avrdude/jtagmkII.c

2337 lines
60 KiB
C
Raw Normal View History

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2005-2007 Joerg Wunsch <j@uriah.heep.sax.de>
*
* Derived from stk500 code which is:
* Copyright (C) 2002-2004 Brian S. Dean <bsd@bsdhome.com>
* Copyright (C) 2005 Erik Walthinsen
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* $Id$ */
/*
* avrdude interface for Atmel JTAG ICE mkII programmer
*
* The AVR Dragon also uses the same protocol, so it is handled here
* as well.
*/
#include "ac_cfg.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <sys/time.h>
#include <time.h>
#include "avrdude.h"
#include "avr.h"
#include "crc16.h"
#include "pgm.h"
#include "jtagmkII.h"
#include "jtagmkII_private.h"
#include "serial.h"
#include "usbdevs.h"
/*
* Private data for this programmer.
*/
struct pdata
{
unsigned short command_sequence; /* Next cmd seqno to issue. */
/*
* See jtagmkII_read_byte() for an explanation of the flash and
* EEPROM page caches.
*/
unsigned char *flash_pagecache;
unsigned long flash_pageaddr;
unsigned int flash_pagesize;
unsigned char *eeprom_pagecache;
unsigned long eeprom_pageaddr;
unsigned int eeprom_pagesize;
int prog_enabled; /* Cached value of PROGRAMMING status. */
unsigned char serno[6]; /* JTAG ICE serial number. */
/* JTAG chain stuff */
unsigned char jtagchain[4];
/* The length of the device descriptor is firmware-dependent. */
size_t device_descriptor_length;
};
#define PDATA(pgm) ((struct pdata *)(pgm->cookie))
/*
* The OCDEN fuse is bit 7 of the high fuse (hfuse). In order to
* perform memory operations on MTYPE_SPM and MTYPE_EEPROM, OCDEN
* needs to be programmed.
*
* OCDEN should probably rather be defined via the configuration, but
* if this ever changes to a different fuse byte for one MCU, quite
* some code here needs to be generalized anyway.
*/
#define OCDEN (1 << 7)
#define RC(x) { x, #x },
static struct {
unsigned int code;
const char *descr;
} jtagresults[] = {
RC(RSP_DEBUGWIRE_SYNC_FAILED)
RC(RSP_FAILED)
RC(RSP_ILLEGAL_BREAKPOINT)
RC(RSP_ILLEGAL_COMMAND)
RC(RSP_ILLEGAL_EMULATOR_MODE)
RC(RSP_ILLEGAL_JTAG_ID)
RC(RSP_ILLEGAL_MCU_STATE)
RC(RSP_ILLEGAL_MEMORY_TYPE)
RC(RSP_ILLEGAL_MEMORY_RANGE)
RC(RSP_ILLEGAL_PARAMETER)
RC(RSP_ILLEGAL_POWER_STATE)
RC(RSP_ILLEGAL_VALUE)
RC(RSP_NO_TARGET_POWER)
RC(RSP_SET_N_PARAMETERS)
};
/*
* pgm->flag is marked as "for private use of the programmer".
* The following defines this programmer's use of that field.
*/
#define PGM_FL_IS_DW (0x0001)
static int jtagmkII_read_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char * value);
static int jtagmkII_write_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char data);
static int jtagmkII_reset(PROGRAMMER * pgm, unsigned char flags);
static int jtagmkII_set_sck_period(PROGRAMMER * pgm, double v);
static int jtagmkII_setparm(PROGRAMMER * pgm, unsigned char parm,
unsigned char * value);
static void jtagmkII_print_parms1(PROGRAMMER * pgm, char * p);
static void jtagmkII_setup(PROGRAMMER * pgm)
{
if ((pgm->cookie = malloc(sizeof(struct pdata))) == 0) {
fprintf(stderr,
"%s: jtagmkII_setup(): Out of memory allocating private data\n",
progname);
exit(1);
}
memset(pgm->cookie, 0, sizeof(struct pdata));
}
static void jtagmkII_teardown(PROGRAMMER * pgm)
{
free(pgm->cookie);
}
static unsigned long
b4_to_u32(unsigned char *b)
{
unsigned long l;
l = b[0];
l += (unsigned)b[1] << 8;
l += (unsigned)b[2] << 16;
l += (unsigned)b[3] << 24;
return l;
}
static void
u32_to_b4(unsigned char *b, unsigned long l)
{
b[0] = l & 0xff;
b[1] = (l >> 8) & 0xff;
b[2] = (l >> 16) & 0xff;
b[3] = (l >> 24) & 0xff;
}
static unsigned short
b2_to_u16(unsigned char *b)
{
unsigned short l;
l = b[0];
l += (unsigned)b[1] << 8;
return l;
}
static void
u16_to_b2(unsigned char *b, unsigned short l)
{
b[0] = l & 0xff;
b[1] = (l >> 8) & 0xff;
}
static const char *
jtagmkII_get_rc(unsigned int rc)
{
int i;
static char msg[50];
for (i = 0; i < sizeof jtagresults / sizeof jtagresults[0]; i++)
if (jtagresults[i].code == rc)
return jtagresults[i].descr;
sprintf(msg, "Unknown JTAG ICE mkII result code 0x%02x", rc);
return msg;
}
static void jtagmkII_print_memory(unsigned char *b, size_t s)
{
int i;
if (s < 2)
return;
for (i = 0; i < s - 1; i++) {
fprintf(stderr, "0x%02x ", b[i + 1]);
if (i % 16 == 15)
putc('\n', stderr);
else
putc(' ', stderr);
}
if (i % 16 != 0)
putc('\n', stderr);
}
static void jtagmkII_prmsg(PROGRAMMER * pgm, unsigned char * data, size_t len)
{
int i;
if (verbose >= 4) {
fprintf(stderr, "Raw message:\n");
for (i = 0; i < len; i++) {
fprintf(stderr, "0x%02x", data[i]);
if (i % 16 == 15)
putc('\n', stderr);
else
putchar(' ');
}
if (i % 16 != 0)
putc('\n', stderr);
}
switch (data[0]) {
case RSP_OK:
fprintf(stderr, "OK\n");
break;
case RSP_FAILED:
fprintf(stderr, "FAILED\n");
break;
case RSP_ILLEGAL_BREAKPOINT:
fprintf(stderr, "Illegal breakpoint\n");
break;
case RSP_ILLEGAL_COMMAND:
fprintf(stderr, "Illegal command\n");
break;
case RSP_ILLEGAL_EMULATOR_MODE:
fprintf(stderr, "Illegal emulator mode");
if (len > 1)
switch (data[1]) {
case EMULATOR_MODE_DEBUGWIRE: fprintf(stderr, ": DebugWire"); break;
case EMULATOR_MODE_JTAG: fprintf(stderr, ": JTAG"); break;
case EMULATOR_MODE_HV: fprintf(stderr, ": HVSP/PP"); break;
case EMULATOR_MODE_SPI: fprintf(stderr, ": SPI"); break;
}
putc('\n', stderr);
break;
case RSP_ILLEGAL_JTAG_ID:
fprintf(stderr, "Illegal JTAG ID\n");
break;
case RSP_ILLEGAL_MCU_STATE:
fprintf(stderr, "Illegal MCU state");
if (len > 1)
switch (data[1]) {
case STOPPED: fprintf(stderr, ": Stopped"); break;
case RUNNING: fprintf(stderr, ": Running"); break;
case PROGRAMMING: fprintf(stderr, ": Programming"); break;
}
putc('\n', stderr);
break;
case RSP_ILLEGAL_MEMORY_TYPE:
fprintf(stderr, "Illegal memory type\n");
break;
case RSP_ILLEGAL_MEMORY_RANGE:
fprintf(stderr, "Illegal memory range\n");
break;
case RSP_ILLEGAL_PARAMETER:
fprintf(stderr, "Illegal parameter\n");
break;
case RSP_ILLEGAL_POWER_STATE:
fprintf(stderr, "Illegal power state\n");
break;
case RSP_ILLEGAL_VALUE:
fprintf(stderr, "Illegal value\n");
break;
case RSP_NO_TARGET_POWER:
fprintf(stderr, "No target power\n");
break;
case RSP_SIGN_ON:
fprintf(stderr, "Sign-on succeeded\n");
/* Sign-on data will be printed below anyway. */
break;
case RSP_MEMORY:
fprintf(stderr, "memory contents:\n");
jtagmkII_print_memory(data, len);
break;
case RSP_PARAMETER:
fprintf(stderr, "parameter values:\n");
jtagmkII_print_memory(data, len);
break;
case RSP_SPI_DATA:
fprintf(stderr, "SPI data returned:\n");
for (i = 1; i < len; i++)
fprintf(stderr, "0x%02x ", data[i]);
putc('\n', stderr);
break;
case EVT_BREAK:
fprintf(stderr, "BREAK event");
if (len >= 6) {
fprintf(stderr, ", PC = 0x%lx, reason ", b4_to_u32(data + 1));
switch (data[5]) {
case 0x00:
fprintf(stderr, "unspecified");
break;
case 0x01:
fprintf(stderr, "program break");
break;
case 0x02:
fprintf(stderr, "data break PDSB");
break;
case 0x03:
fprintf(stderr, "data break PDMSB");
break;
default:
fprintf(stderr, "unknown: 0x%02x", data[5]);
}
}
putc('\n', stderr);
break;
default:
fprintf(stderr, "unknown message 0x%02x\n", data[0]);
}
putc('\n', stderr);
}
int jtagmkII_send(PROGRAMMER * pgm, unsigned char * data, size_t len)
{
unsigned char *buf;
if (verbose >= 3)
fprintf(stderr, "\n%s: jtagmkII_send(): sending %zd bytes\n",
progname, len);
if ((buf = malloc(len + 10)) == NULL)
{
fprintf(stderr, "%s: jtagmkII_send(): out of memory",
progname);
return -1;
}
buf[0] = MESSAGE_START;
u16_to_b2(buf + 1, PDATA(pgm)->command_sequence);
u32_to_b4(buf + 3, len);
buf[7] = TOKEN;
memcpy(buf + 8, data, len);
crcappend(buf, len + 8);
if (serial_send(&pgm->fd, buf, len + 10) != 0) {
fprintf(stderr,
"%s: jtagmkII_send(): failed to send command to serial port\n",
progname);
exit(1);
}
free(buf);
return 0;
}
static int jtagmkII_drain(PROGRAMMER * pgm, int display)
{
return serial_drain(&pgm->fd, display);
}
/*
* Receive one frame, return it in *msg. Received sequence number is
* returned in seqno. Any valid frame will be returned, regardless
* whether it matches the expected sequence number, including event
* notification frames (seqno == 0xffff).
*
* Caller must eventually free the buffer.
*/
static int jtagmkII_recv_frame(PROGRAMMER * pgm, unsigned char **msg,
unsigned short * seqno) {
enum states { sSTART,
/* NB: do NOT change the sequence of the following: */
sSEQNUM1, sSEQNUM2,
sSIZE1, sSIZE2, sSIZE3, sSIZE4,
sTOKEN,
sDATA,
sCSUM1, sCSUM2,
/* end NB */
sDONE
} state = sSTART;
unsigned long msglen = 0, l = 0;
int headeridx = 0;
int timeout = 0;
int ignorpkt = 0;
int rv;
unsigned char c, *buf = NULL, header[8];
unsigned short r_seqno = 0;
unsigned short checksum = 0;
struct timeval tv;
double timeoutval = 5; /* seconds */
double tstart, tnow;
if (verbose >= 3)
fprintf(stderr, "%s: jtagmkII_recv():\n", progname);
gettimeofday(&tv, NULL);
tstart = tv.tv_sec;
while ( (state != sDONE ) && (!timeout) ) {
if (state == sDATA) {
rv = 0;
if (ignorpkt) {
/* skip packet's contents */
for(l = 0; l < msglen; l++)
rv += serial_recv(&pgm->fd, &c, 1);
} else {
rv += serial_recv(&pgm->fd, buf + 8, msglen);
}
if (rv != 0) {
timedout:
/* timeout in receive */
if (verbose > 1)
fprintf(stderr,
"%s: jtagmkII_recv(): Timeout receiving packet\n",
progname);
free(buf);
return -1;
}
} else {
if (serial_recv(&pgm->fd, &c, 1) != 0)
goto timedout;
}
checksum ^= c;
if (state < sDATA)
header[headeridx++] = c;
switch (state) {
case sSTART:
if (c == MESSAGE_START) {
state = sSEQNUM1;
} else {
headeridx = 0;
}
break;
case sSEQNUM1:
case sSEQNUM2:
r_seqno >>= 8;
r_seqno |= ((unsigned)c << 8);
state++;
break;
case sSIZE1:
case sSIZE2:
case sSIZE3:
case sSIZE4:
msglen >>= 8;
msglen |= ((unsigned)c << 24);
state++;
break;
case sTOKEN:
if (c == TOKEN) {
state = sDATA;
if (msglen > MAX_MESSAGE) {
fprintf(stderr,
"%s: jtagmkII_recv(): msglen %lu exceeds max message "
"size %u, ignoring message\n",
progname, msglen, MAX_MESSAGE);
state = sSTART;
headeridx = 0;
} else if ((buf = malloc(msglen + 10)) == NULL) {
fprintf(stderr, "%s: jtagmkII_recv(): out of memory\n",
progname);
ignorpkt++;
} else {
memcpy(buf, header, 8);
}
} else {
state = sSTART;
headeridx = 0;
}
break;
case sDATA:
/* The entire payload has been read above. */
l = msglen + 8;
state = sCSUM1;
break;
case sCSUM1:
case sCSUM2:
buf[l++] = c;
if (state == sCSUM2) {
if (crcverify(buf, msglen + 10)) {
if (verbose >= 3)
fprintf(stderr, "%s: jtagmkII_recv(): CRC OK",
progname);
state = sDONE;
} else {
fprintf(stderr, "%s: jtagmkII_recv(): checksum error\n",
progname);
free(buf);
return -4;
}
} else
state++;
break;
default:
fprintf(stderr, "%s: jtagmkII_recv(): unknown state\n",
progname);
free(buf);
return -5;
}
gettimeofday(&tv, NULL);
tnow = tv.tv_sec;
if (tnow - tstart > timeoutval) {
fprintf(stderr, "%s: jtagmkII_recv_frame(): timeout\n",
progname);
return -1;
}
}
if (verbose >= 3)
fprintf(stderr, "\n");
*seqno = r_seqno;
*msg = buf;
return msglen;
}
int jtagmkII_recv(PROGRAMMER * pgm, unsigned char **msg) {
unsigned short r_seqno;
int rv;
for (;;) {
if ((rv = jtagmkII_recv_frame(pgm, msg, &r_seqno)) <= 0)
return rv;
if (verbose >= 3)
fprintf(stderr, "%s: jtagmkII_recv(): "
"Got message seqno %d (command_sequence == %d)\n",
progname, r_seqno, PDATA(pgm)->command_sequence);
if (r_seqno == PDATA(pgm)->command_sequence) {
if (++(PDATA(pgm)->command_sequence) == 0xffff)
PDATA(pgm)->command_sequence = 0;
/*
* We move the payload to the beginning of the buffer, to make
* the job easier for the caller. We have to return the
* original pointer though, as the caller must free() it.
*/
memmove(*msg, *msg + 8, rv);
return rv;
}
if (r_seqno == 0xffff) {
if (verbose >= 3)
fprintf(stderr, "%s: jtagmkII_recv(): got asynchronous event\n",
progname);
} else {
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_recv(): "
"got wrong sequence number, %u != %u\n",
progname, r_seqno, PDATA(pgm)->command_sequence);
}
free(*msg);
}
return 0;
}
int jtagmkII_getsync(PROGRAMMER * pgm, int mode) {
int tries;
#define MAXTRIES 33
unsigned char buf[3], *resp, c = 0xff;
int status;
unsigned int fwver, hwver;
if (verbose >= 3)
fprintf(stderr, "%s: jtagmkII_getsync()\n", progname);
for (tries = 0; tries < MAXTRIES; tries++) {
/* Get the sign-on information. */
buf[0] = CMND_GET_SIGN_ON;
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_getsync(): Sending sign-on command: ",
progname);
jtagmkII_send(pgm, buf, 1);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
fprintf(stderr, "%s: jtagmkII_getsync(): sign-on command: "
"status %d\n",
progname, status);
} else if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
if (status > 0) {
if ((c = resp[0]) == RSP_SIGN_ON) {
fwver = ((unsigned)resp[8] << 8) | (unsigned)resp[7];
hwver = (unsigned)resp[9];
memcpy(PDATA(pgm)->serno, resp + 10, 6);
if (verbose >= 1 && status > 17) {
fprintf(stderr, "JTAG ICE mkII sign-on message:\n");
fprintf(stderr, "Communications protocol version: %u\n",
(unsigned)resp[1]);
fprintf(stderr, "M_MCU:\n");
fprintf(stderr, " boot-loader FW version: %u\n",
(unsigned)resp[2]);
fprintf(stderr, " firmware version: %u.%02u\n",
(unsigned)resp[4], (unsigned)resp[3]);
fprintf(stderr, " hardware version: %u\n",
(unsigned)resp[5]);
fprintf(stderr, "S_MCU:\n");
fprintf(stderr, " boot-loader FW version: %u\n",
(unsigned)resp[6]);
fprintf(stderr, " firmware version: %u.%02u\n",
(unsigned)resp[8], (unsigned)resp[7]);
fprintf(stderr, " hardware version: %u\n",
(unsigned)resp[9]);
fprintf(stderr, "Serial number: "
"%02x:%02x:%02x:%02x:%02x:%02x\n",
PDATA(pgm)->serno[0], PDATA(pgm)->serno[1], PDATA(pgm)->serno[2], PDATA(pgm)->serno[3], PDATA(pgm)->serno[4], PDATA(pgm)->serno[5]);
resp[status - 1] = '\0';
fprintf(stderr, "Device ID: %s\n",
resp + 16);
}
break;
}
free(resp);
}
}
if (tries >= MAXTRIES) {
if (status <= 0)
fprintf(stderr,
"%s: jtagmkII_getsync(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
else
fprintf(stderr,
"%s: jtagmkII_getsync(): "
"bad response to sign-on command: %s\n",
progname, jtagmkII_get_rc(c));
return -1;
}
PDATA(pgm)->device_descriptor_length = sizeof(struct device_descriptor);
/*
* There's no official documentation from Atmel about what firmware
* revision matches what device descriptor length. The algorithm
* below has been found empirically.
*
* The original JTAG ICE mkII has hardware version 0, the AVR Dragon
* has hardware version 2 (on the slave MCU) and doesn't need the
* firmware version checks (by now).
*/
#define FWVER(maj, min) ((maj << 8) | (min))
if (hwver == 0 && fwver < FWVER(3, 16)) {
PDATA(pgm)->device_descriptor_length -= 2;
fprintf(stderr,
"%s: jtagmkII_getsync(): "
"S_MCU firmware version might be too old to work correctly\n",
progname);
} else if (hwver == 0 && fwver < FWVER(4, 0)) {
PDATA(pgm)->device_descriptor_length -= 2;
}
if (verbose >= 2 && mode != EMULATOR_MODE_SPI)
fprintf(stderr,
"%s: jtagmkII_getsync(): Using a %zu-byte device descriptor\n",
progname, PDATA(pgm)->device_descriptor_length);
if (mode == EMULATOR_MODE_SPI || mode == EMULATOR_MODE_HV) {
PDATA(pgm)->device_descriptor_length = 0;
if (hwver == 0 && fwver < FWVER(4, 14)) {
fprintf(stderr,
"%s: jtagmkII_getsync(): ISP functionality requires firmware "
"version >= 4.14\n",
progname);
return -1;
}
}
#undef FWVER
/* Turn the ICE into JTAG or ISP mode as requested. */
buf[0] = mode;
if (jtagmkII_setparm(pgm, PAR_EMULATOR_MODE, buf) < 0) {
if (mode == EMULATOR_MODE_SPI) {
fprintf(stderr,
"%s: jtagmkII_getsync(): "
"ISP activation failed, trying debugWire\n",
progname);
buf[0] = EMULATOR_MODE_DEBUGWIRE;
if (jtagmkII_setparm(pgm, PAR_EMULATOR_MODE, buf) < 0)
return -1;
else {
/*
* We are supposed to send a CMND_RESET with the
* MONCOM_DISABLE flag set right now, and then
* restart from scratch.
*
* As this will make the ICE sign off from USB, so
* we risk losing our USB connection, it's easier
* to instruct the user to restart AVRDUDE rather
* than trying to cope with all this inside the
* program.
*/
(void)jtagmkII_reset(pgm, 0x04);
jtagmkII_close(pgm);
fprintf(stderr,
"%s: Target prepared for ISP, signed off.\n"
"%s: Please restart %s without power-cycling the target.\n",
progname, progname, progname);
exit(0);
}
} else {
return -1;
}
}
/* GET SYNC forces the target into STOPPED mode */
buf[0] = CMND_GET_SYNC;
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_getsync(): Sending get sync command: ",
progname);
jtagmkII_send(pgm, buf, 1);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
fprintf(stderr,
"%s: jtagmkII_getsync(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return -1;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
free(resp);
if (c != RSP_OK) {
fprintf(stderr,
"%s: jtagmkII_getsync(): "
"bad response to set parameter command: %s\n",
progname, jtagmkII_get_rc(c));
return -1;
}
return 0;
}
/*
* issue the 'chip erase' command to the AVR device
*/
static int jtagmkII_chip_erase(PROGRAMMER * pgm, AVRPART * p)
{
int status;
unsigned char buf[1], *resp, c;
buf[0] = CMND_CHIP_ERASE;
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_chip_erase(): Sending chip erase command: ",
progname);
jtagmkII_send(pgm, buf, 1);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
fprintf(stderr,
"%s: jtagmkII_chip_erase(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return -1;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
free(resp);
if (c != RSP_OK) {
fprintf(stderr,
"%s: jtagmkII_chip_erase(): "
"bad response to chip erase command: %s\n",
progname, jtagmkII_get_rc(c));
return -1;
}
pgm->initialize(pgm, p);
return 0;
}
/*
* There is no chip erase functionality in debugWire mode.
*/
static int jtagmkII_chip_erase_dw(PROGRAMMER * pgm, AVRPART * p)
{
fprintf(stderr, "%s: Chip erase not supported in debugWire mode\n",
progname);
return 0;
}
static void jtagmkII_set_devdescr(PROGRAMMER * pgm, AVRPART * p)
{
int status;
unsigned char *resp, c;
LNODEID ln;
AVRMEM * m;
struct {
unsigned char cmd;
struct device_descriptor dd;
} sendbuf;
memset(&sendbuf, 0, sizeof sendbuf);
sendbuf.cmd = CMND_SET_DEVICE_DESCRIPTOR;
sendbuf.dd.ucSPMCRAddress = p->spmcr;
sendbuf.dd.ucRAMPZAddress = p->rampz;
sendbuf.dd.ucIDRAddress = p->idr;
u16_to_b2(sendbuf.dd.EECRAddress, p->eecr);
sendbuf.dd.ucAllowFullPageBitstream =
(p->flags & AVRPART_ALLOWFULLPAGEBITSTREAM) != 0;
sendbuf.dd.EnablePageProgramming =
(p->flags & AVRPART_ENABLEPAGEPROGRAMMING) != 0;
for (ln = lfirst(p->mem); ln; ln = lnext(ln)) {
m = ldata(ln);
if (strcmp(m->desc, "flash") == 0) {
PDATA(pgm)->flash_pagesize = m->page_size;
u32_to_b4(sendbuf.dd.ulFlashSize, m->size);
u16_to_b2(sendbuf.dd.uiFlashPageSize, PDATA(pgm)->flash_pagesize);
u16_to_b2(sendbuf.dd.uiFlashpages, m->size / PDATA(pgm)->flash_pagesize);
if (p->flags & AVRPART_HAS_DW) {
memcpy(sendbuf.dd.ucFlashInst, p->flash_instr, FLASH_INSTR_SIZE);
memcpy(sendbuf.dd.ucEepromInst, p->eeprom_instr, EEPROM_INSTR_SIZE);
}
} else if (strcmp(m->desc, "eeprom") == 0) {
sendbuf.dd.ucEepromPageSize = PDATA(pgm)->eeprom_pagesize = m->page_size;
}
}
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_set_devdescr(): "
"Sending set device descriptor command: ",
progname);
jtagmkII_send(pgm, (unsigned char *)&sendbuf,
PDATA(pgm)->device_descriptor_length + sizeof(unsigned char));
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
fprintf(stderr,
"%s: jtagmkII_set_devdescr(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
free(resp);
if (c != RSP_OK) {
fprintf(stderr,
"%s: jtagmkII_set_devdescr(): "
"bad response to set device descriptor command: %s\n",
progname, jtagmkII_get_rc(c));
}
}
/*
* Reset the target.
*/
static int jtagmkII_reset(PROGRAMMER * pgm, unsigned char flags)
{
int status;
unsigned char buf[2], *resp, c;
/*
* In debugWire mode, don't reset. Do a forced stop, and tell the
* ICE to stop any timers, too.
*/
if (pgm->flag & PGM_FL_IS_DW) {
unsigned char parm[] = { 0 };
(void)jtagmkII_setparm(pgm, PAR_TIMERS_RUNNING, parm);
}
buf[0] = (pgm->flag & PGM_FL_IS_DW)? CMND_FORCED_STOP: CMND_RESET;
buf[1] = (pgm->flag & PGM_FL_IS_DW)? 1: flags;
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_reset(): Sending %s command: ",
progname, (pgm->flag & PGM_FL_IS_DW)? "stop": "reset");
jtagmkII_send(pgm, buf, 2);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
fprintf(stderr,
"%s: jtagmkII_reset(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return -1;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
free(resp);
if (c != RSP_OK) {
fprintf(stderr,
"%s: jtagmkII_reset(): "
"bad response to reset command: %s\n",
progname, jtagmkII_get_rc(c));
return -1;
}
return 0;
}
static int jtagmkII_program_enable_dummy(PROGRAMMER * pgm, AVRPART * p)
{
return 0;
}
static int jtagmkII_program_enable(PROGRAMMER * pgm)
{
int status;
unsigned char buf[1], *resp, c;
if (PDATA(pgm)->prog_enabled)
return 0;
buf[0] = CMND_ENTER_PROGMODE;
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_program_enable(): "
"Sending enter progmode command: ",
progname);
jtagmkII_send(pgm, buf, 1);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
fprintf(stderr,
"%s: jtagmkII_program_enable(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return -1;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
free(resp);
if (c != RSP_OK) {
fprintf(stderr,
"%s: jtagmkII_program_enable(): "
"bad response to enter progmode command: %s\n",
progname, jtagmkII_get_rc(c));
if (c == RSP_ILLEGAL_JTAG_ID)
fprintf(stderr, "%s: JTAGEN fuse disabled?\n", progname);
return -1;
}
PDATA(pgm)->prog_enabled = 1;
return 0;
}
static int jtagmkII_program_disable(PROGRAMMER * pgm)
{
int status;
unsigned char buf[1], *resp, c;
if (!PDATA(pgm)->prog_enabled)
return 0;
buf[0] = CMND_LEAVE_PROGMODE;
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_program_disable(): "
"Sending leave progmode command: ",
progname);
jtagmkII_send(pgm, buf, 1);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
fprintf(stderr,
"%s: jtagmkII_program_disable(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return -1;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
free(resp);
if (c != RSP_OK) {
fprintf(stderr,
"%s: jtagmkII_program_disable(): "
"bad response to leave progmode command: %s\n",
progname, jtagmkII_get_rc(c));
return -1;
}
PDATA(pgm)->prog_enabled = 0;
(void)jtagmkII_reset(pgm, 0x01);
return 0;
}
static unsigned char jtagmkII_get_baud(long baud)
{
static struct {
long baud;
unsigned char val;
} baudtab[] = {
{ 2400L, PAR_BAUD_2400 },
{ 4800L, PAR_BAUD_4800 },
{ 9600L, PAR_BAUD_9600 },
{ 19200L, PAR_BAUD_19200 },
{ 38400L, PAR_BAUD_38400 },
{ 57600L, PAR_BAUD_57600 },
{ 115200L, PAR_BAUD_115200 },
{ 14400L, PAR_BAUD_14400 },
};
int i;
for (i = 0; i < sizeof baudtab / sizeof baudtab[0]; i++)
if (baud == baudtab[i].baud)
return baudtab[i].val;
return 0;
}
/*
* initialize the AVR device and prepare it to accept commands
*/
static int jtagmkII_initialize(PROGRAMMER * pgm, AVRPART * p)
{
AVRMEM hfuse;
unsigned char b;
int ok;
const char *ifname;
ok = 0;
if (pgm->flag & PGM_FL_IS_DW) {
ifname = "debugWire";
if (p->flags & AVRPART_HAS_DW)
ok = 1;
} else {
ifname = "JTAG";
if (p->flags & AVRPART_HAS_JTAG)
ok = 1;
}
if (!ok) {
fprintf(stderr, "%s: jtagmkII_initialize(): part %s has no %s interface\n",
progname, p->desc, ifname);
return -1;
}
if ((serdev->flags & SERDEV_FL_CANSETSPEED) && pgm->baudrate && pgm->baudrate != 19200) {
if ((b = jtagmkII_get_baud(pgm->baudrate)) == 0) {
fprintf(stderr, "%s: jtagmkII_initialize(): unsupported baudrate %d\n",
progname, pgm->baudrate);
} else {
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_initialize(): "
"trying to set baudrate to %d\n",
progname, pgm->baudrate);
if (jtagmkII_setparm(pgm, PAR_BAUD_RATE, &b) == 0)
serial_setspeed(&pgm->fd, pgm->baudrate);
}
}
if (!(pgm->flag & PGM_FL_IS_DW) && pgm->bitclock != 0.0) {
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_initialize(): "
"trying to set JTAG clock period to %.1f us\n",
progname, pgm->bitclock);
if (jtagmkII_set_sck_period(pgm, pgm->bitclock) != 0)
return -1;
}
if (jtagmkII_setparm(pgm, PAR_DAISY_CHAIN_INFO, PDATA(pgm)->jtagchain) < 0) {
fprintf(stderr, "%s: jtagmkII_initialize(): Failed to setup JTAG chain\n",
progname);
return -1;
}
/*
* Must set the device descriptor before entering programming mode.
*/
jtagmkII_set_devdescr(pgm, p);
free(PDATA(pgm)->flash_pagecache);
free(PDATA(pgm)->eeprom_pagecache);
if ((PDATA(pgm)->flash_pagecache = malloc(PDATA(pgm)->flash_pagesize)) == NULL) {
fprintf(stderr, "%s: jtagmkII_initialize(): Out of memory\n",
progname);
return -1;
}
if ((PDATA(pgm)->eeprom_pagecache = malloc(PDATA(pgm)->eeprom_pagesize)) == NULL) {
fprintf(stderr, "%s: jtagmkII_initialize(): Out of memory\n",
progname);
free(PDATA(pgm)->flash_pagecache);
return -1;
}
PDATA(pgm)->flash_pageaddr = PDATA(pgm)->eeprom_pageaddr = (unsigned long)-1L;
if (jtagmkII_reset(pgm, 0x01) < 0)
return -1;
if (!(pgm->flag & PGM_FL_IS_DW)) {
strcpy(hfuse.desc, "hfuse");
if (jtagmkII_read_byte(pgm, p, &hfuse, 1, &b) < 0)
return -1;
if ((b & OCDEN) != 0)
fprintf(stderr,
"%s: jtagmkII_initialize(): warning: OCDEN fuse not programmed, "
"single-byte EEPROM updates not possible\n",
progname);
}
return 0;
}
static void jtagmkII_disable(PROGRAMMER * pgm)
{
free(PDATA(pgm)->flash_pagecache);
PDATA(pgm)->flash_pagecache = NULL;
free(PDATA(pgm)->eeprom_pagecache);
PDATA(pgm)->eeprom_pagecache = NULL;
if (!(pgm->flag & PGM_FL_IS_DW))
(void)jtagmkII_program_disable(pgm);
}
static void jtagmkII_enable(PROGRAMMER * pgm)
{
return;
}
static int jtagmkII_parseextparms(PROGRAMMER * pgm, LISTID extparms)
{
LNODEID ln;
const char *extended_param;
int rv = 0;
for (ln = lfirst(extparms); ln; ln = lnext(ln)) {
extended_param = ldata(ln);
if (strncmp(extended_param, "jtagchain=", strlen("jtagchain=")) == 0) {
unsigned int ub, ua, bb, ba;
if (sscanf(extended_param, "jtagchain=%u,%u,%u,%u", &ub, &ua, &bb, &ba)
!= 4) {
fprintf(stderr,
"%s: jtagmkII_parseextparms(): invalid JTAG chain '%s'\n",
progname, extended_param);
rv = -1;
continue;
}
if (verbose >= 2) {
fprintf(stderr,
"%s: jtagmkII_parseextparms(): JTAG chain parsed as:\n"
"%s %u units before, %u units after, %u bits before, %u bits after\n",
progname,
progbuf, ub, ua, bb, ba);
}
PDATA(pgm)->jtagchain[0] = ub;
PDATA(pgm)->jtagchain[1] = ua;
PDATA(pgm)->jtagchain[2] = bb;
PDATA(pgm)->jtagchain[3] = ba;
continue;
}
fprintf(stderr,
"%s: jtagmkII_parseextparms(): invalid extended parameter '%s'\n",
progname, extended_param);
rv = -1;
}
return rv;
}
static int jtagmkII_open(PROGRAMMER * pgm, char * port)
{
long baud;
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_open()\n", progname);
/*
* The JTAG ICE mkII always starts with a baud rate of 19200 Bd upon
* attaching. If the config file or command-line parameters specify
* a higher baud rate, we switch to it later on, after establishing
* the connection with the ICE.
*/
baud = 19200;
/*
* If the port name starts with "usb", divert the serial routines
* to the USB ones. The serial_open() function for USB overrides
* the meaning of the "baud" parameter to be the USB device ID to
* search for.
*/
if (strncmp(port, "usb", 3) == 0) {
#if defined(HAVE_LIBUSB)
serdev = &usb_serdev;
baud = USB_DEVICE_JTAGICEMKII;
#else
fprintf(stderr, "avrdude was compiled without usb support.\n");
return -1;
#endif
}
strcpy(pgm->port, port);
serial_open(port, baud, &pgm->fd);
/*
* drain any extraneous input
*/
jtagmkII_drain(pgm, 0);
jtagmkII_getsync(pgm, EMULATOR_MODE_JTAG);
return 0;
}
static int jtagmkII_open_dw(PROGRAMMER * pgm, char * port)
{
long baud;
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_open_dw()\n", progname);
/*
* The JTAG ICE mkII always starts with a baud rate of 19200 Bd upon
* attaching. If the config file or command-line parameters specify
* a higher baud rate, we switch to it later on, after establishing
* the connection with the ICE.
*/
baud = 19200;
/*
* If the port name starts with "usb", divert the serial routines
* to the USB ones. The serial_open() function for USB overrides
* the meaning of the "baud" parameter to be the USB device ID to
* search for.
*/
if (strncmp(port, "usb", 3) == 0) {
#if defined(HAVE_LIBUSB)
serdev = &usb_serdev;
baud = USB_DEVICE_JTAGICEMKII;
#else
fprintf(stderr, "avrdude was compiled without usb support.\n");
return -1;
#endif
}
strcpy(pgm->port, port);
serial_open(port, baud, &pgm->fd);
/*
* drain any extraneous input
*/
jtagmkII_drain(pgm, 0);
jtagmkII_getsync(pgm, EMULATOR_MODE_DEBUGWIRE);
return 0;
}
static int jtagmkII_dragon_open(PROGRAMMER * pgm, char * port)
{
long baud;
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_dragon_open()\n", progname);
/*
* The JTAG ICE mkII always starts with a baud rate of 19200 Bd upon
* attaching. If the config file or command-line parameters specify
* a higher baud rate, we switch to it later on, after establishing
* the connection with the ICE.
*/
baud = 19200;
/*
* If the port name starts with "usb", divert the serial routines
* to the USB ones. The serial_open() function for USB overrides
* the meaning of the "baud" parameter to be the USB device ID to
* search for.
*/
if (strncmp(port, "usb", 3) == 0) {
#if defined(HAVE_LIBUSB)
serdev = &usb_serdev;
baud = USB_DEVICE_AVRDRAGON;
#else
fprintf(stderr, "avrdude was compiled without usb support.\n");
return -1;
#endif
}
strcpy(pgm->port, port);
serial_open(port, baud, &pgm->fd);
/*
* drain any extraneous input
*/
jtagmkII_drain(pgm, 0);
jtagmkII_getsync(pgm, EMULATOR_MODE_JTAG);
return 0;
}
static int jtagmkII_dragon_open_dw(PROGRAMMER * pgm, char * port)
{
long baud;
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_dragon_open_dw()\n", progname);
/*
* The JTAG ICE mkII always starts with a baud rate of 19200 Bd upon
* attaching. If the config file or command-line parameters specify
* a higher baud rate, we switch to it later on, after establishing
* the connection with the ICE.
*/
baud = 19200;
/*
* If the port name starts with "usb", divert the serial routines
* to the USB ones. The serial_open() function for USB overrides
* the meaning of the "baud" parameter to be the USB device ID to
* search for.
*/
if (strncmp(port, "usb", 3) == 0) {
#if defined(HAVE_LIBUSB)
serdev = &usb_serdev;
baud = USB_DEVICE_AVRDRAGON;
#else
fprintf(stderr, "avrdude was compiled without usb support.\n");
return -1;
#endif
}
strcpy(pgm->port, port);
serial_open(port, baud, &pgm->fd);
/*
* drain any extraneous input
*/
jtagmkII_drain(pgm, 0);
jtagmkII_getsync(pgm, EMULATOR_MODE_DEBUGWIRE);
return 0;
}
void jtagmkII_close(PROGRAMMER * pgm)
{
int status;
unsigned char buf[1], *resp, c;
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_close()\n", progname);
if (PDATA(pgm)->device_descriptor_length) {
/* When in JTAG mode, restart target. */
buf[0] = CMND_GO;
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_close(): Sending GO command: ",
progname);
jtagmkII_send(pgm, buf, 1);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
fprintf(stderr,
"%s: jtagmkII_close(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
} else {
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
free(resp);
if (c != RSP_OK) {
fprintf(stderr,
"%s: jtagmkII_close(): "
"bad response to GO command: %s\n",
progname, jtagmkII_get_rc(c));
}
}
}
buf[0] = CMND_SIGN_OFF;
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_close(): Sending sign-off command: ",
progname);
jtagmkII_send(pgm, buf, 1);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
fprintf(stderr,
"%s: jtagmkII_close(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
free(resp);
if (c != RSP_OK) {
fprintf(stderr,
"%s: jtagmkII_close(): "
"bad response to sign-off command: %s\n",
progname, jtagmkII_get_rc(c));
}
serial_close(&pgm->fd);
pgm->fd.ifd = -1;
}
static int jtagmkII_paged_write(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
int page_size, int n_bytes)
{
int addr, block_size;
unsigned char *cmd;
unsigned char *resp;
int status, tries;
long otimeout = serial_recv_timeout;
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_paged_write(.., %s, %d, %d)\n",
progname, m->desc, page_size, n_bytes);
if (!(pgm->flag & PGM_FL_IS_DW) && jtagmkII_program_enable(pgm) < 0)
return -1;
if (page_size == 0) page_size = 256;
if ((cmd = malloc(page_size + 10)) == NULL) {
fprintf(stderr, "%s: jtagmkII_paged_write(): Out of memory\n",
progname);
return -1;
}
cmd[0] = CMND_WRITE_MEMORY;
if (strcmp(m->desc, "flash") == 0) {
cmd[1] = MTYPE_FLASH_PAGE;
PDATA(pgm)->flash_pageaddr = (unsigned long)-1L;
page_size = PDATA(pgm)->flash_pagesize;
} else if (strcmp(m->desc, "eeprom") == 0) {
cmd[1] = MTYPE_EEPROM_PAGE;
PDATA(pgm)->eeprom_pageaddr = (unsigned long)-1L;
page_size = PDATA(pgm)->eeprom_pagesize;
if (pgm->flag & PGM_FL_IS_DW) {
free(cmd);
return -1;
}
}
serial_recv_timeout = 100;
for (addr = 0; addr < n_bytes; addr += page_size) {
report_progress(addr, n_bytes,NULL);
if ((n_bytes-addr) < page_size)
block_size = n_bytes - addr;
else
block_size = page_size;
if (verbose >= 3)
fprintf(stderr, "%s: jtagmkII_paged_write(): "
"block_size at addr %d is %d\n",
progname, addr, block_size);
u32_to_b4(cmd + 2, page_size);
u32_to_b4(cmd + 6, addr);
/*
* The JTAG ICE will refuse to write anything but a full page, at
* least for the flash ROM. If a partial page has been requested,
* set the remainder to 0xff. (Maybe we should rather read back
* the existing contents instead before? Doesn't matter much, as
* bits cannot be written to 1 anyway.)
*/
memset(cmd + 10, 0xff, page_size);
memcpy(cmd + 10, m->buf + addr, block_size);
tries = 0;
retry:
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_paged_write(): "
"Sending write memory command: ",
progname);
jtagmkII_send(pgm, cmd, page_size + 10);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
if (verbose >= 1)
fprintf(stderr,
"%s: jtagmkII_paged_write(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
if (tries++ < 4) {
serial_recv_timeout *= 2;
goto retry;
}
fprintf(stderr,
"%s: jtagmkII_paged_write(): fatal timeout/"
"error communicating with programmer (status %d)\n",
progname, status);
free(cmd);
serial_recv_timeout = otimeout;
return -1;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
if (resp[0] != RSP_OK) {
fprintf(stderr,
"%s: jtagmkII_paged_write(): "
"bad response to write memory command: %s\n",
progname, jtagmkII_get_rc(resp[0]));
free(resp);
free(cmd);
serial_recv_timeout = otimeout;
return -1;
}
free(resp);
}
free(cmd);
serial_recv_timeout = otimeout;
return n_bytes;
}
static int jtagmkII_paged_load(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
int page_size, int n_bytes)
{
int addr, block_size;
unsigned char cmd[10];
unsigned char *resp;
int status, tries;
long otimeout = serial_recv_timeout;
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_paged_load(.., %s, %d, %d)\n",
progname, m->desc, page_size, n_bytes);
if (!(pgm->flag & PGM_FL_IS_DW) && jtagmkII_program_enable(pgm) < 0)
return -1;
page_size = m->readsize;
cmd[0] = CMND_READ_MEMORY;
if (strcmp(m->desc, "flash") == 0) {
cmd[1] = MTYPE_FLASH_PAGE;
} else if (strcmp(m->desc, "eeprom") == 0) {
cmd[1] = MTYPE_EEPROM_PAGE;
if (pgm->flag & PGM_FL_IS_DW)
return -1;
}
serial_recv_timeout = 100;
for (addr = 0; addr < n_bytes; addr += page_size) {
report_progress(addr, n_bytes,NULL);
if ((n_bytes-addr) < page_size)
block_size = n_bytes - addr;
else
block_size = page_size;
if (verbose >= 3)
fprintf(stderr, "%s: jtagmkII_paged_load(): "
"block_size at addr %d is %d\n",
progname, addr, block_size);
u32_to_b4(cmd + 2, block_size);
u32_to_b4(cmd + 6, addr);
tries = 0;
retry:
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_paged_load(): Sending read memory command: ",
progname);
jtagmkII_send(pgm, cmd, 10);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
if (verbose >= 1)
fprintf(stderr,
"%s: jtagmkII_paged_load(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
if (tries++ < 4) {
serial_recv_timeout *= 2;
goto retry;
}
fprintf(stderr,
"%s: jtagmkII_paged_load(): fatal timeout/"
"error communicating with programmer (status %d)\n",
progname, status);
serial_recv_timeout = otimeout;
return -1;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
if (resp[0] != RSP_MEMORY) {
fprintf(stderr,
"%s: jtagmkII_paged_load(): "
"bad response to read memory command: %s\n",
progname, jtagmkII_get_rc(resp[0]));
free(resp);
serial_recv_timeout = otimeout;
return -1;
}
memcpy(m->buf + addr, resp + 1, status);
free(resp);
}
serial_recv_timeout = otimeout;
return n_bytes;
}
static int jtagmkII_read_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char * value)
{
unsigned char cmd[10];
unsigned char *resp = NULL, *cache_ptr = NULL;
int status, tries, unsupp;
unsigned long paddr = 0UL, *paddr_ptr = NULL;
unsigned int pagesize = 0;
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_read_byte(.., %s, 0x%lx, ...)\n",
progname, mem->desc, addr);
if (!(pgm->flag & PGM_FL_IS_DW) && jtagmkII_program_enable(pgm) < 0)
return -1;
cmd[0] = CMND_READ_MEMORY;
unsupp = 0;
if (strcmp(mem->desc, "flash") == 0) {
cmd[1] = MTYPE_FLASH_PAGE;
pagesize = mem->page_size;
paddr = addr & ~(pagesize - 1);
paddr_ptr = &PDATA(pgm)->flash_pageaddr;
cache_ptr = PDATA(pgm)->flash_pagecache;
} else if (strcmp(mem->desc, "eeprom") == 0) {
if (pgm->flag & PGM_FL_IS_DW) {
/* debugWire cannot use page access for EEPROM */
cmd[1] = MTYPE_EEPROM;
} else {
cmd[1] = MTYPE_EEPROM_PAGE;
pagesize = mem->page_size;
paddr = addr & ~(pagesize - 1);
paddr_ptr = &PDATA(pgm)->eeprom_pageaddr;
cache_ptr = PDATA(pgm)->eeprom_pagecache;
}
} else if (strcmp(mem->desc, "lfuse") == 0) {
cmd[1] = MTYPE_FUSE_BITS;
addr = 0;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "hfuse") == 0) {
cmd[1] = MTYPE_FUSE_BITS;
addr = 1;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "efuse") == 0) {
cmd[1] = MTYPE_FUSE_BITS;
addr = 2;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "lock") == 0) {
cmd[1] = MTYPE_LOCK_BITS;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "calibration") == 0) {
cmd[1] = MTYPE_OSCCAL_BYTE;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "signature") == 0) {
cmd[1] = MTYPE_SIGN_JTAG;
if (pgm->flag & PGM_FL_IS_DW) {
/*
* In debugWire mode, there is no accessible memory area to read
* the signature from, but the essential two bytes can be read
* as a parameter from the ICE.
*/
unsigned char parm[4];
switch (addr) {
case 0:
*value = 0x1E; /* Atmel vendor ID */
break;
case 1:
case 2:
if (jtagmkII_getparm(pgm, PAR_TARGET_SIGNATURE, parm) < 0)
return -1;
*value = parm[2 - addr];
break;
default:
fprintf(stderr, "%s: illegal address %lu for signature memory\n",
progname, addr);
return -1;
}
return 0;
}
}
/*
* If the respective memory area is not supported under debugWire,
* leave here.
*/
if (unsupp) {
*value = 42;
return -1;
}
/*
* To improve the read speed, we used paged reads for flash and
* EEPROM, and cache the results in a page cache.
*
* Page cache validation is based on "{flash,eeprom}_pageaddr"
* (holding the base address of the most recent cache fill
* operation). This variable is set to (unsigned long)-1L when the
* cache needs to be invalidated.
*/
if (pagesize && paddr == *paddr_ptr) {
*value = cache_ptr[addr & (pagesize - 1)];
return 0;
}
if (pagesize) {
u32_to_b4(cmd + 2, pagesize);
u32_to_b4(cmd + 6, paddr);
} else {
u32_to_b4(cmd + 2, 1);
u32_to_b4(cmd + 6, addr);
}
tries = 0;
retry:
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_read_byte(): Sending read memory command: ",
progname);
jtagmkII_send(pgm, cmd, 10);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
if (verbose >= 1)
fprintf(stderr,
"%s: jtagmkII_read_byte(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
if (tries++ < 3)
goto retry;
fprintf(stderr,
"%s: jtagmkII_read_byte(): "
"fatal timeout/error communicating with programmer (status %d)\n",
progname, status);
if (status < 0)
resp = 0;
goto fail;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
if (resp[0] != RSP_MEMORY) {
fprintf(stderr,
"%s: jtagmkII_read_byte(): "
"bad response to read memory command: %s\n",
progname, jtagmkII_get_rc(resp[0]));
goto fail;
}
if (pagesize) {
*paddr_ptr = paddr;
memcpy(cache_ptr, resp + 1, pagesize);
*value = cache_ptr[addr & (pagesize - 1)];
} else
*value = resp[1];
free(resp);
return 0;
fail:
free(resp);
return -1;
}
static int jtagmkII_write_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char data)
{
unsigned char cmd[11];
unsigned char *resp = NULL, writedata;
int status, tries, need_progmode = 1, unsupp = 0;
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_write_byte(.., %s, 0x%lx, ...)\n",
progname, mem->desc, addr);
writedata = data;
cmd[0] = CMND_WRITE_MEMORY;
if (strcmp(mem->desc, "flash") == 0) {
cmd[1] = MTYPE_SPM;
need_progmode = 0;
PDATA(pgm)->flash_pageaddr = (unsigned long)-1L;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "eeprom") == 0) {
cmd[1] = MTYPE_EEPROM;
need_progmode = 0;
PDATA(pgm)->eeprom_pageaddr = (unsigned long)-1L;
} else if (strcmp(mem->desc, "lfuse") == 0) {
cmd[1] = MTYPE_FUSE_BITS;
addr = 0;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "hfuse") == 0) {
cmd[1] = MTYPE_FUSE_BITS;
addr = 1;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "efuse") == 0) {
cmd[1] = MTYPE_FUSE_BITS;
addr = 2;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "lock") == 0) {
cmd[1] = MTYPE_LOCK_BITS;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "calibration") == 0) {
cmd[1] = MTYPE_OSCCAL_BYTE;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "signature") == 0) {
cmd[1] = MTYPE_SIGN_JTAG;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
}
if (unsupp)
return -1;
if (need_progmode) {
if (jtagmkII_program_enable(pgm) < 0)
return -1;
} else {
if (jtagmkII_program_disable(pgm) < 0)
return -1;
}
u32_to_b4(cmd + 2, 1);
u32_to_b4(cmd + 6, addr);
cmd[10] = writedata;
tries = 0;
retry:
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_write_byte(): Sending write memory command: ",
progname);
jtagmkII_send(pgm, cmd, 11);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
if (verbose > 1)
fprintf(stderr,
"%s: jtagmkII_write_byte(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
if (tries++ < 3)
goto retry;
fprintf(stderr,
"%s: jtagmkII_write_byte(): "
"fatal timeout/error communicating with programmer (status %d)\n",
progname, status);
goto fail;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
if (resp[0] != RSP_OK) {
fprintf(stderr,
"%s: jtagmkII_write_byte(): "
"bad response to write memory command: %s\n",
progname, jtagmkII_get_rc(resp[0]));
goto fail;
}
free(resp);
return 0;
fail:
free(resp);
return -1;
}
/*
* Set the JTAG clock. The actual frequency is quite a bit of
* guesswork, based on the values claimed by AVR Studio. Inside the
* JTAG ICE, the value is the delay count of a delay loop between the
* JTAG clock edges. A count of 0 bypasses the delay loop.
*
* As the STK500 expresses it as a period length (and we actualy do
* program a period length as well), we rather call it by that name.
*/
static int jtagmkII_set_sck_period(PROGRAMMER * pgm, double v)
{
unsigned char dur;
v = 1 / v; /* convert to frequency */
if (v >= 6.4e6)
dur = 0;
else if (v >= 2.8e6)
dur = 1;
else if (v >= 20.9e3)
dur = (unsigned char)(5.35e6 / v);
else
dur = 255;
return jtagmkII_setparm(pgm, PAR_OCD_JTAG_CLK, &dur);
}
/*
* Read an emulator parameter. As the maximal parameter length is 4
* bytes by now, we always copy out 4 bytes to *value, so the caller
* must have allocated sufficient space.
*/
int jtagmkII_getparm(PROGRAMMER * pgm, unsigned char parm,
unsigned char * value)
{
int status;
unsigned char buf[2], *resp, c;
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_getparm()\n", progname);
buf[0] = CMND_GET_PARAMETER;
buf[1] = parm;
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_getparm(): "
"Sending get parameter command (parm 0x%02x): ",
progname, parm);
jtagmkII_send(pgm, buf, 2);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
fprintf(stderr,
"%s: jtagmkII_getparm(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return -1;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
if (c != RSP_PARAMETER) {
fprintf(stderr,
"%s: jtagmkII_getparm(): "
"bad response to get parameter command: %s\n",
progname, jtagmkII_get_rc(c));
free(resp);
return -1;
}
memcpy(value, resp + 1, 4);
free(resp);
return 0;
}
/*
* Write an emulator parameter.
*/
static int jtagmkII_setparm(PROGRAMMER * pgm, unsigned char parm,
unsigned char * value)
{
int status;
/*
* As the maximal parameter length is 4 bytes, we use a fixed-length
* buffer, as opposed to malloc()ing it.
*/
unsigned char buf[2 + 4], *resp, c;
size_t size;
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_setparm()\n", progname);
switch (parm) {
case PAR_HW_VERSION: size = 2; break;
case PAR_FW_VERSION: size = 4; break;
case PAR_EMULATOR_MODE: size = 1; break;
case PAR_BAUD_RATE: size = 1; break;
case PAR_OCD_VTARGET: size = 2; break;
case PAR_OCD_JTAG_CLK: size = 1; break;
case PAR_TIMERS_RUNNING: size = 1; break;
case PAR_DAISY_CHAIN_INFO: size = 4; break;
default:
fprintf(stderr, "%s: jtagmkII_setparm(): unknown parameter 0x%02x\n",
progname, parm);
return -1;
}
buf[0] = CMND_SET_PARAMETER;
buf[1] = parm;
memcpy(buf + 2, value, size);
if (verbose >= 2)
fprintf(stderr, "%s: jtagmkII_setparm(): "
"Sending set parameter command (parm 0x%02x, %zu bytes): ",
progname, parm, size);
jtagmkII_send(pgm, buf, size + 2);
status = jtagmkII_recv(pgm, &resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
fprintf(stderr,
"%s: jtagmkII_setparm(): "
"timeout/error communicating with programmer (status %d)\n",
progname, status);
return -1;
}
if (verbose >= 3) {
putc('\n', stderr);
jtagmkII_prmsg(pgm, resp, status);
} else if (verbose == 2)
fprintf(stderr, "0x%02x (%d bytes msg)\n", resp[0], status);
c = resp[0];
free(resp);
if (c != RSP_OK) {
fprintf(stderr,
"%s: jtagmkII_setparm(): "
"bad response to set parameter command: %s\n",
progname, jtagmkII_get_rc(c));
return -1;
}
return 0;
}
static void jtagmkII_display(PROGRAMMER * pgm, const char * p)
{
unsigned char hw[4], fw[4];
if (jtagmkII_getparm(pgm, PAR_HW_VERSION, hw) < 0 ||
jtagmkII_getparm(pgm, PAR_FW_VERSION, fw) < 0)
return;
fprintf(stderr, "%sM_MCU hardware version: %d\n", p, hw[0]);
fprintf(stderr, "%sM_MCU firmware version: %d.%02d\n", p, fw[1], fw[0]);
fprintf(stderr, "%sS_MCU hardware version: %d\n", p, hw[1]);
fprintf(stderr, "%sS_MCU firmware version: %d.%02d\n", p, fw[3], fw[2]);
fprintf(stderr, "%sSerial number: %02x:%02x:%02x:%02x:%02x:%02x\n",
p, PDATA(pgm)->serno[0], PDATA(pgm)->serno[1], PDATA(pgm)->serno[2], PDATA(pgm)->serno[3], PDATA(pgm)->serno[4], PDATA(pgm)->serno[5]);
jtagmkII_print_parms1(pgm, p);
return;
}
static void jtagmkII_print_parms1(PROGRAMMER * pgm, char * p)
{
unsigned char vtarget[4], jtag_clock[4];
char clkbuf[20];
double clk;
if (jtagmkII_getparm(pgm, PAR_OCD_VTARGET, vtarget) < 0)
return;
fprintf(stderr, "%sVtarget : %.1f V\n", p,
b2_to_u16(vtarget) / 1000.0);
if (!(pgm->flag & PGM_FL_IS_DW)) {
if (jtagmkII_getparm(pgm, PAR_OCD_JTAG_CLK, jtag_clock) < 0)
return;
if (jtag_clock[0] == 0) {
strcpy(clkbuf, "6.4 MHz");
clk = 6.4e6;
} else if (jtag_clock[0] == 1) {
strcpy(clkbuf, "2.8 MHz");
clk = 2.8e6;
} else if (jtag_clock[0] <= 5) {
sprintf(clkbuf, "%.1f MHz", 5.35 / (double)jtag_clock[0]);
clk = 5.35e6 / (double)jtag_clock[0];
} else {
sprintf(clkbuf, "%.1f kHz", 5.35e3 / (double)jtag_clock[0]);
clk = 5.35e6 / (double)jtag_clock[0];
fprintf(stderr, "%sJTAG clock : %s (%.1f us)\n", p, clkbuf,
1.0e6 / clk);
}
}
return;
}
static void jtagmkII_print_parms(PROGRAMMER * pgm)
{
jtagmkII_print_parms1(pgm, "");
}
void jtagmkII_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "JTAGMKII");
/*
* mandatory functions
*/
pgm->initialize = jtagmkII_initialize;
pgm->display = jtagmkII_display;
pgm->enable = jtagmkII_enable;
pgm->disable = jtagmkII_disable;
pgm->program_enable = jtagmkII_program_enable_dummy;
pgm->chip_erase = jtagmkII_chip_erase;
pgm->open = jtagmkII_open;
pgm->close = jtagmkII_close;
pgm->read_byte = jtagmkII_read_byte;
pgm->write_byte = jtagmkII_write_byte;
/*
* optional functions
*/
pgm->paged_write = jtagmkII_paged_write;
pgm->paged_load = jtagmkII_paged_load;
pgm->print_parms = jtagmkII_print_parms;
pgm->set_sck_period = jtagmkII_set_sck_period;
pgm->parseextparams = jtagmkII_parseextparms;
pgm->setup = jtagmkII_setup;
pgm->teardown = jtagmkII_teardown;
pgm->page_size = 256;
}
void jtagmkII_dw_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "JTAGMKII_DW");
/*
* mandatory functions
*/
pgm->initialize = jtagmkII_initialize;
pgm->display = jtagmkII_display;
pgm->enable = jtagmkII_enable;
pgm->disable = jtagmkII_disable;
pgm->program_enable = jtagmkII_program_enable_dummy;
pgm->chip_erase = jtagmkII_chip_erase_dw;
pgm->open = jtagmkII_open_dw;
pgm->close = jtagmkII_close;
pgm->read_byte = jtagmkII_read_byte;
pgm->write_byte = jtagmkII_write_byte;
/*
* optional functions
*/
pgm->paged_write = jtagmkII_paged_write;
pgm->paged_load = jtagmkII_paged_load;
pgm->print_parms = jtagmkII_print_parms;
pgm->setup = jtagmkII_setup;
pgm->teardown = jtagmkII_teardown;
pgm->page_size = 256;
pgm->flag = PGM_FL_IS_DW;
}
void jtagmkII_dragon_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "DRAGON_JTAG");
/*
* mandatory functions
*/
pgm->initialize = jtagmkII_initialize;
pgm->display = jtagmkII_display;
pgm->enable = jtagmkII_enable;
pgm->disable = jtagmkII_disable;
pgm->program_enable = jtagmkII_program_enable_dummy;
pgm->chip_erase = jtagmkII_chip_erase;
pgm->open = jtagmkII_dragon_open;
pgm->close = jtagmkII_close;
pgm->read_byte = jtagmkII_read_byte;
pgm->write_byte = jtagmkII_write_byte;
/*
* optional functions
*/
pgm->paged_write = jtagmkII_paged_write;
pgm->paged_load = jtagmkII_paged_load;
pgm->print_parms = jtagmkII_print_parms;
pgm->set_sck_period = jtagmkII_set_sck_period;
pgm->parseextparams = jtagmkII_parseextparms;
pgm->setup = jtagmkII_setup;
pgm->teardown = jtagmkII_teardown;
pgm->page_size = 256;
}
void jtagmkII_dragon_dw_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "DRAGON_DW");
/*
* mandatory functions
*/
pgm->initialize = jtagmkII_initialize;
pgm->display = jtagmkII_display;
pgm->enable = jtagmkII_enable;
pgm->disable = jtagmkII_disable;
pgm->program_enable = jtagmkII_program_enable_dummy;
pgm->chip_erase = jtagmkII_chip_erase_dw;
pgm->open = jtagmkII_dragon_open_dw;
pgm->close = jtagmkII_close;
pgm->read_byte = jtagmkII_read_byte;
pgm->write_byte = jtagmkII_write_byte;
/*
* optional functions
*/
pgm->paged_write = jtagmkII_paged_write;
pgm->paged_load = jtagmkII_paged_load;
pgm->print_parms = jtagmkII_print_parms;
pgm->setup = jtagmkII_setup;
pgm->teardown = jtagmkII_teardown;
pgm->page_size = 256;
pgm->flag = PGM_FL_IS_DW;
}