nullpart = avr_new_part();
if(!*partdesc)
all = 1;
else if(*partdesc != '/' || (*partdesc == '/' && partdesc[1] && !strchr("cdosw*", partdesc[1]))) {
dev_info("%s: flags for developer option -p \\* not recognised\n", progname);
dev_info(" -p \\*/c check address bits in SPI commands\n");
dev_info(" -p \\*/d description of core part features\n");
dev_info(" -p \\*/o opcodes for SPI programming parts and memories\n");
dev_info(" -p \\*/s show avrdude.conf entries of parts\n");
dev_info(" -p \\*/ss show full avrdude.conf entry as tab separated table\n");
dev_info(" -p \\*/w wd_... constants for ISP parts\n");
dev_info(" -p \\*/\\* all of the above except -p \\*/s\n");
dev_info(" -p \\* same as -p\\*/\\*\n");
if((flags = strchr(partdesc, '/')))
*flags++ = 0;
if(!flags && !strcmp(partdesc, "*")) // treat -p * as if it was -p */*
flags = "*";
if(!*flags || !strchr("cdosSrw*t", *flags)) {
dev_info("%s: flags for developer option -p <wildcard>/<flags> not recognised\n", progname);
dev_info(
"Wildcard examples:\n"
" * all known parts\n"
" ATtiny10 just this part\n"
" *32[0-9] matches ATmega329, ATmega325 and ATmega328\n"
" *32? matches ATmega329, ATmega32A, ATmega325 and ATmega328\n"
"Flags (one or more of the characters below):\n"
" c check address bits in SPI commands and output errors\n"
" d description of core part features\n"
" o opcodes for SPI programming parts and memories\n"
" S show entries of avrdude.conf parts with all values\n"
" s show entries of avrdude.conf parts with necessary values\n"
" r show entries of avrdude.conf parts as raw dump\n"
" w wd_... constants for ISP parts\n"
" * all of the above except s\n"
" t use tab separated values as much as possible\n"
"Note:\n"
" -p * same as -p */*\n"
);
return;
} else {
partdesc++;
all = !!strchr(partdesc, '*') || !strlen(partdesc);
}
// redirect stderr to stdout
fflush(stderr); fflush(stdout); dup2(1, 2);
cmdok = all || !!strchr(partdesc, 'c');
descs = all || !!strchr(partdesc, 'd');
opspi = all || !!strchr(partdesc, 'o');
strct = all || !!strchr(partdesc, 's');
waits = all || !!strchr(partdesc, 'w');
dot = strlen(partdesc) != 1;
all = *flags == '*';
cmdok = all || !!strchr(flags, 'c');
descs = all || !!strchr(flags, 'd');
opspi = all || !!strchr(flags, 'o');
waits = all || !!strchr(flags, 'w');
strct = all || !!strchr(flags, 'S');
raw = all || !!strchr(flags, 'r');
cmpst = !!strchr(flags, 's');
tsv = !!strchr(flags, 't');
// go through all memories and add them to the memory order list
for(LNODEID ln1 = lfirst(part_list); ln1; ln1 = lnext(ln1)) {
AVRPART *p = ldata(ln1);
if(p->mem)
for(LNODEID lnm=lfirst(p->mem); lnm; lnm=lnext(lnm))
add_mem_order(((AVRMEM *) ldata(lnm))->desc);
// same for aliased memories (though probably not needed)
if(p->mem_alias)
for(LNODEID lnm=lfirst(p->mem_alias); lnm; lnm=lnext(lnm))
add_mem_order(((AVRMEM_ALIAS *) ldata(lnm))->desc);
}
nprinted = dev_nprinted;
for(LNODEID ln1 = lfirst(part_list); ln1; ln1 = lnext(ln1)) {
AVRPART *p = ldata(ln1);
int flashsize, flashoffset, flashpagesize, eepromsize , eepromoffset, eeprompagesize;
if(strct) {
char space[1024], real_config_file[PATH_MAX];
if(!first)
if(!descs || tsv)
if(dev_nprinted > nprinted) {
dev_info("\n");
first = 0;
if(!realpath(p->config_file, real_config_file))
memcpy(real_config_file, p->config_file, sizeof real_config_file);
dev_info("# %s %d\n", real_config_file, p->lineno);
if(!dot)
dev_info("part\n");
dev_partout("\"%s\"", desc);
dev_partout("\"%s\"", id);
dev_partout("\"%s\"", family_id);
dev_partout("0x%02x", stk500_devcode);
dev_partout("0x%02x", avr910_devcode);
dev_partout("%d", chip_erase_delay);
dev_partout("0x%02x", pagel);
dev_partout("0x%02x", bs2);
sprintf(space, "0x%02x 0x%02x 0x%02x", p->signature[0], p->signature[1], p->signature[2]);
dev_partout_str(space, signature);
dev_partout("0x%04x", usbpid);
sprintf(space, "%s", p->reset_disposition == RESET_DEDICATED? "dedicated": p->reset_disposition == RESET_IO? "io": "unknown");
dev_partout_str(space, reset);
sprintf(space, "%s", p->retry_pulse == PIN_AVR_RESET? "reset": p->retry_pulse == PIN_AVR_SCK? "sck": "unknown");
dev_partout_str(space, retry_pulse);
if(dot)
dev_info(".part\t%s\tflags\t0x%04x\n", p->desc, p->flags);
else {
dev_flagout("has_jtag", AVRPART_HAS_JTAG);
dev_flagout("has_debugwire", AVRPART_HAS_DW);
dev_flagout("has_pdi", AVRPART_HAS_PDI);
dev_flagout("has_updi", AVRPART_HAS_UPDI);
dev_flagout("has_tpi", AVRPART_HAS_TPI);
dev_flagout("is_at90s1200", AVRPART_IS_AT90S1200);
dev_flagout("is_avr32", AVRPART_AVR32);
dev_flagout("allowfullpagebitstream", AVRPART_ALLOWFULLPAGEBITSTREAM);
dev_flagout("enablepageprogramming", AVRPART_ENABLEPAGEPROGRAMMING);
dev_flagout("serial", AVRPART_SERIALOK);
switch(p->flags & (AVRPART_PARALLELOK | AVRPART_PSEUDOPARALLEL)) {
case 0: strcpy(space, "no"); break;
case AVRPART_PSEUDOPARALLEL: strcpy(space, "unknown"); break;
case AVRPART_PARALLELOK: strcpy(space, "yes"); break;
default: strcpy(space, "pseudo"); break;
}
dev_info(" %-19s = %s;\n", "parallel", space);
nprinted = dev_nprinted;
}
dev_partout("%d", timeout);
dev_partout("%d", stabdelay);
dev_partout("%d", cmdexedelay);
dev_partout("%d", synchloops);
dev_partout("%d", bytedelay);
dev_partout("%d", pollindex);
dev_partout("0x%02x", pollvalue);
dev_partout("%d", predelay);
dev_partout("%d", postdelay);
dev_partout("%d", pollmethod);
// pattern match the name of the part with command line: FMP_CASEFOLD not available here :(
if(fnmatch(partdesc, p->desc, 0) && fnmatch(partdesc, p->id, 0))
continue;
sprintf(space, "%s", p->ctl_stack_type == CTL_STACK_PP? "pp_controlstack": p->ctl_stack_type == CTL_STACK_HVSP? "hvsp_controlstack": "unknown_controlstack");
if(p->ctl_stack_type != CTL_STACK_NONE)
dev_stack_out(dot, p, space, p->controlstack, CTL_STACK_SIZE);
dev_stack_out(dot, p, "flash_instr", p->flash_instr, FLASH_INSTR_SIZE);
dev_stack_out(dot, p, "eeprom_instr", p->eeprom_instr, EEPROM_INSTR_SIZE);
/*
unsigned char controlstack[CTL_STACK_SIZE]; // stk500v2 PP/HVSP ctl stack
unsigned char flash_instr[FLASH_INSTR_SIZE]; // flash instructions (debugWire, JTAG)
unsigned char eeprom_instr[EEPROM_INSTR_SIZE]; // EEPROM instructions (debugWire, JTAG)
*/
dev_partout("%d", hventerstabdelay);
dev_partout("%d", progmodedelay);
dev_partout("%d", latchcycles);
dev_partout("%d", togglevtg);
dev_partout("%d", poweroffdelay);
dev_partout("%d", resetdelayms);
dev_partout("%d", resetdelayus);
dev_partout("%d", hvleavestabdelay);
dev_partout("%d", resetdelay);
dev_partout("%d", chiperasepulsewidth);
dev_partout("%d", chiperasepolltimeout);
dev_partout("%d", chiperasetime);
dev_partout("%d", programfusepulsewidth);
dev_partout("%d", programfusepolltimeout);
dev_partout("%d", programlockpulsewidth);
dev_partout("%d", programlockpolltimeout);
dev_partout("%d", synchcycles);
dev_partout("%d", hvspcmdexedelay);
dev_partout("0x%02x", idr);
dev_partout("0x%02x", rampz);
dev_partout("0x%02x", spmcr);
dev_partout("0x%02x", eecr); // why is eecr an unsigned short?
dev_partout("0x%04x", mcu_base);
dev_partout("0x%04x", nvm_base);
dev_partout("0x%04x", ocd_base);
if(p->ocdrev >= 0)
dev_partout("%d", ocdrev);
else
dev_partout("0x%8x", ocdrev);
for(int i=0; i < AVR_OP_MAX; i++) {
if(p->op[i]) {
char *opc = opcode2str(p->op[i], !dot);
if(dot)
dev_info(".partop\t%s\t%s\t%s\n", p->desc, opcodename(i), opc? opc: "error");
else
dev_info(" %-19s = %s;\n", opcodename(i), opc? opc: "error");
if(opc)
free(opc);
}
}
if(p->mem) {
for(LNODEID lnm=lfirst(p->mem); lnm; lnm=lnext(lnm)) {
AVRMEM *m = ldata(lnm);
if(!dot)
dev_info("\n memory \"%s\"\n", m->desc);
dev_memout_yn(paged);
if(m->size > 8192)
dev_memout("0x%x", size);
else
dev_memout("%d", size);
dev_memout("%d", page_size);
dev_memout("%d", num_pages); // why can AVRDUDE not compute this?
dev_memout("0x%x", offset);
dev_memout("%d", min_write_delay);
dev_memout("%d", max_write_delay);
dev_memout_yn(pwroff_after_write);
sprintf(space, "0x%02x 0x%02x", m->readback[0], m->readback[1]);
dev_memout_str(space, readback);
dev_memout("%d", mode);
dev_memout("%d", delay);
dev_memout("%d", blocksize);
dev_memout("%d", readsize);
dev_memout("%d", pollindex);
for(int i=0; i < AVR_OP_MAX; i++) {
if(m->op[i]) {
char *opc = opcode2str(m->op[i], !dot);
if(dot)
dev_info(".pmemop\t%s\t%s\t%s\t%s\n", p->desc, m->desc, opcodename(i), opc? opc: "error");
else
dev_info(" %-15s = %s;\n", opcodename(i), opc? opc: "error");
if(opc)
free(opc);
}
}
if(!dot)
dev_info(" ;\n");
for(LNODEID lnm=lfirst(p->mem_alias); lnm; lnm=lnext(lnm)) {
AVRMEM_ALIAS *ma = ldata(lnm);
if(ma->aliased_mem && !strcmp(ma->aliased_mem->desc, m->desc)) {
if(dot)
dev_info(".pmem\t%s\t%s\talias\t%s\n", p->desc, ma->desc, m->desc);
else
dev_info("\n memory \"%s\"\n alias \"%s\";\n ;\n", ma->desc, m->desc);
}
}
}
}
if(!dot)
dev_info(";\n");
}
if(strct || cmpst)
dev_part_strct(p, tsv, cmpst? nullpart: NULL);
if(raw)
dev_part_raw(p);
// identify core flash and eeprom parameters
@@ -478,10 +840,6 @@ void dev_output_part_defs(char *partdesc) {
AVRMEM *m;
OPCODE *oc;
if(!first && all)
dev_info("\n");
first = 0;
ok = 2047;
nfuses = 0;
@@ -601,7 +959,8 @@ void dev_output_part_defs(char *partdesc) {
if(descs) {
int len = 16-strlen(p->desc);
dev_info(".desc '%s' =>%*s [0x%02X, 0x%02X, 0x%02X, 0x%08x, 0x%05x, 0x%03x, 0x%06x, 0x%04x, 0x%03x, %d, 0x%03x, 0x%04x, '%s'], # %s %d\n",
dev_info("%s '%s' =>%*s [0x%02X, 0x%02X, 0x%02X, 0x%08x, 0x%05x, 0x%03x, 0x%06x, 0x%04x, 0x%03x, %d, 0x%03x, 0x%04x, '%s'], # %s %d\n",
tsv || all? ".desc": " ",
p->desc, len > 0? len: 0, "",
p->signature[0], p->signature[1], p->signature[2],
flashoffset, flashsize, flashpagesize,