patch #7718: Merge global data of avrftdi in a private data structure

* avrftdi.[ch]: moved global data into private data structure, moved
    private defines from header file into source file


git-svn-id: svn://svn.savannah.nongnu.org/avrdude/trunk/avrdude@1068 81a1dc3b-b13d-400b-aceb-764788c761c2
This commit is contained in:
rliebscher 2012-02-11 19:55:22 +00:00
parent 01359e24bb
commit 00aad29d96
3 changed files with 201 additions and 137 deletions

View File

@ -1,3 +1,9 @@
2012-02-11 Rene Liebscher <R.Liebscher@gmx.de>
patch #7718: Merge global data of avrftdi in a private data structure
* avrftdi.[ch]: moved global data into private data structure, moved
private defines from header file into source file
2012-02-06 Rene Liebscher <R.Liebscher@gmx.de> 2012-02-06 Rene Liebscher <R.Liebscher@gmx.de>
patch #7720 Bug in EEPROM write patch #7720 Bug in EEPROM write

312
avrftdi.c
View File

@ -50,6 +50,38 @@
# error "libusb needs either <usb.h> or <lusb0_usb.h>" # error "libusb needs either <usb.h> or <lusb0_usb.h>"
#endif #endif
#define SCK 0x01
#define SDO 0x02
#define SDI 0x04
#define RX 0x20
#define TX 0x11
#define TRX (RX | TX)
#define TYPE_C_D 0x500
#define TYPE_H 0x700
#define TYPE_4H 0x800
#define E(x, ftdi) if ((x)) { fprintf(stdout, "%s:%d %s() %s: %s (%d)\n\t%s\n", __FILE__, __LINE__, __FUNCTION__, \
#x, strerror(errno), errno, ftdi_get_error_string(ftdi)); return -1; }
#define E_VOID(x, ftdi) if ((x)) { fprintf(stdout, "%s:%d %s() %s: %s (%d)\n\t%s\n", __FILE__, __LINE__, __FUNCTION__, \
#x, strerror(errno), errno, ftdi_get_error_string(ftdi)); }
typedef struct avrftdi_s {
struct ftdi_context* ftdic;
uint16_t pin_value;
uint16_t pin_direction;
uint16_t pin_inversion;
uint16_t led_mask;
int type; /**type is bcdDevice. C/D is 0x500 H is 0x700 4H is 0x800*/
int ftype; /** is from FTDI. Use TYPE_2232C, TYPE_2232H, or TYPE_4232H*/
} avrftdi_t;
#define to_pdata(pgm) \
(avrftdi_t *)((pgm)->cookie)
/* This is for running the code without having a FTDI-device. /* This is for running the code without having a FTDI-device.
* The generated code is useless! For debugging purposes only. * The generated code is useless! For debugging purposes only.
* This should never be defined, unless you know what you are * This should never be defined, unless you know what you are
@ -58,11 +90,6 @@
*/ */
//#define DRYRUN //#define DRYRUN
static struct ftdi_context ftdic;
static uint16_t pin_value, pin_direction, pin_inversion, led_mask;
static int type; /**type is bcdDevice. C/D is 0x500 H is 0x700 4H is 0x800*/
static int ftype; /** is from FTDI. Use TYPE_2232C, TYPE_2232H, or TYPE_4232H*/
static void buf_dump(unsigned char *buf, int len, char *desc, static void buf_dump(unsigned char *buf, int len, char *desc,
int offset, int width) int offset, int width)
{ {
@ -79,7 +106,7 @@ static void buf_dump(unsigned char *buf, int len, char *desc,
fprintf(stderr, "%s end\n", desc); fprintf(stderr, "%s end\n", desc);
} }
static int set_frequency(uint32_t freq) static int set_frequency(avrftdi_t* ftdi, uint32_t freq)
{ {
uint32_t divisor; uint32_t divisor;
uint8_t buf[3]; uint8_t buf[3];
@ -114,17 +141,35 @@ static int set_frequency(uint32_t freq)
buf[2] = (uint8_t)((divisor >> 8) & 0xff); buf[2] = (uint8_t)((divisor >> 8) & 0xff);
#ifndef DRYRUN #ifndef DRYRUN
E(ftdi_write_data(&ftdic, buf, 3) < 0); E(ftdi_write_data(ftdi->ftdic, buf, 3) < 0, ftdi->ftdic);
#endif #endif
return 0; return 0;
} }
static int
pin_limit(avrftdi_t* pdata)
{
if(TYPE_4232H == pdata->ftype)
return 7;
else if(TYPE_2232C==pdata->ftype)
return 11;
else if(TYPE_2232H == pdata->ftype)
return 15;
else{
fprintf(stderr, "Unknown type %d (0x%x)\n",
pdata->ftype, pdata->ftype);
return 15;
}
}
/* Add a single pin (by pin number) to the pin masks (or to pins), /* Add a single pin (by pin number) to the pin masks (or to pins),
* update pinmask[pinfunc] */ * update pinmask[pinfunc] */
static int add_pin(PROGRAMMER *pgm, int pinfunc) static int add_pin(PROGRAMMER *pgm, int pinfunc)
{ {
int pin, inversion_mask, mlim; int pin, inversion_mask, mlim;
avrftdi_t* pdata = to_pdata(pgm);
pin = pgm->pinno[pinfunc]; pin = pgm->pinno[pinfunc];
if (verbose) if (verbose)
@ -144,17 +189,9 @@ static int add_pin(PROGRAMMER *pgm, int pinfunc)
} else { } else {
inversion_mask = 0; inversion_mask = 0;
} }
if(TYPE_4232H == ftype)
mlim=7; mlim = pin_limit(pdata);
else if(TYPE_2232C==ftype)
mlim=11;
else if(TYPE_2232H == ftype)
mlim=15;
else{
fprintf(stderr, "Unknown type %d (0x%x)\n",
ftype, ftype);
mlim=15;
}
/* check that the pin number is in range */ /* check that the pin number is in range */
if (pin > mlim) { if (pin > mlim) {
fprintf(stderr, fprintf(stderr,
@ -167,20 +204,20 @@ static int add_pin(PROGRAMMER *pgm, int pinfunc)
} }
/* create the mask and check that the pin is available */ /* create the mask and check that the pin is available */
if (pin_direction & (1 << (pin -1)) ) { if (pdata->pin_direction & (1 << (pin -1)) ) {
fprintf(stderr, fprintf(stderr,
"%s failure: pin %d has two definitions in config file\n", "%s failure: pin %d has two definitions in config file\n",
progname, pin); progname, pin);
return -1; return -1;
} else { } else {
pin_direction |= (1 << (pin - 1)); pdata->pin_direction |= (1 << (pin - 1));
pin_inversion |= inversion_mask; pdata->pin_inversion |= inversion_mask;
} }
if(PIN_LED_ERR == pinfunc || if(PIN_LED_ERR == pinfunc ||
PIN_LED_VFY == pinfunc || PIN_LED_VFY == pinfunc ||
PIN_LED_RDY == pinfunc || PIN_LED_RDY == pinfunc ||
PIN_LED_PGM == pinfunc) { PIN_LED_PGM == pinfunc) {
led_mask|=(1 << (pin - 1)); pdata->led_mask|=(1 << (pin - 1));
} }
return 0; return 0;
@ -192,6 +229,7 @@ static int add_pins(PROGRAMMER *pgm, int pinfunc)
{ {
int i, pin, mlim; int i, pin, mlim;
uint32_t mask, inversion_mask=0; uint32_t mask, inversion_mask=0;
avrftdi_t* pdata = to_pdata(pgm);
pin = pgm->pinno[pinfunc]; pin = pgm->pinno[pinfunc];
@ -205,32 +243,24 @@ static int add_pins(PROGRAMMER *pgm, int pinfunc)
"add_pins: %d: 0x%04x, inv=0x%04x\n", "add_pins: %d: 0x%04x, inv=0x%04x\n",
pinfunc, pin, inversion_mask); pinfunc, pin, inversion_mask);
mask = pin; mask = pin;
if (TYPE_4232H == ftype)
mlim = 8; mlim = pin_limit(pdata);
else if (TYPE_2232C == ftype)
mlim = 12;
else if (TYPE_2232H == ftype)
mlim = 16;
else{
fprintf(stderr, "Unknown type %d (0x%x)\n",
ftype, ftype);
mlim = 16;
}
if (mask >= 1 << mlim) { if (mask >= 1 << mlim) {
fprintf(stderr, fprintf(stderr,
"%s failure: pin list has pins out of range (%x>%x): ", "%s failure: pin list has pins out of range (%x>%x): ",
progname, mask, 1 << mlim); progname, mask, 1 << mlim);
mask &= ~(1 << mlim) - 1; mask &= ~(1 << mlim) - 1;
} }
else if (mask & pin_direction) { else if (mask & pdata->pin_direction) {
fprintf(stderr, fprintf(stderr,
"%s failure: conflicting pins in pin list: ", "%s failure: conflicting pins in pin list: ",
progname); progname);
mask &= pin_direction; mask &= pdata->pin_direction;
} }
else { else {
pin_direction |= (uint16_t)mask; pdata->pin_direction |= (uint16_t)mask;
pin_inversion |= inversion_mask; pdata->pin_inversion |= inversion_mask;
return 0; return 0;
} }
@ -248,23 +278,23 @@ static int add_pins(PROGRAMMER *pgm, int pinfunc)
} }
static int write_flush(void) static int write_flush(avrftdi_t* pdata)
{ {
unsigned char buf[6]; unsigned char buf[6];
if(verbose > 2) if(verbose > 2)
fprintf(stderr, fprintf(stderr,
"%s info: direction: 0x%04x, value: 0x%04x, inversion: 0x%04x\n", "%s info: direction: 0x%04x, value: 0x%04x, inversion: 0x%04x\n",
progname, pin_direction, pin_value, pin_inversion); progname, pdata->pin_direction, pdata->pin_value, pdata->pin_inversion);
buf[0] = 0x80; buf[0] = 0x80;
buf[1] = pin_value & 0xff; buf[1] = (pdata->pin_value) & 0xff;
buf[2] = pin_direction & 0xff; buf[2] = (pdata->pin_direction) & 0xff;
buf[3] = 0x82; buf[3] = 0x82;
buf[4] = (pin_value >> 8) & 0xff; buf[4] = ((pdata->pin_value) >> 8) & 0xff;
buf[5] = (pin_direction >> 8) & 0xff; buf[5] = ((pdata->pin_direction) >> 8) & 0xff;
#ifndef DRYRUN #ifndef DRYRUN
E(ftdi_write_data(&ftdic, buf, 6) != 6); E(ftdi_write_data(pdata->ftdic, buf, 6) != 6, pdata->ftdic);
#endif #endif
@ -277,14 +307,16 @@ static int write_flush(void)
* avr has got the reset signal when we start sleeping. * avr has got the reset signal when we start sleeping.
* (it may be stuck in the USB stack or some USB hub) * (it may be stuck in the USB stack or some USB hub)
*/ */
E(ftdi_usb_purge_buffers(&ftdic)); #ifndef DRYRUN
E(ftdi_usb_purge_buffers(pdata->ftdic), pdata->ftdic);
#endif
return 0; return 0;
} }
/* this function sets or clears a GPIO pin */ /* this function sets or clears a GPIO pin */
static int set_pin(int pin, int value) static int set_pin(avrftdi_t* pdata, int pin, int value)
{ {
int bit; int bit;
uint16_t tval; uint16_t tval;
@ -297,7 +329,7 @@ static int set_pin(int pin, int value)
} }
--pin; --pin;
bit= 1 << (pin); bit= 1 << (pin);
if (pin_inversion & bit) { if (pdata->pin_inversion & bit) {
value = !value; value = !value;
} }
if (value) if (value)
@ -309,10 +341,10 @@ static int set_pin(int pin, int value)
progname, pin + 1, bit, value); progname, pin + 1, bit, value);
/* set bits depending on value */ /* set bits depending on value */
/*pin_value ^= (-value ^ pin_value) & (1 << (pin - 1)); */ /*pin_value ^= (-value ^ pin_value) & (1 << (pin - 1)); */
tval = (pin_value & (~bit)) | value; tval = (pdata->pin_value & (~bit)) | value;
if (tval != pin_value) { if (tval != pdata->pin_value) {
pin_value = tval; pdata->pin_value = tval;
return write_flush(); return write_flush(pdata);
} else if (verbose > 1) } else if (verbose > 1)
fprintf(stderr, "SameVal\n"); fprintf(stderr, "SameVal\n");
return 0; return 0;
@ -320,7 +352,7 @@ static int set_pin(int pin, int value)
} }
/* this function sets or clears one or more GPIO pin these are bit-mapped */ /* this function sets or clears one or more GPIO pin these are bit-mapped */
static int set_pins(int pin, int value) static int set_pins(avrftdi_t* pdata, int pin, int value)
{ {
if (0 == pin) { if (0 == pin) {
if(verbose > 2) if(verbose > 2)
@ -328,7 +360,7 @@ static int set_pins(int pin, int value)
return 1; return 1;
} }
pin >>=1; pin >>=1;
if (pin_inversion & pin) { if (pdata->pin_inversion & pin) {
value = !value; value = !value;
} }
if (value) if (value)
@ -340,8 +372,8 @@ static int set_pins(int pin, int value)
progname, pin, value); progname, pin, value);
/* set bits depending on value */ /* set bits depending on value */
/*pin_value ^= (-value ^ pin_value) & (1 << (pin - 1)); */ /*pin_value ^= (-value ^ pin_value) & (1 << (pin - 1)); */
pin_value = (pin_value & (~pin)) | value; pdata->pin_value = (pdata->pin_value & (~pin)) | value;
return write_flush(); return write_flush(pdata);
} }
/* these functions are callbacks, which go into the /* these functions are callbacks, which go into the
@ -349,25 +381,25 @@ static int set_pins(int pin, int value)
*/ */
static int set_led_pgm(struct programmer_t * pgm, int value) static int set_led_pgm(struct programmer_t * pgm, int value)
{ {
return set_pin(pgm->pinno[PIN_LED_PGM], value); return set_pin(to_pdata(pgm), pgm->pinno[PIN_LED_PGM], value);
} }
static int set_led_rdy(struct programmer_t * pgm, int value) static int set_led_rdy(struct programmer_t * pgm, int value)
{ {
return set_pin(pgm->pinno[PIN_LED_RDY], value); return set_pin(to_pdata(pgm), pgm->pinno[PIN_LED_RDY], value);
} }
static int set_led_err(struct programmer_t * pgm, int value) static int set_led_err(struct programmer_t * pgm, int value)
{ {
return set_pin(pgm->pinno[PIN_LED_ERR], value); return set_pin(to_pdata(pgm), pgm->pinno[PIN_LED_ERR], value);
} }
static int set_led_vfy(struct programmer_t * pgm, int value) static int set_led_vfy(struct programmer_t * pgm, int value)
{ {
return set_pin(pgm->pinno[PIN_LED_VFY], value); return set_pin(to_pdata(pgm), pgm->pinno[PIN_LED_VFY], value);
} }
static int avrftdi_transmit(unsigned char mode, unsigned char *cmd, static int avrftdi_transmit(avrftdi_t* pdata, unsigned char mode, unsigned char *cmd,
unsigned char *data, int buf_size) unsigned char *data, int buf_size)
{ {
int k = 0; int k = 0;
@ -383,7 +415,7 @@ static int avrftdi_transmit(unsigned char mode, unsigned char *cmd,
buf[buf_size + 3] = 0x87; buf[buf_size + 3] = 0x87;
#ifndef DRYRUN #ifndef DRYRUN
E(ftdi_write_data(&ftdic, buf, buf_size + 4) != buf_size + 4); E(ftdi_write_data(pdata->ftdic, buf, buf_size + 4) != buf_size + 4, pdata->ftdic);
#endif #endif
} }
@ -391,8 +423,8 @@ static int avrftdi_transmit(unsigned char mode, unsigned char *cmd,
memset(buf, 0, sizeof(buf)); memset(buf, 0, sizeof(buf));
do { do {
#ifndef DRYRUN #ifndef DRYRUN
n = ftdi_read_data(&ftdic, buf + k, buf_size - k); n = ftdi_read_data(pdata->ftdic, buf + k, buf_size - k);
E(n < 0); E(n < 0, pdata->ftdic);
#else #else
n = buf_size - k; n = buf_size - k;
#endif #endif
@ -412,9 +444,11 @@ static int avrftdi_open(PROGRAMMER * pgm, char *port)
struct ftdi_device_list* devlist; struct ftdi_device_list* devlist;
struct ftdi_device_list* devlist_ptr; struct ftdi_device_list* devlist_ptr;
struct usb_device *found_dev; struct usb_device *found_dev;
avrftdi_t* pdata = to_pdata(pgm);
/* use vid/pid in following priority: config, /* use vid/pid in following priority: config,
* defaults. cmd-line is currently not supported */ * defaults. cmd-line is currently not supported */
type = 0;
snfound = 0; snfound = 0;
foundsn = NULL; foundsn = NULL;
@ -442,12 +476,11 @@ static int avrftdi_open(PROGRAMMER * pgm, char *port)
interface = INTERFACE_A; interface = INTERFACE_A;
} }
#ifndef DRYRUN #ifndef DRYRUN
E(ftdi_init(&ftdic) < 0);
found_dev = NULL; found_dev = NULL;
if (ftdi_usb_find_all(&ftdic, &devlist, vid, pid)) { if (ftdi_usb_find_all(pdata->ftdic, &devlist, vid, pid)) {
devlist_ptr = devlist; devlist_ptr = devlist;
do { do {
ftdi_usb_get_strings(&ftdic, devlist_ptr->dev, ftdi_usb_get_strings(pdata->ftdic, devlist_ptr->dev,
NULL, 0, NULL, 0, serial, 255); NULL, 0, NULL, 0, serial, 255);
if (verbose) if (verbose)
@ -461,11 +494,11 @@ static int avrftdi_open(PROGRAMMER * pgm, char *port)
foundsn = strdup(serial); foundsn = strdup(serial);
snfound = 1; snfound = 1;
found_dev = devlist_ptr->dev; found_dev = devlist_ptr->dev;
type = devlist_ptr->dev->descriptor.bcdDevice; pdata->type = devlist_ptr->dev->descriptor.bcdDevice;
} }
}else { }else {
if (0 == type) /**we assume it will attach to first found. */ if (0 == pdata->type) /**we assume it will attach to first found. */
type = devlist_ptr->dev->descriptor.bcdDevice; pdata->type = devlist_ptr->dev->descriptor.bcdDevice;
if (NULL == found_dev) if (NULL == found_dev)
found_dev = devlist_ptr->dev; found_dev = devlist_ptr->dev;
if (NULL == foundsn) if (NULL == foundsn)
@ -491,8 +524,8 @@ static int avrftdi_open(PROGRAMMER * pgm, char *port)
if (verbose) { if (verbose) {
fprintf(stderr, fprintf(stderr,
"%s: Using device VID:PID %04x:%04x type 0x%04x(", "%s: Using device VID:PID %04x:%04x type 0x%04x(",
progname, vid, pid, type); progname, vid, pid, pdata->type);
switch (type) { switch (pdata->type) {
case TYPE_C_D: case TYPE_C_D:
fprintf(stderr,"C/D"); break; fprintf(stderr,"C/D"); break;
case TYPE_H: case TYPE_H:
@ -500,12 +533,12 @@ static int avrftdi_open(PROGRAMMER * pgm, char *port)
case TYPE_4H: case TYPE_4H:
fprintf(stderr,"4H"); break; fprintf(stderr,"4H"); break;
default: default:
fprintf(stderr,"unknown %04x",type); break; fprintf(stderr,"unknown %04x",pdata->type); break;
} }
fprintf(stderr,") and SN '%s'.\n", foundsn); fprintf(stderr,") and SN '%s'.\n", foundsn);
} }
if (type == TYPE_C_D && INTERFACE_B == interface){ if (pdata->type == TYPE_C_D && INTERFACE_B == interface){
fprintf(stderr, fprintf(stderr,
"%s: Type C/D found. Setting interface to A\n", "%s: Type C/D found. Setting interface to A\n",
progname); progname);
@ -517,10 +550,10 @@ static int avrftdi_open(PROGRAMMER * pgm, char *port)
"%s: Using USB Interface %c\n", "%s: Using USB Interface %c\n",
progname, INTERFACE_A == interface? 'A': 'B'); progname, INTERFACE_A == interface? 'A': 'B');
free(foundsn); free(foundsn);
E(ftdi_set_interface(&ftdic, interface) < 0); E(ftdi_set_interface(pdata->ftdic, interface) < 0, pdata->ftdic);
E(ftdi_usb_open_dev(&ftdic,found_dev) <0); E(ftdi_usb_open_dev(pdata->ftdic,found_dev) <0, pdata->ftdic);
/* E(ftdi_usb_open_desc(&ftdic, vid,pid,NULL,0==pgm->usbsn[0]?NULL:pgm->usbsn) < 0); */ /* E(ftdi_usb_open_desc(&ftdic, vid,pid,NULL,0==pgm->usbsn[0]?NULL:pgm->usbsn) < 0); */
ftype=ftdic.type; pdata->ftype=pdata->ftdic->type;
#endif #endif
@ -551,11 +584,8 @@ static int avrftdi_open(PROGRAMMER * pgm, char *port)
fprintf(stderr, "Setting to default-value 4\n"); fprintf(stderr, "Setting to default-value 4\n");
pgm->pinno[PIN_AVR_RESET] = 4; pgm->pinno[PIN_AVR_RESET] = 4;
} }
/**sync our internal state with the chip */
pin_direction = 0; pdata->pin_direction = (0x3 | (1 << (pgm->pinno[PIN_AVR_RESET] - 1)));
pin_value = 0;
write_flush();
pin_direction = (0x3 | (1 << (pgm->pinno[PIN_AVR_RESET] - 1)));
/* gather the rest of the pins */ /* gather the rest of the pins */
if (add_pins(pgm, PPI_AVR_VCC)) return -1; if (add_pins(pgm, PPI_AVR_VCC)) return -1;
@ -565,19 +595,20 @@ static int avrftdi_open(PROGRAMMER * pgm, char *port)
if (add_pin(pgm, PIN_LED_PGM)) return -1; if (add_pin(pgm, PIN_LED_PGM)) return -1;
if (add_pin(pgm, PIN_LED_VFY)) return -1; if (add_pin(pgm, PIN_LED_VFY)) return -1;
#ifndef DRYRUN #ifndef DRYRUN
E(ftdi_set_bitmode(&ftdic, pin_direction & 0xff, BITMODE_MPSSE) < 0); /*set SPI */ E(ftdi_set_bitmode(pdata->ftdic, pdata->pin_direction & 0xff, BITMODE_MPSSE) < 0, pdata->ftdic); /*set SPI */
write_flush(pdata);
#endif #endif
if (verbose > 1) { if (verbose > 1) {
fprintf(stderr, "pin direction mask: %04x\n", pin_direction); fprintf(stderr, "pin direction mask: %04x\n", pdata->pin_direction);
fprintf(stderr, "pin value mask: %04x\n", pin_value); fprintf(stderr, "pin value mask: %04x\n", pdata->pin_value);
} }
if (pgm->baudrate) { if (pgm->baudrate) {
set_frequency(pgm->baudrate); set_frequency(pdata, pgm->baudrate);
} else if(pgm->bitclock) { } else if(pgm->bitclock) {
set_frequency((uint32_t)(1.0f/pgm->bitclock)); set_frequency(pdata, (uint32_t)(1.0f/pgm->bitclock));
} else { } else {
set_frequency(pgm->baudrate ? pgm->baudrate : 150000); set_frequency(pdata, pgm->baudrate ? pgm->baudrate : 150000);
} }
/**set the ready LED, if we have one .. and set our direction up */ /**set the ready LED, if we have one .. and set our direction up */
set_led_rdy(pgm,0); set_led_rdy(pgm,0);
@ -587,45 +618,45 @@ static int avrftdi_open(PROGRAMMER * pgm, char *port)
static void avrftdi_close(PROGRAMMER * pgm) static void avrftdi_close(PROGRAMMER * pgm)
{ {
if(ftdic.usb_dev) { avrftdi_t* pdata = to_pdata(pgm);
set_pins(pgm->pinno[PPI_AVR_BUFF], ON);
set_pin(pgm->pinno[PIN_AVR_RESET], ON); if(pdata->ftdic->usb_dev) {
set_pins(pdata, pgm->pinno[PPI_AVR_BUFF], ON);
set_pin(pdata, pgm->pinno[PIN_AVR_RESET], ON);
/**Stop driving the pins - except for the LEDs */ /**Stop driving the pins - except for the LEDs */
if (verbose > 1) if (verbose > 1)
fprintf(stderr, fprintf(stderr,
"LED Mask=0x%04x value =0x%04x &=0x%04x\n", "LED Mask=0x%04x value =0x%04x &=0x%04x\n",
led_mask, pin_value, led_mask & pin_value); pdata->led_mask, pdata->pin_value, pdata->led_mask & pdata->pin_value);
pin_direction = led_mask; pdata->pin_direction = pdata->led_mask;
pin_value &= led_mask; pdata->pin_value &= pdata->led_mask;
write_flush(); write_flush(pdata);
#ifndef DRYRUN #ifndef DRYRUN
E_VOID(ftdi_usb_close(&ftdic)); E_VOID(ftdi_usb_close(pdata->ftdic), pdata->ftdic);
#endif #endif
} }
#ifndef DRYRUN
ftdi_deinit(&ftdic);
#endif
return; return;
} }
static int avrftdi_initialize(PROGRAMMER * pgm, AVRPART * p) static int avrftdi_initialize(PROGRAMMER * pgm, AVRPART * p)
{ {
set_pin(pgm->pinno[PIN_AVR_RESET], OFF); avrftdi_t* pdata = to_pdata(pgm);
set_pins(pgm->pinno[PPI_AVR_BUFF], OFF);
set_pin(pgm->pinno[PIN_AVR_SCK], OFF); set_pin(pdata, pgm->pinno[PIN_AVR_RESET], OFF);
set_pins(pdata, pgm->pinno[PPI_AVR_BUFF], OFF);
set_pin(pdata, pgm->pinno[PIN_AVR_SCK], OFF);
/*use speed optimization with CAUTION*/ /*use speed optimization with CAUTION*/
usleep(20 * 1000); usleep(20 * 1000);
/* giving rst-pulse of at least 2 avr-clock-cycles, for /* giving rst-pulse of at least 2 avr-clock-cycles, for
* security (2us @ 1MHz) */ * security (2us @ 1MHz) */
set_pin(pgm->pinno[PIN_AVR_RESET], ON); set_pin(pdata, pgm->pinno[PIN_AVR_RESET], ON);
usleep(20 * 1000); usleep(20 * 1000);
/*setting rst back to 0 */ /*setting rst back to 0 */
set_pin(pgm->pinno[PIN_AVR_RESET], OFF); set_pin(pdata, pgm->pinno[PIN_AVR_RESET], OFF);
/*wait at least 20ms bevor issuing spi commands to avr */ /*wait at least 20ms bevor issuing spi commands to avr */
usleep(20 * 1000); usleep(20 * 1000);
@ -652,7 +683,7 @@ static int avrftdi_cmd(PROGRAMMER * pgm, unsigned char cmd[4], unsigned char res
{ {
/* Do not use 'sizeof(cmd)'. => message from cppcheck: /* Do not use 'sizeof(cmd)'. => message from cppcheck:
Using sizeof for array given as function argument returns the size of pointer. */ Using sizeof for array given as function argument returns the size of pointer. */
return avrftdi_transmit(TRX, cmd, res, 4); return avrftdi_transmit(to_pdata(pgm), TRX, cmd, res, 4);
} }
@ -660,6 +691,7 @@ static int avrftdi_program_enable(PROGRAMMER * pgm, AVRPART * p)
{ {
int i; int i;
unsigned char buf[4]; unsigned char buf[4];
avrftdi_t* pdata = to_pdata(pgm);
memset(buf, 0, sizeof(buf)); memset(buf, 0, sizeof(buf));
@ -676,9 +708,9 @@ static int avrftdi_program_enable(PROGRAMMER * pgm, AVRPART * p)
pgm->cmd(pgm, buf, buf); pgm->cmd(pgm, buf, buf);
if (buf[p->pollindex-1] != p->pollvalue) { if (buf[p->pollindex-1] != p->pollvalue) {
//try resetting //try resetting
set_pin(pgm->pinno[PIN_AVR_RESET], ON); set_pin(pdata, pgm->pinno[PIN_AVR_RESET], ON);
usleep(20); usleep(20);
set_pin(pgm->pinno[PIN_AVR_RESET], OFF); set_pin(pdata, pgm->pinno[PIN_AVR_RESET], OFF);
avr_set_bits(p->op[AVR_OP_PGM_ENABLE], buf); avr_set_bits(p->op[AVR_OP_PGM_ENABLE], buf);
} else } else
return 0; return 0;
@ -715,7 +747,7 @@ static int avrftdi_chip_erase(PROGRAMMER * pgm, AVRPART * p)
/* Load extended address byte command */ /* Load extended address byte command */
static int avrftdi_lext(PROGRAMMER *pgm, AVRPART *p, AVRMEM *m, unsigned int address) static int avrftdi_lext(avrftdi_t* pdata, AVRPART *p, AVRMEM *m, unsigned int address)
{ {
unsigned char buf[] = {0x11, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00}; unsigned char buf[] = {0x11, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00};
@ -727,7 +759,7 @@ static int avrftdi_lext(PROGRAMMER *pgm, AVRPART *p, AVRMEM *m, unsigned int add
"load extended address command", 0, 16 * 3); "load extended address command", 0, 16 * 3);
#ifndef DRYRUN #ifndef DRYRUN
E(ftdi_write_data(&ftdic, buf, sizeof(buf)) != sizeof(buf)); E(ftdi_write_data(pdata->ftdic, buf, sizeof(buf)) != sizeof(buf), pdata->ftdic);
#endif #endif
return 0; return 0;
} }
@ -746,7 +778,7 @@ static int avrftdi_eeprom_write(PROGRAMMER *pgm, AVRPART *p, AVRMEM *m,
avr_set_addr(m->op[AVR_OP_WRITE], cmd, add); avr_set_addr(m->op[AVR_OP_WRITE], cmd, add);
avr_set_input(m->op[AVR_OP_WRITE], cmd, *data++); avr_set_input(m->op[AVR_OP_WRITE], cmd, *data++);
E(avrftdi_transmit(TX, cmd, cmd, 4) < 0); avrftdi_transmit(to_pdata(pgm), TX, cmd, cmd, 4);
usleep((m->max_write_delay)); usleep((m->max_write_delay));
} }
@ -767,7 +799,7 @@ static int avrftdi_eeprom_read(PROGRAMMER *pgm, AVRPART *p, AVRMEM *m,
avr_set_bits(m->op[AVR_OP_READ], cmd); avr_set_bits(m->op[AVR_OP_READ], cmd);
avr_set_addr(m->op[AVR_OP_READ], cmd, add); avr_set_addr(m->op[AVR_OP_READ], cmd, add);
E(avrftdi_transmit(TRX, cmd, cmd, 4) < 0); avrftdi_transmit(to_pdata(pgm), TRX, cmd, cmd, 4);
avr_get_output(m->op[AVR_OP_READ], cmd, bufptr++); avr_get_output(m->op[AVR_OP_READ], cmd, bufptr++);
} }
@ -829,7 +861,7 @@ static int avrftdi_flash_write(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
* bytes. * bytes.
*/ */
if(use_lext_address && ((address & 0xffff0000) != (address_prev_block & 0xffff0000))) { if(use_lext_address && ((address & 0xffff0000) != (address_prev_block & 0xffff0000))) {
avrftdi_lext(pgm, p, m, address); avrftdi_lext(to_pdata(pgm), p, m, address);
} }
address_prev_block = address; address_prev_block = address;
@ -875,7 +907,7 @@ static int avrftdi_flash_write(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
"%s info: buffer size: %d\n", "%s info: buffer size: %d\n",
progname, buf_size); progname, buf_size);
E(avrftdi_transmit(TX, buf, buf, buf_size) < 0); avrftdi_transmit(to_pdata(pgm), TX, buf, buf, buf_size);
bufptr = buf; bufptr = buf;
if (((address * 2) % m->page_size) == 0 || bytes == 0) { if (((address * 2) % m->page_size) == 0 || bytes == 0) {
@ -936,7 +968,7 @@ static int avrftdi_flash_read(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
} }
if(use_lext_address && ((address & 0xffff0000) != (address_prev_block & 0xffff0000))) { if(use_lext_address && ((address & 0xffff0000) != (address_prev_block & 0xffff0000))) {
avrftdi_lext(pgm, p, m, address); avrftdi_lext(to_pdata(pgm), p, m, address);
} }
address_prev_block = address; address_prev_block = address;
@ -959,7 +991,7 @@ static int avrftdi_flash_read(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
buf_size = o_ptr - o_buf; buf_size = o_ptr - o_buf;
if((buf_size >= (page_size - 8)) || ( i == blocksize-1)) { if((buf_size >= (page_size - 8)) || ( i == blocksize-1)) {
E(avrftdi_transmit(TRX, o_buf, i_buf, buf_size) < 0); avrftdi_transmit(to_pdata(pgm), TRX, o_buf, i_buf, buf_size);
for(buf_index = 0; buf_index < buf_size; buf_index+=8) { for(buf_index = 0; buf_index < buf_size; buf_index+=8) {
avr_get_output(m->op[AVR_OP_READ_LO], i_buf+buf_index, bufptr++); avr_get_output(m->op[AVR_OP_READ_LO], i_buf+buf_index, bufptr++);
@ -1000,11 +1032,52 @@ static int avrftdi_paged_load(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
return -2; return -2;
} }
static void
avrftdi_setup(PROGRAMMER * pgm)
{
avrftdi_t* pdata;
pgm->cookie = malloc(sizeof(avrftdi_t));
pdata = to_pdata(pgm);
#ifndef DRYRUN
pdata->ftdic = ftdi_new();
if(!pdata->ftdic)
{
fprintf(stderr, "%s: Error allocating memory.\n", progname);
exit(-ENOMEM);
}
E_VOID(ftdi_init(pdata->ftdic), pdata->ftdic);
#endif
pdata->pin_value = 0;
pdata->pin_direction = 0;
pdata->pin_inversion = 0;
pdata->led_mask = 0;
pdata->type = 0;
pdata->ftype = 0;
}
static void
avrftdi_teardown(PROGRAMMER * pgm)
{
avrftdi_t* pdata = to_pdata(pgm);
/* reset state recommended by FTDI */
ftdi_set_bitmode(pdata->ftdic, 0, BITMODE_MPSSE);
#ifndef DRYRUN
ftdi_deinit(pdata->ftdic);
ftdi_free(pdata->ftdic);
#endif
free(pdata);
}
void avrftdi_initpgm(PROGRAMMER * pgm) void avrftdi_initpgm(PROGRAMMER * pgm)
{ {
strcpy(pgm->type, "avrftdi"); strcpy(pgm->type, "avrftdi");
pin_value=pin_direction=pin_inversion=led_mask=0;
/* /*
* mandatory functions * mandatory functions
*/ */
@ -1028,12 +1101,13 @@ void avrftdi_initpgm(PROGRAMMER * pgm)
pgm->paged_write = avrftdi_paged_write; pgm->paged_write = avrftdi_paged_write;
pgm->paged_load = avrftdi_paged_load; pgm->paged_load = avrftdi_paged_load;
pgm->setup = avrftdi_setup;
pgm->teardown = avrftdi_teardown;
pgm->rdy_led = set_led_rdy; pgm->rdy_led = set_led_rdy;
pgm->err_led = set_led_err; pgm->err_led = set_led_err;
pgm->pgm_led = set_led_pgm; pgm->pgm_led = set_led_pgm;
pgm->vfy_led = set_led_vfy; pgm->vfy_led = set_led_vfy;
} }
#else /*HAVE_LIBFTDI*/ #else /*HAVE_LIBFTDI*/

View File

@ -22,28 +22,12 @@
#ifndef avrftdi_h #ifndef avrftdi_h
#define avrfdti_h #define avrfdti_h
#include <stdint.h>
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif
#define SCK 0x01
#define SDO 0x02
#define SDI 0x04
#define RX 0x20
#define TX 0x11
#define TRX (RX | TX)
#define TYPE_C_D 0x500
#define TYPE_H 0x700
#define TYPE_4H 0x800
#define E(x) if ((x)) { fprintf(stdout, "%s:%d %s() %s: %s (%d)\n\t%s\n", __FILE__, __LINE__, __FUNCTION__, \
#x, strerror(errno), errno, ftdi_get_error_string(&ftdic)); return -1; }
#define E_VOID(x) if ((x)) { fprintf(stdout, "%s:%d %s() %s: %s (%d)\n\t%s\n", __FILE__, __LINE__, __FUNCTION__, \
#x, strerror(errno), errno, ftdi_get_error_string(&ftdic)); }
extern const char avrftdi_desc[]; extern const char avrftdi_desc[];
void avrftdi_initpgm (PROGRAMMER * pgm); void avrftdi_initpgm (PROGRAMMER * pgm);