Makefile : use gzip -f for man page installation so that we don't get

prompted.

avr.c avr.h fileio.c term.c :

     Change the avrpart data structure so that the typedef AVRMEM is
     used as an index into an array for the sizes of the memory types
     and also for pointers to buffers that represent the chip data for
     that memory type.  This removes a lot of conditional code of the
     form:

		switch (memtype) {
			case AVR_FLASH :
		 	...
		}

     Also, re-code avr_read_byte() and avr_write_byte() to properly
     handle the flash memory type without having to tell them whether
     they should program the high byte or the low byte - figure that
     out from the address itself.  For flash memory type, these
     routines now take the actual byte address instead of the word
     address.  This _greatly_ simplifies many otherwise simple
     operations, such a reading or writing a range of memory, by not
     having to worry about whether the address starts on an odd byte
     or an even byte.


git-svn-id: svn://svn.savannah.nongnu.org/avrdude/trunk/avrdude@45 81a1dc3b-b13d-400b-aceb-764788c761c2
This commit is contained in:
Brian S. Dean 2001-01-22 01:59:47 +00:00
parent c06319e33c
commit 209f979c7f
5 changed files with 120 additions and 284 deletions

View File

@ -46,5 +46,5 @@ ${BINDIR}/${TARGET} : ${TARGET}
${MANDIR}/${MANUAL}.gz : ${MANUAL}
${INSTALL_MANUAL} ${MANUAL} ${MANDIR}
gzip ${MANDIR}/${MANUAL}
gzip -f ${MANDIR}/${MANUAL}

256
avr.c
View File

@ -47,26 +47,26 @@ extern char progbuf[];
/* Need to add information for 2323, 2343, and 4414 */
struct avrpart parts[] = {
{ "AT90S1200", "1200", 1024, 64, 0xff, { 0x00, 0xff },
9000, 20000, 20000, NULL, NULL },
{ "AT90S1200", "1200", { 64, 1024 }, 0xff, { 0x00, 0xff },
9000, 20000, 20000, { NULL, NULL } },
{ "AT90S2313", "2313", 2048, 128, 0x7f, { 0x80, 0x7f },
9000, 20000, 20000, NULL, NULL },
{ "AT90S2313", "2313", { 128, 2048 }, 0x7f, { 0x80, 0x7f },
9000, 20000, 20000, { NULL, NULL } },
{ "AT90S2333", "2333", 2048, 128, 0xff, { 0x00, 0xff },
9000, 20000, 20000, NULL, NULL },
{ "AT90S2333", "2333", { 128, 2048 }, 0xff, { 0x00, 0xff },
9000, 20000, 20000, { NULL, NULL } },
{ "AT90S4433", "4433", 4096, 256, 0xff, { 0x00, 0xff },
9000, 20000, 20000, NULL, NULL },
{ "AT90S4433", "4433", { 256, 4096 }, 0xff, { 0x00, 0xff },
9000, 20000, 20000, { NULL, NULL } },
{ "AT90S4434", "4434", 4096, 256, 0xff, { 0x00, 0xff },
9000, 20000, 20000, NULL, NULL },
{ "AT90S4434", "4434", { 256, 4096 }, 0xff, { 0x00, 0xff },
9000, 20000, 20000, { NULL, NULL } },
{ "AT90S8515", "8515", 8192, 512, 0x7f, { 0x80, 0x7f },
9000, 20000, 20000, NULL, NULL },
{ "AT90S8515", "8515", { 512, 8192 }, 0x7f, { 0x80, 0x7f },
9000, 20000, 20000, { NULL, NULL } },
{ "AT90S8535", "8535", 8192, 512, 0xff, { 0x00, 0xff },
9000, 20000, 20000, NULL, NULL },
{ "AT90S8535", "8535", { 512, 8192 }, 0xff, { 0x00, 0xff },
9000, 20000, 20000, { NULL, NULL } },
};
#define N_AVRPARTS (sizeof(parts)/sizeof(struct avrpart))
@ -169,27 +169,20 @@ int avr_cmd ( int fd, unsigned char cmd[4], unsigned char res[4] )
unsigned char avr_read_byte ( int fd, struct avrpart * p,
AVRMEM memtype, unsigned short addr )
{
unsigned short offset;
unsigned char cmd[4];
unsigned char res[4];
/* order here is very important, AVR_EEPROM, AVR_FLASH, AVR_FLASH+1 */
static unsigned char cmdbyte[3] = { 0xa0, 0x20, 0x28 };
switch (memtype) {
case AVR_FLASH_LO:
cmd[0] = 0x20;
break;
case AVR_FLASH_HI:
cmd[0] = 0x28;
break;
case AVR_EEPROM:
cmd[0] = 0xa0;
break;
default:
fprintf(stderr,
"%s: avr_read_byte(); internal error: invalid memtype=%d\n",
progname, memtype);
return -1;
break;
offset = 0;
if (memtype == AVR_FLASH) {
offset = addr & 0x01;
addr = addr / 2;
}
cmd[0] = cmdbyte[memtype + offset];
cmd[1] = addr >> 8; /* high order bits of address */
cmd[2] = addr & 0x0ff; /* low order bits of address */
cmd[3] = 0; /* don't care */
@ -208,60 +201,23 @@ unsigned char avr_read_byte ( int fd, struct avrpart * p,
*/
int avr_read ( int fd, struct avrpart * p, AVRMEM memtype )
{
unsigned char rbyte, memt;
unsigned short n, start, end, i, bi;
unsigned char rbyte;
unsigned short i;
unsigned char * buf;
int bufsize;
int size;
start = 0;
buf = p->mem[memtype];
size = p->memsize[memtype];
switch (memtype) {
case AVR_FLASH :
memt = AVR_FLASH_LO;
buf = p->flash;
n = p->flash_size/2;
bufsize = p->flash_size;
break;
case AVR_EEPROM :
memt = memtype;
buf = p->eeprom;
n = p->eeprom_size;
bufsize = p->eeprom_size;
break;
default:
fprintf(stderr, "%s: avr_read(); internal error: invalid memtype=%d\n",
progname, memtype);
return -1;
break;
}
end = start+n;
bi = 0;
for (i=start; i<end; i++) {
/* eeprom or low byte of flash */
rbyte = avr_read_byte(fd, p, memt, i);
for (i=0; i<size; i++) {
rbyte = avr_read_byte(fd, p, memtype, i);
fprintf ( stderr, " \r%4u 0x%02x", i, rbyte );
if (bi < bufsize) {
buf[bi++] = rbyte;
}
if (memtype == AVR_FLASH) {
/* flash high byte */
rbyte = avr_read_byte(fd, p, AVR_FLASH_HI, i);
fprintf ( stderr, " 0x%02x", rbyte );
if (bi < bufsize) {
buf[bi++] = rbyte;
}
}
buf[i] = rbyte;
}
fprintf ( stderr, "\n" );
return bi;
return i;
}
@ -271,11 +227,16 @@ int avr_read ( int fd, struct avrpart * p, AVRMEM memtype )
int avr_write_byte ( int fd, struct avrpart * p, AVRMEM memtype,
unsigned short addr, unsigned char data )
{
unsigned char cmd[4], res[4];
unsigned char cmd[4];
unsigned char res[4];
unsigned char r;
int ready;
int tries;
unsigned char b;
unsigned short offset;
unsigned short caddr;
/* order here is very important, AVR_EEPROM, AVR_FLASH, AVR_FLASH+1 */
static unsigned char cmdbyte[3] = { 0xc0, 0x40, 0x48 };
/*
* check to see if the write is necessary by reading the existing
@ -286,26 +247,17 @@ int avr_write_byte ( int fd, struct avrpart * p, AVRMEM memtype,
return 0;
}
switch (memtype) {
case AVR_FLASH_LO:
cmd[0] = 0x40;
break;
case AVR_FLASH_HI:
cmd[0] = 0x48;
break;
case AVR_EEPROM:
cmd[0] = 0xc0;
break;
default:
fprintf(stderr,
"%s: avr_write_byte(); internal error: invalid memtype=%d\n",
progname, memtype);
return -1;
break;
offset = 0;
caddr = addr;
if (memtype == AVR_FLASH) {
offset = addr & 0x01;
caddr = addr / 2;
}
cmd[1] = addr >> 8; /* high order bits of address */
cmd[2] = addr & 0x0ff; /* low order bits of address */
cmd[0] = cmdbyte[memtype + offset];
cmd[1] = caddr >> 8; /* high order bits of address */
cmd[2] = caddr & 0x0ff; /* low order bits of address */
cmd[3] = data; /* data */
avr_cmd(fd, cmd, res);
@ -355,83 +307,39 @@ int avr_write_byte ( int fd, struct avrpart * p, AVRMEM memtype,
*/
int avr_write ( int fd, struct avrpart * p, AVRMEM memtype, int size )
{
unsigned char data, memt;
unsigned short start, end, i, bi;
int nl;
int rc;
unsigned char * buf;
int bufsize;
int wsize;
unsigned char * buf;
unsigned short i;
unsigned char data;
start = 0;
switch (memtype) {
case AVR_FLASH :
buf = p->flash;
bufsize = p->flash_size;
wsize = bufsize;
buf = p->mem[memtype];
wsize = p->memsize[memtype];
if (size < wsize) {
bufsize = size;
wsize = size;
}
end = start+bufsize/2;
memt = AVR_FLASH_LO;
break;
case AVR_EEPROM :
buf = p->eeprom;
bufsize = p->eeprom_size;
wsize = bufsize;
if (size < wsize) {
bufsize = size;
}
end = start+bufsize;
memt = memtype;
break;
default:
fprintf(stderr, "%s: avr_write(); internal error: invalid memtype=%d\n",
progname, memtype);
return -1;
break;
}
/* were we asked to write out more data than the device can hold? */
if (wsize < size) {
else if (size > wsize) {
fprintf(stderr,
"%s: WARNING: %d bytes requested, but memory region is only %d bytes\n"
"%sOnly %d bytes will actually be written\n",
progname, size, bufsize,
progbuf, bufsize);
progname, size, wsize,
progbuf, wsize);
}
bi = 0;
for (i=start; i<end; i++) {
for (i=0; i<wsize; i++) {
/* eeprom or low byte of flash */
data = buf[bi++];
nl = 0;
rc = avr_write_byte(fd, p, memt, i, data );
data = buf[i];
rc = avr_write_byte(fd, p, memtype, i, data );
fprintf(stderr, " \r%4u 0x%02x", i, data);
if (rc) {
fprintf(stderr, " ***failed; ");
nl = 1;
}
if (memtype == AVR_FLASH) {
/* high byte of flash */
data = buf[bi++];
rc = avr_write_byte(fd, p, AVR_FLASH_HI, i, data );
fprintf(stderr, " 0x%02x", data);
if (rc) {
fprintf(stderr, " ***failed; " );
nl = 1;
}
}
if (nl)
fprintf(stderr, "\n");
}
}
fprintf ( stderr, "\n" );
return bi;
return i;
}
@ -570,18 +478,15 @@ char * avr_memtstr ( AVRMEM memtype )
int avr_initmem ( struct avrpart * p )
{
p->flash = (unsigned char *) malloc(p->flash_size);
if (p->flash == NULL) {
fprintf(stderr, "%s: can't alloc buffer for flash size of %d bytes\n",
progname, p->flash_size);
int i;
for (i=0; i<AVR_MAXMEMTYPES; i++) {
p->mem[i] = (unsigned char *) malloc(p->memsize[i]);
if (p->mem[i] == NULL) {
fprintf(stderr, "%s: can't alloc buffer for %s size of %d bytes\n",
progname, avr_memtstr(i), p->memsize[i]);
return -1;
}
p->eeprom = (unsigned char *) malloc(p->eeprom_size);
if (p->eeprom == NULL) {
fprintf(stderr, "%s: can't alloc buffer for eeprom size of %d bytes\n",
progname, p->eeprom_size);
return -1;
}
return 0;
@ -598,24 +503,9 @@ int avr_verify(struct avrpart * p, struct avrpart * v, AVRMEM memtype, int size)
unsigned char * buf1, * buf2;
int vsize;
switch (memtype) {
case AVR_FLASH:
buf1 = p->flash;
buf2 = v->flash;
vsize = p->flash_size;
break;
case AVR_EEPROM:
buf1 = p->eeprom;
buf2 = v->eeprom;
vsize = p->eeprom_size;
break;
default:
fprintf(stderr, "%s: invalid memory type = %d for data verification\n",
progname, memtype);
return -1;
}
buf1 = p->mem[memtype];
buf2 = v->mem[memtype];
vsize = p->memsize[memtype];
if (vsize < size) {
fprintf(stderr,
@ -654,8 +544,8 @@ void avr_display ( FILE * f, struct avrpart * p, char * prefix )
"%sFlash Polled Readback = 0x%02x\n"
"%sEEPROM Polled Readback = 0x%02x, 0x%02x\n",
prefix, p->partdesc,
prefix, p->flash_size,
prefix, p->eeprom_size,
prefix, p->memsize[AVR_FLASH],
prefix, p->memsize[AVR_EEPROM],
prefix, p->min_write_delay, p->max_write_delay,
prefix, p->chip_erase_delay,
prefix, p->f_readback,

28
avr.h
View File

@ -45,27 +45,47 @@
/*
* AVR memory designations
* AVR memory designations; the order of these is important, these are
* used as indexes into statically initialized data, don't change them
* around.
*/
typedef enum {
AVR_EEPROM,
AVR_FLASH,
AVR_FLASH_LO,
AVR_FLASH_HI
AVR_FLASH
} AVRMEM;
#define AVR_MAXMEMTYPES 2 /* just flash and eeprom */
#if 0
struct avrmem {
AVRMEM memtype;
int startaddr;
int size;
unsigned char buf;
struct avrmem * next;
};
#endif
struct avrpart {
char * partdesc; /* long part name */
char * optiontag; /* short part name */
int memsize[AVR_MAXMEMTYPES]; /* sizes for eeprom,
flash, etc, indexed by
AVR_EEPROM or AVR_FLASH */
#if 0
int flash_size; /* size in bytes of flash */
int eeprom_size; /* size in bytes of eeprom */
#endif
unsigned char f_readback; /* flash write polled readback value */
unsigned char e_readback[2]; /* eeprom write polled readback values */
int min_write_delay; /* microseconds */
int max_write_delay; /* microseconds */
int chip_erase_delay; /* microseconds */
unsigned char * mem[AVR_MAXMEMTYPES];
#if 0
unsigned char * flash;
unsigned char * eeprom;
#endif
};
extern struct avrpart parts[];

View File

@ -433,24 +433,10 @@ int fileio ( int op, char * filename, FILEFMT format,
}
}
switch (memtype) {
case AVR_EEPROM:
buf = p->eeprom;
/* point at the requested memory buffer */
buf = p->mem[memtype];
if (fio.op == FIO_READ)
size = p->eeprom_size;
break;
case AVR_FLASH:
buf = p->flash;
if (fio.op == FIO_READ)
size = p->flash_size;
break;
default:
fprintf(stderr, "%s: invalid memory type for %s: %d\n",
progname, fio.iodesc, memtype);
return -1;
}
size = p->memsize[memtype];
if (fio.op == FIO_READ) {
/* 0xff fill unspecified memory */

82
term.c
View File

@ -196,8 +196,7 @@ int hexdump_buf ( FILE * f, int startaddr, char * buf, int len )
int cmd_dump ( int fd, struct avrpart * p, int argc, char * argv[] )
{
char * e;
int i, j, l;
unsigned short daddr;
int i, l;
char * buf;
int maxsize;
static AVRMEM memtype=AVR_FLASH;
@ -241,12 +240,7 @@ int cmd_dump ( int fd, struct avrpart * p, int argc, char * argv[] )
}
}
switch (memtype) {
case AVR_FLASH : maxsize = p->flash_size; break;
case AVR_EEPROM : maxsize = p->eeprom_size; break;
default : return -1; /* this can't happen, but is silences gcc
warnings */
}
maxsize = p->memsize[memtype];
if (addr > maxsize) {
fprintf(stderr,
@ -265,29 +259,8 @@ int cmd_dump ( int fd, struct avrpart * p, int argc, char * argv[] )
return -1;
}
j = 0;
daddr = addr;
if (memtype == AVR_FLASH) {
daddr = addr / 2;
if (addr & 0x01) {
buf[j++] = avr_read_byte( fd, p, AVR_FLASH_HI, daddr);
daddr++;
}
}
i = daddr;
while (j < len) {
if (memtype == AVR_FLASH) {
buf[j++] = avr_read_byte( fd, p, AVR_FLASH_LO, i);
if (j < len) {
buf[j++] = avr_read_byte( fd, p, AVR_FLASH_HI, i);
}
}
else {
buf[j++] = avr_read_byte( fd, p, AVR_EEPROM, i);
}
i++;
}
for (i=0; i<len; i++)
buf[i] = avr_read_byte(fd, p, memtype, addr+i);
hexdump_buf(stdout, addr, buf, len);
@ -301,10 +274,10 @@ int cmd_dump ( int fd, struct avrpart * p, int argc, char * argv[] )
int cmd_write ( int fd, struct avrpart * p, int argc, char * argv[] )
{
char * e;
int i, j, l;
int i, l;
int len, maxsize;
AVRMEM memtype;
unsigned short addr, daddr;
unsigned short addr;
char * buf;
int rc;
@ -317,11 +290,9 @@ int cmd_write ( int fd, struct avrpart * p, int argc, char * argv[] )
l = strlen(argv[1]);
if (strncasecmp(argv[1],"flash",l)==0) {
memtype = AVR_FLASH;
maxsize = p->flash_size;
}
else if (strncasecmp(argv[1],"eeprom",l)==0) {
memtype = AVR_EEPROM;
maxsize = p->eeprom_size;
}
else {
fprintf(stderr, "%s (write): invalid memory type \"%s\"\n",
@ -329,6 +300,8 @@ int cmd_write ( int fd, struct avrpart * p, int argc, char * argv[] )
return -1;
}
maxsize = p->memsize[memtype];
addr = strtoul(argv[2], &e, 0);
if (*e || (e == argv[2])) {
fprintf(stderr, "%s (write): can't parse address \"%s\"\n",
@ -369,45 +342,12 @@ int cmd_write ( int fd, struct avrpart * p, int argc, char * argv[] )
}
}
j = 0;
daddr = addr;
if (memtype == AVR_FLASH) {
daddr = addr / 2;
if (addr & 0x01) {
/* handle odd numbered memory locations in the flash area */
rc = avr_write_byte(fd, p, AVR_FLASH_HI, daddr, buf[j++]);
for (i=0; i<len; i++) {
rc = avr_write_byte(fd, p, memtype, addr+i, buf[i]);
if (rc) {
fprintf(stderr, "%s (write): error writing 0x%02x at 0x%04x\n",
progname, buf[j-1], daddr*2+1);
progname, buf[i], addr+i);
}
daddr++;
}
}
i = daddr;
while (j < len) {
if (memtype == AVR_FLASH) {
rc = avr_write_byte( fd, p, AVR_FLASH_LO, i, buf[j++]);
if (rc) {
fprintf(stderr, "%s (write): error writing 0x%02x at 0x%04x\n",
progname, buf[j-1], i*2);
}
if (j < len) {
rc = avr_write_byte( fd, p, AVR_FLASH_HI, i, buf[j++]);
if (rc) {
fprintf(stderr, "%s (write): error writing 0x%02x at 0x%04x\n",
progname, buf[j-1], i*2+1);
}
}
}
else {
rc = avr_write_byte( fd, p, AVR_EEPROM, i, buf[j++]);
if (rc) {
fprintf(stderr, "%s (write): error writing 0x%02x at 0x%04x\n",
progname, buf[j-1], i);
}
}
i++;
}
free(buf);