avrdude/avr.c

755 lines
18 KiB
C
Raw Normal View History

/*
* Copyright 2001 Brian S. Dean <bsd@bsdhome.com>
* All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY BRIAN S. DEAN ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BRIAN S. DEAN BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
*/
/* $Id$ */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include "avr.h"
#include "config.h"
#include "pindefs.h"
#include "ppi.h"
extern char * progname;
extern char progbuf[];
extern PROGRAMMER * pgm;
char * avr_version = "$Id$";
/* Need to add information for 2323, 2343, and 4414 */
#if 0
struct avrpart parts[] = {
{"AT90S1200", "1200", 20000,
{{0, 64, 0, 0, 9000, 20000, {0x00, 0xff }, NULL}, /* eeprom */
{0, 1024, 0, 0, 9000, 20000, {0xff, 0 }, NULL}}}, /* flash */
{"AT90S2313", "2313", 20000,
{{0, 128, 0, 0, 9000, 20000, {0x80, 0x7f }, NULL}, /* eeprom */
{0, 2048, 0, 0, 9000, 20000, {0x7f, 0 }, NULL}}}, /* flash */
{"AT90S2333", "2333", 20000,
{{0, 128, 0, 0, 9000, 20000, {0x00, 0xff }, NULL}, /* eeprom */
{0, 2048, 0, 0, 9000, 20000, {0xff, 0 }, NULL}}}, /* flash */
{"AT90S4433", "4433", 20000,
{{0, 256, 0, 0, 9000, 20000, {0x00, 0xff }, NULL}, /* eeprom */
{0, 4096, 0, 0, 9000, 20000, {0xff, 0 }, NULL}}}, /* flash */
{"AT90S4434", "4434", 20000,
{{0, 256, 0, 0, 9000, 20000, {0x00, 0xff }, NULL}, /* eeprom */
{0, 4096, 0, 0, 9000, 20000, {0xff, 0 }, NULL}}}, /* flash */
{"AT90S8515", "8515", 20000,
{{0, 512, 0, 0, 9000, 20000, {0x80, 0x7f }, NULL}, /* eeprom */
{0, 8192, 0, 0, 9000, 20000, {0x7f, 0x00 }, NULL}}}, /* flash */
{"AT90S8535", "8535", 20000,
{{0, 512, 0, 0, 9000, 20000, {0x00, 0xff }, NULL}, /* eeprom */
{0, 8192, 0, 0, 9000, 20000, {0xff, 0x00 }, NULL}}}, /* flash */
{"ATMEGA103", "103", 56000*2,
{{0, 4096, 0, 0, 64000, 69000, {0x80, 0x7f }, NULL}, /* eeprom */
{1, 131072, 256, 512, 22000, 56000, {0xff, 0x00 }, NULL}}}, /* flash */
};
#define N_AVRPARTS (sizeof(parts)/sizeof(struct avrpart))
int avr_list_parts(FILE * f, char * prefix)
{
int i;
for (i=0; i<N_AVRPARTS; i++) {
fprintf(f, "%s%s = %s\n",
prefix, parts[i].optiontag, parts[i].partdesc);
}
return i;
}
struct avrpart * avr_find_part(char * p)
{
int i;
for (i=0; i<N_AVRPARTS; i++) {
if (strcmp(parts[i].optiontag, p)==0) {
return &parts[i];
}
}
return NULL;
}
#endif
AVRPART * avr_new_part(void)
{
AVRPART * p;
p = (AVRPART *)malloc(sizeof(AVRPART));
if (p == NULL) {
fprintf(stderr, "new_part(): out of memory\n");
exit(1);
}
memset(p, 0, sizeof(*p));
p->id[0] = 0;
p->desc[0] = 0;
return p;
}
AVRPART * avr_dup_part(AVRPART * d)
{
AVRPART * p;
int i;
p = (AVRPART *)malloc(sizeof(AVRPART));
if (p == NULL) {
fprintf(stderr, "avr_dup_part(): out of memory\n");
exit(1);
}
*p = *d;
for (i=0; i<AVR_MAXMEMTYPES; i++) {
p->mem[i].buf = (unsigned char *)malloc(p->mem[i].size);
if (p->mem[i].buf == NULL) {
fprintf(stderr,
"avr_dup_part(): out of memory (memsize=%d)\n",
p->mem[i].size);
exit(1);
}
memset(p->mem[i].buf, 0, p->mem[i].size);
}
return p;
}
/*
* transmit and receive a bit of data to/from the AVR device
*/
int avr_txrx_bit(int fd, int bit)
{
int r;
/*
* read the result bit (it is either valid from a previous clock
* pulse or it is ignored in the current context)
*/
r = ppi_getpin(fd, pgm->pinno[PIN_AVR_MISO]);
/* set the data input line as desired */
ppi_setpin(fd, pgm->pinno[PIN_AVR_MOSI], bit);
/*
* pulse the clock line, clocking in the MOSI data, and clocking out
* the next result bit
*/
ppi_pulsepin(fd, pgm->pinno[PIN_AVR_SCK]);
return r;
}
/*
* transmit and receive a byte of data to/from the AVR device
*/
unsigned char avr_txrx(int fd, unsigned char byte)
{
int i;
unsigned char r, b, rbyte;
rbyte = 0;
for (i=0; i<8; i++) {
b = (byte >> (7-i)) & 0x01;
r = avr_txrx_bit(fd, b);
rbyte = rbyte | (r << (7-i));
}
return rbyte;
}
/*
* transmit an AVR device command and return the results; 'cmd' and
* 'res' must point to at least a 4 byte data buffer
*/
int avr_cmd(int fd, unsigned char cmd[4], unsigned char res[4])
{
int i;
for (i=0; i<4; i++) {
res[i] = avr_txrx(fd, cmd[i]);
}
return 0;
}
/*
* read a byte of data from the indicated memory region
*/
unsigned char avr_read_byte(int fd, AVRPART * p,
int memtype, unsigned long addr)
{
unsigned short offset;
unsigned char cmd[4];
unsigned char res[4];
/* order here is very important, AVR_EEPROM, AVR_FLASH, AVR_FLASH+1 */
static unsigned char cmdbyte[3] = { 0xa0, 0x20, 0x28 };
LED_ON(fd, pgm->pinno[PIN_LED_PGM]);
LED_OFF(fd, pgm->pinno[PIN_LED_ERR]);
offset = 0;
if (memtype == AVR_M_FLASH) {
offset = addr & 0x01;
addr = addr / 2;
}
cmd[0] = cmdbyte[memtype + offset];
cmd[1] = addr >> 8; /* high order bits of address */
cmd[2] = addr & 0x0ff; /* low order bits of address */
cmd[3] = 0; /* don't care */
avr_cmd(fd, cmd, res);
LED_OFF(fd, pgm->pinno[PIN_LED_PGM]);
return res[3];
}
/*
* Read the entirety of the specified memory type into the
* corresponding buffer of the avrpart pointed to by 'p'.
*
* Return the number of bytes read, or -1 if an error occurs.
*/
int avr_read(int fd, AVRPART * p, int memtype)
{
unsigned char rbyte;
unsigned long i;
unsigned char * buf;
int size;
buf = p->mem[memtype].buf;
size = p->mem[memtype].size;
for (i=0; i<size; i++) {
rbyte = avr_read_byte(fd, p, memtype, i);
fprintf(stderr, " \r%4lu 0x%02x", i, rbyte);
buf[i] = rbyte;
}
fprintf(stderr, "\n");
return i;
}
/*
* write a byte of data to the indicated memory region
*/
int avr_write_bank(int fd, AVRPART * p, int memtype,
unsigned short bank)
{
unsigned char cmd[4];
unsigned char res[4];
LED_ON(fd, pgm->pinno[PIN_LED_PGM]);
LED_OFF(fd, pgm->pinno[PIN_LED_ERR]);
cmd[0] = 0x4c;
cmd[1] = bank >> 8; /* high order bits of address */
cmd[2] = bank & 0x0ff; /* low order bits of address */
cmd[3] = 0; /* these bits are ignored */
avr_cmd(fd, cmd, res);
/*
* since we don't know what voltage the target AVR is powered by, be
* conservative and delay the max amount the spec says to wait
*/
usleep(p->mem[memtype].max_write_delay);
LED_OFF(fd, pgm->pinno[PIN_LED_PGM]);
return 0;
}
/*
* write a byte of data to the indicated memory region
*/
int avr_write_byte(int fd, AVRPART * p, int memtype,
unsigned long addr, unsigned char data)
{
unsigned char cmd[4];
unsigned char res[4];
unsigned char r;
int ready;
int tries;
unsigned char b;
unsigned short offset;
unsigned short caddr;
/* order here is very important, AVR_M_EEPROM, AVR_M_FLASH, AVR_M_FLASH+1 */
static unsigned char cmdbyte[3] = { 0xc0, 0x40, 0x48 };
if (!p->mem[memtype].banked) {
/*
* check to see if the write is necessary by reading the existing
* value and only write if we are changing the value; we can't
* use this optimization for banked addressing.
*/
b = avr_read_byte(fd, p, memtype, addr);
if (b == data) {
return 0;
}
}
else {
addr = addr % p->mem[memtype].bank_size;
}
LED_ON(fd, pgm->pinno[PIN_LED_PGM]);
LED_OFF(fd, pgm->pinno[PIN_LED_ERR]);
offset = 0;
caddr = addr;
if (memtype == AVR_M_FLASH) {
offset = addr & 0x01;
caddr = addr / 2;
}
cmd[0] = cmdbyte[memtype + offset];
cmd[1] = caddr >> 8; /* high order bits of address */
cmd[2] = caddr & 0x0ff; /* low order bits of address */
cmd[3] = data; /* data */
avr_cmd(fd, cmd, res);
if (p->mem[memtype].banked) {
/*
* in banked addressing, single bytes to written to the memory
* page complete immediately, we only need to delay when we commit
* the whole page via the avr_write_bank() routine.
*/
LED_OFF(fd, pgm->pinno[PIN_LED_PGM]);
return 0;
}
tries = 0;
ready = 0;
while (!ready) {
usleep(p->mem[memtype].min_write_delay); /* typical write delay */
r = avr_read_byte(fd, p, memtype, addr);
if ((data == p->mem[memtype].readback[0]) ||
(data == p->mem[memtype].readback[1])) {
/*
* use an extra long delay when we happen to be writing values
* used for polled data read-back. In this case, polling
* doesn't work, and we need to delay the worst case write time
* specified for the chip.
*/
usleep(p->mem[memtype].max_write_delay);
r = avr_read_byte(fd, p, memtype, addr);
}
if (r == data) {
ready = 1;
}
tries++;
if (!ready && tries > 5) {
/*
* we couldn't write the data, indicate our displeasure by
* returning an error code
*/
LED_OFF(fd, pgm->pinno[PIN_LED_PGM]);
LED_ON(fd, pgm->pinno[PIN_LED_ERR]);
return -1;
}
}
LED_OFF(fd, pgm->pinno[PIN_LED_PGM]);
return 0;
}
/*
* Write the whole memory region (flash or eeprom, specified by
* 'memtype') from the corresponding buffer of the avrpart pointed to
* by 'p'. Write up to 'size' bytes from the buffer. Data is only
* written if the new data value is different from the existing data
* value. Data beyond 'size' bytes is not affected.
*
* Return the number of bytes written, or -1 if an error occurs.
*/
int avr_write(int fd, AVRPART * p, int memtype, int size)
{
int rc;
int wsize;
unsigned long i;
unsigned char data;
int werror;
LED_OFF(fd, pgm->pinno[PIN_LED_ERR]);
werror = 0;
wsize = p->mem[memtype].size;
if (size < wsize) {
wsize = size;
}
else if (size > wsize) {
fprintf(stderr,
"%s: WARNING: %d bytes requested, but memory region is only %d bytes\n"
"%sOnly %d bytes will actually be written\n",
progname, size, wsize,
progbuf, wsize);
}
for (i=0; i<wsize; i++) {
/* eeprom or low byte of flash */
data = p->mem[memtype].buf[i];
rc = avr_write_byte(fd, p, memtype, i, data);
fprintf(stderr, " \r%4lu 0x%02x", i, data);
if (rc) {
fprintf(stderr, " ***failed; ");
fprintf(stderr, "\n");
LED_ON(fd, pgm->pinno[PIN_LED_ERR]);
werror = 1;
}
if (p->mem[memtype].banked) {
if (((i % p->mem[memtype].bank_size) == p->mem[memtype].bank_size-1) ||
(i == wsize-1)) {
rc = avr_write_bank(fd, p, memtype, i/p->mem[memtype].bank_size);
if (rc) {
fprintf(stderr,
" *** bank %ld (addresses 0x%04lx - 0x%04lx) failed to write\n",
i % p->mem[memtype].bank_size,
i-p->mem[memtype].bank_size+1, i);
fprintf(stderr, "\n");
LED_ON(fd, pgm->pinno[PIN_LED_ERR]);
werror = 1;
}
}
}
if (werror) {
/*
* make sure the error led stay on if there was a previous write
* error, otherwise it gets cleared in avr_write_byte()
*/
LED_ON(fd, pgm->pinno[PIN_LED_ERR]);
}
}
fprintf(stderr, "\n");
return i;
}
/*
* issue the 'program enable' command to the AVR device
*/
int avr_program_enable(int fd)
{
unsigned char cmd[4] = {0xac, 0x53, 0x00, 0x00};
unsigned char res[4];
avr_cmd(fd, cmd, res);
if (res[2] != cmd[1])
return -1;
return 0;
}
/*
* issue the 'chip erase' command to the AVR device
*/
int avr_chip_erase(int fd, AVRPART * p)
{
unsigned char data[4] = {0xac, 0x80, 0x00, 0x00};
unsigned char res[4];
LED_ON(fd, pgm->pinno[PIN_LED_PGM]);
avr_cmd(fd, data, res);
usleep(p->chip_erase_delay);
avr_initialize(fd, p);
LED_OFF(fd, pgm->pinno[PIN_LED_PGM]);
return 0;
}
/*
* read the AVR device's signature bytes
*/
int avr_signature(int fd, unsigned char sig[4])
{
unsigned char cmd[4] = {0x30, 0x00, 0x00, 0x00};
unsigned char res[4];
int i;
for (i=0; i<4; i++) {
cmd[2] = i;
avr_cmd(fd, cmd, res);
sig[i] = res[3];
}
return 0;
}
/*
* apply power to the AVR processor
*/
void avr_powerup(int fd)
{
ppi_set(fd, PPIDATA, PPI_AVR_VCC); /* power up */
usleep(100000);
}
/*
* remove power from the AVR processor
*/
void avr_powerdown(int fd)
{
ppi_clr(fd, PPIDATA, PPI_AVR_VCC); /* power down */
}
/*
* initialize the AVR device and prepare it to accept commands
*/
int avr_initialize(int fd, AVRPART * p)
{
int rc;
int tries;
avr_powerup(fd);
ppi_setpin(fd, pgm->pinno[PIN_AVR_SCK], 0);
ppi_setpin(fd, pgm->pinno[PIN_AVR_RESET], 0);
ppi_pulsepin(fd, pgm->pinno[PIN_AVR_RESET]);
usleep(20000); /* 20 ms XXX should be a per-chip parameter */
/*
* Enable programming mode. If we are programming an AT90S1200, we
* can only issue the command and hope it worked. If we are using
* one of the other chips, the chip will echo 0x53 when issuing the
* third byte of the command. In this case, try up to 32 times in
* order to possibly get back into sync with the chip if we are out
* of sync.
*/
if (strcmp(p->desc, "AT90S1200")==0) {
avr_program_enable(fd);
}
else {
tries = 0;
do {
rc = avr_program_enable(fd);
if (rc == 0)
break;
ppi_pulsepin(fd, pgm->pinno[PIN_AVR_SCK]);
tries++;
} while (tries < 32);
/*
* can't sync with the device, maybe it's not attached?
*/
if (tries == 32) {
fprintf(stderr, "%s: AVR device not responding\n", progname);
return -1;
}
}
return 0;
}
char * avr_memtstr(int memtype)
{
switch (memtype) {
case AVR_M_EEPROM : return "eeprom"; break;
case AVR_M_FLASH : return "flash"; break;
default : return "unknown-memtype"; break;
}
}
int avr_initmem(AVRPART * p)
{
int i;
for (i=0; i<AVR_MAXMEMTYPES; i++) {
p->mem[i].buf = (unsigned char *) malloc(p->mem[i].size);
if (p->mem[i].buf == NULL) {
fprintf(stderr, "%s: can't alloc buffer for %s size of %d bytes\n",
progname, avr_memtstr(i), p->mem[i].size);
return -1;
}
}
return 0;
}
/*
* Verify the memory buffer of p with that of v. The byte range of v,
* may be a subset of p. The byte range of p should cover the whole
* chip's memory size.
*
* Return the number of bytes verified, or -1 if they don't match.
*/
int avr_verify(AVRPART * p, AVRPART * v, int memtype, int size)
{
int i;
unsigned char * buf1, * buf2;
int vsize;
buf1 = p->mem[memtype].buf;
buf2 = v->mem[memtype].buf;
vsize = p->mem[memtype].size;
if (vsize < size) {
fprintf(stderr,
"%s: WARNING: requested verification for %d bytes\n"
"%s%s memory region only contains %d bytes\n"
"%sOnly %d bytes will be verified.\n",
progname, size,
progbuf, avr_memtstr(memtype), vsize,
progbuf, vsize);
size = vsize;
}
for (i=0; i<size; i++) {
if (buf1[i] != buf2[i]) {
fprintf(stderr,
"%s: verification error, first mismatch at byte %d\n"
"%s0x%02x != 0x%02x\n",
progname, i,
progbuf, buf1[i], buf2[i]);
return -1;
}
}
return size;
}
void avr_mem_display(char * prefix, FILE * f, AVRMEM * m, int type)
{
if (m == NULL) {
fprintf(f,
"%sMem Bank\n"
"%sType Banked Size Size #Banks MinW MaxW ReadBack\n"
"%s------ ------ ------ ---- ------ ----- ----- ---------\n",
prefix, prefix, prefix);
}
else {
fprintf(f,
"%s%-6s %-6s %6d %4d %6d %5d %5d 0x%02x 0x%02x\n",
prefix, avr_memtstr(type), m->banked ? "yes" : "no",
m->size, m->bank_size, m->num_banks,
m->min_write_delay, m->max_write_delay,
m->readback[0], m->readback[1]);
}
}
void avr_display(FILE * f, AVRPART * p, char * prefix)
{
int i;
char * buf;
char * px;
fprintf(f,
"%sAVR Part : %s\n"
"%sChip Erase delay : %d us\n"
"%sMemory Detail :\n\n",
prefix, p->desc,
prefix, p->chip_erase_delay,
prefix);
px = prefix;
i = strlen(prefix) + 5;
buf = (char *)malloc(i);
if (buf == NULL) {
/* ugh, this is not important enough to bail, just ignore it */
}
else {
strcpy(buf, prefix);
strcat(buf, " ");
px = buf;
}
avr_mem_display(px, f, NULL, 0);
for (i=0; i<AVR_MAXMEMTYPES; i++) {
avr_mem_display(px, f, &p->mem[i], i);
}
if (buf)
free(buf);
}