avrdude/avrprog.c

2381 lines
53 KiB
C
Raw Normal View History

/*
* Copyright 2000 Brian S. Dean <bsd@bsdhome.com>
* All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY BRIAN S. DEAN ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BRIAN S. DEAN BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
*/
/* $Id$ */
/*
* Code to program an Atmel AVR AT90S device using the parallel port.
*
* Make the following connections:
*
* Parallel Port Atmel AVR
* ------------- ----------------------------
* Pin 2 -> Vcc (see NOTE below)
* Pin 3 -> SCK CLOCK IN
* Pin 4 -> MOSI Instruction input
* Pin 5 -> /RESET
* Pin 6,7,8,9 -> Vcc (Can be tied together with Schottky diodes)
* Pin 10 <- MISO Data out
* Pin 18 <- GND
*
* NOTE on Vcc connection: make sure your parallel port can supply an
* adequate amount of current to power your device. 6-10 mA is
* common for parallel port signal lines, but is not guaranteed,
* especially for notebook computers. Optionally, you can tie pins
* 6, 7, 8, and 9 also to Vcc with Schottky diodes to supply
* additional current. If in doubt, don't risk damaging your
* parallel port, use an external power supply.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <stdarg.h>
#include <sys/stat.h>
#include </sys/dev/ppbus/ppi.h>
#include <limits.h>
#include <ctype.h>
#include <readline/readline.h>
#include <readline/history.h>
#define DEFAULT_PARALLEL "/dev/ppi0"
char * version = "$Id$";
char * progname;
char progbuf[PATH_MAX]; /* temporary buffer of spaces the same
length as progname; used for lining up
multiline messages */
/*
* bit definitions for AVR device connections
*/
#define AVR_POWER 0xf1 /* bit 0 and 4...7 of data register */
#define AVR_CLOCK 0x02 /* bit 1 of data register */
#define AVR_INSTR 0x04 /* bit 2 of data register */
#define AVR_RESET 0x08 /* bit 3 of data register */
#define AVR_DATA 0x40 /* bit 6 of status register */
/*
* PPI registers
*/
enum {
PPIDATA,
PPICTRL,
PPISTATUS
};
/*
* AVR memory designations
*/
typedef enum {
AVR_EEPROM,
AVR_FLASH,
AVR_FLASH_LO,
AVR_FLASH_HI
} AVRMEM;
typedef enum {
FMT_AUTO,
FMT_SREC,
FMT_IHEX,
FMT_RBIN
} FILEFMT;
struct avrpart {
char * partdesc; /* long part name */
char * optiontag; /* short part name */
int flash_size; /* size in bytes of flash */
int eeprom_size; /* size in bytes of eeprom */
unsigned char f_readback; /* flash write polled readback value */
unsigned char e_readback[2]; /* eeprom write polled readback values */
int min_write_delay; /* microseconds */
int max_write_delay; /* microseconds */
int chip_erase_delay; /* microseconds */
unsigned char * flash;
unsigned char * eeprom;
};
/* Need to add information for 2323, 2343, and 4414 */
struct avrpart parts[] = {
{ "AT90S1200", "1200", 1024, 64, 0xff, { 0x00, 0xff },
9000, 20000, 20000, NULL, NULL },
{ "AT90S2313", "2313", 2048, 128, 0x7f, { 0x80, 0x7f },
9000, 20000, 20000, NULL, NULL },
{ "AT90S2333", "2333", 2048, 128, 0xff, { 0x00, 0xff },
9000, 20000, 20000, NULL, NULL },
{ "AT90S4433", "4433", 4096, 256, 0xff, { 0x00, 0xff },
9000, 20000, 20000, NULL, NULL },
{ "AT90S4434", "4434", 4096, 256, 0xff, { 0x00, 0xff },
9000, 20000, 20000, NULL, NULL },
{ "AT90S8515", "8515", 8192, 512, 0x7f, { 0x80, 0x7f },
9000, 20000, 20000, NULL, NULL },
{ "AT90S8535", "8535", 8192, 512, 0xff, { 0x00, 0xff },
9000, 20000, 20000, NULL, NULL },
};
#define N_AVRPARTS (sizeof(parts)/sizeof(struct avrpart))
struct fioparms {
int op;
char * mode;
char * iodesc;
char * dir;
char * rw;
};
enum {
FIO_READ,
FIO_WRITE
};
int cmd_dump(int fd, struct avrpart * p, int argc, char *argv[]);
int cmd_write(int fd, struct avrpart * p, int argc, char *argv[]);
int cmd_erase(int fd, struct avrpart * p, int argc, char *argv[]);
int cmd_sig(int fd, struct avrpart * p, int argc, char *argv[]);
int cmd_part(int fd, struct avrpart * p, int argc, char *argv[]);
int cmd_help(int fd, struct avrpart * p, int argc, char *argv[]);
int cmd_quit(int fd, struct avrpart * p, int argc, char *argv[]);
struct command {
char * name;
int (*func)(int fd, struct avrpart * p, int argc, char *argv[]);
char * desc;
};
struct command cmd[] = {
{ "dump", cmd_dump, "dump memory : %s [eeprom|flash] <addr> <N-Bytes>" },
{ "write", cmd_write, "write memory : %s [eeprom|flash] <addr> <b1> <b2> ... <bN>" },
{ "erase", cmd_erase, "perform a chip erase" },
{ "sig", cmd_sig, "display device signature bytes" },
{ "part", cmd_part, "display the current part settings" },
{ "help", cmd_help, "help" },
{ "?", cmd_help, "help" },
{ "quit", cmd_quit, "quit" }
};
#define NCMDS (sizeof(cmd)/sizeof(struct command))
#define MAX_LINE_LEN 256 /* max line length for ASCII format input files */
char * usage_text =
"\n"
"Usage: avrprog [options]\n"
"\n"
" Available Options:\n"
"\n"
" -m MemType : select memory type for reading or writing\n"
" \"e\", \"eeprom\" = EEPROM\n"
" \"f\", \"flash\" = FLASH (default)\n"
"\n"
" -i Filename : select input file, \"-\" = stdin\n"
"\n"
" -o Filename : select output file, \"-\" = stdout\n"
"\n"
" -f Format : select input / output file format\n"
" \"i\" = Intel Hex\n"
" \"s\" = Motorola S-Record\n"
" \"r\" = Raw binary (default for output)\n"
" \"a\" = Auto detect (default for input)\n"
" (valid for input only)\n"
" \n"
"\n"
" -p Part : select Atmel part number (see below for valid parts)\n"
"\n"
" -P Parallel : select parallel port device name (default = /dev/ppi0)\n"
"\n"
" -F : override invalid device signature check\n"
"\n"
" -t : enter terminal mode (or read commands from stdin)\n"
"\n"
" -e : perform a chip erase (required before programming)\n"
"\n";
int avr_txrx_bit ( int fd, int bit );
unsigned char avr_txrx ( int fd, unsigned char byte );
int avr_cmd ( int fd, unsigned char cmd[4], unsigned char res[4] );
unsigned char avr_read_byte ( int fd, struct avrpart * p,
AVRMEM memtype, unsigned short addr );
int avr_read ( int fd, struct avrpart * p, AVRMEM memtype );
int avr_write_byte ( int fd, struct avrpart * p, AVRMEM memtype,
unsigned short addr, unsigned char data );
int avr_write ( int fd, struct avrpart * p, AVRMEM memtype );
int avr_program_enable ( int fd );
int avr_chip_erase ( int fd, struct avrpart * p );
int avr_signature ( int fd, unsigned char sig[4] );
void avr_powerup ( int fd );
void avr_powerdown ( int fd );
int avr_initialize ( int fd, struct avrpart * p );
int avr_initmem ( struct avrpart * p );
void display_part ( FILE * f, struct avrpart * p, char * prefix );
int list_valid_parts ( FILE * f, char * prefix )
{
int i;
for (i=0; i<N_AVRPARTS; i++) {
fprintf(f, "%s%s = %s\n",
prefix, parts[i].optiontag, parts[i].partdesc);
}
return i;
}
/*
* set 'get' and 'set' appropriately for subsequent passage to ioctl()
* to get/set the specified PPI registers.
*/
int ppi_getops ( int reg, unsigned long * get, unsigned long * set )
{
switch (reg) {
case PPIDATA:
*set = PPISDATA;
*get = PPIGDATA;
break;
case PPICTRL:
*set = PPISCTRL;
*get = PPIGCTRL;
break;
case PPISTATUS:
*set = PPISSTATUS;
*get = PPIGSTATUS;
break;
default:
fprintf ( stderr, "%s: avr_set(): invalid register=%d\n",
progname, reg );
return -1;
break;
}
return 0;
}
/*
* set the indicated bit of the specified register.
*/
int ppi_set ( int fd, int reg, int bit )
{
unsigned char v;
unsigned long get, set;
int rc;
rc = ppi_getops ( reg, &get, &set );
if (rc)
return -1;
ioctl(fd, get, &v);
v |= bit;
ioctl(fd, set, &v);
return 0;
}
/*
* clear the indicated bit of the specified register.
*/
int ppi_clr ( int fd, int reg, int bit )
{
unsigned char v;
unsigned long get, set;
int rc;
rc = ppi_getops ( reg, &get, &set );
if (rc)
return -1;
ioctl(fd, get, &v);
v &= ~bit;
ioctl(fd, set, &v);
return 0;
}
/*
* get the indicated bit of the specified register.
*/
int ppi_get ( int fd, int reg, int bit )
{
unsigned char v;
unsigned long get, set;
int rc;
rc = ppi_getops ( reg, &get, &set );
if (rc)
return -1;
ioctl(fd, get, &v);
v &= bit;
return (v == bit);
}
/*
* toggle the indicated bit of the specified register.
*/
int ppi_toggle ( int fd, int reg, int bit )
{
unsigned char v;
unsigned long get, set;
int rc;
rc = ppi_getops ( reg, &get, &set );
if (rc)
return -1;
ioctl(fd, get, &v);
v ^= bit;
ioctl(fd, set, &v);
return 0;
}
/*
* pulse the indicated bit of the specified register.
*/
int ppi_pulse ( int fd, int reg, int bit )
{
ppi_toggle(fd, reg, bit);
ppi_toggle(fd, reg, bit);
return 0;
}
/*
* transmit and receive a bit of data to/from the AVR device
*/
int avr_txrx_bit ( int fd, int bit )
{
int r;
/*
* read the result bit (it is either valid from a previous clock
* pulse or it is ignored in the current context)
*/
r = ppi_get(fd, PPISTATUS, AVR_DATA);
/* set the data input line as desired */
if (bit)
ppi_set(fd, PPIDATA, AVR_INSTR);
else
ppi_clr(fd, PPIDATA, AVR_INSTR);
/*
* pulse the clock line, clocking in the MOSI data, and clocking out
* the next result bit
*/
ppi_pulse(fd, PPIDATA, AVR_CLOCK);
return r;
}
/*
* transmit and receive a byte of data to/from the AVR device
*/
unsigned char avr_txrx ( int fd, unsigned char byte )
{
int i;
unsigned char r, b, rbyte;
rbyte = 0;
for (i=0; i<8; i++) {
b = (byte >> (7-i)) & 0x01;
r = avr_txrx_bit ( fd, b );
rbyte = rbyte | (r << (7-i));
}
return rbyte;
}
/*
* transmit an AVR device command and return the results; 'cmd' and
* 'res' must point to at least a 4 byte data buffer
*/
int avr_cmd ( int fd, unsigned char cmd[4], unsigned char res[4] )
{
int i;
for (i=0; i<4; i++) {
res[i] = avr_txrx(fd, cmd[i]);
}
return 0;
}
/*
* read a byte of data from the indicated memory region
*/
unsigned char avr_read_byte ( int fd, struct avrpart * p,
AVRMEM memtype, unsigned short addr )
{
unsigned char cmd[4];
unsigned char res[4];
switch (memtype) {
case AVR_FLASH_LO:
cmd[0] = 0x20;
break;
case AVR_FLASH_HI:
cmd[0] = 0x28;
break;
case AVR_EEPROM:
cmd[0] = 0xa0;
break;
default:
fprintf(stderr,
"%s: avr_read_byte(); internal error: invalid memtype=%d\n",
progname, memtype);
exit(1);
break;
}
cmd[1] = addr >> 8; /* high order bits of address */
cmd[2] = addr & 0x0ff; /* low order bits of address */
cmd[3] = 0; /* don't care */
avr_cmd(fd, cmd, res);
return res[3];
}
/*
* read the entirety of the specified memory type into the
* corresponding buffer of the avrpart pointed to by 'p'.
*/
int avr_read ( int fd, struct avrpart * p, AVRMEM memtype )
{
unsigned char rbyte, memt;
unsigned short n, start, end, i, bi;
unsigned char * buf;
int bufsize;
start = 0;
switch (memtype) {
case AVR_FLASH :
memt = AVR_FLASH_LO;
buf = p->flash;
n = p->flash_size/2;
bufsize = p->flash_size;
break;
case AVR_EEPROM :
memt = memtype;
buf = p->eeprom;
n = p->eeprom_size;
bufsize = p->eeprom_size;
break;
default:
fprintf(stderr, "%s: avr_read(); internal error: invalid memtype=%d\n",
progname, memtype);
exit(1);
break;
}
end = start+n;
bi = 0;
for (i=start; i<end; i++) {
/* eeprom or low byte of flash */
rbyte = avr_read_byte(fd, p, memt, i);
fprintf ( stderr, " \r%4u 0x%02x", i, rbyte );
if (bi < bufsize) {
buf[bi++] = rbyte;
}
if (memtype == AVR_FLASH) {
/* flash high byte */
rbyte = avr_read_byte(fd, p, AVR_FLASH_HI, i);
fprintf ( stderr, " 0x%02x", rbyte );
if (bi < bufsize) {
buf[bi++] = rbyte;
}
}
}
fprintf ( stderr, "\n" );
return 0;
}
/*
* write a byte of data to the indicated memory region
*/
int avr_write_byte ( int fd, struct avrpart * p, AVRMEM memtype,
unsigned short addr, unsigned char data )
{
unsigned char cmd[4], res[4];
unsigned char r;
int ready;
int tries;
unsigned char b;
/*
* check to see if the write is necessary by reading the existing
* value and only write if we are changing the value
*/
b = avr_read_byte(fd, p, memtype, addr);
if (b == data) {
return 0;
}
switch (memtype) {
case AVR_FLASH_LO:
cmd[0] = 0x40;
break;
case AVR_FLASH_HI:
cmd[0] = 0x48;
break;
case AVR_EEPROM:
cmd[0] = 0xc0;
break;
default:
fprintf(stderr,
"%s: avr_write_byte(); internal error: invalid memtype=%d\n",
progname, memtype);
exit(1);
break;
}
cmd[1] = addr >> 8; /* high order bits of address */
cmd[2] = addr & 0x0ff; /* low order bits of address */
cmd[3] = data; /* data */
avr_cmd(fd, cmd, res);
tries = 0;
ready = 0;
while (!ready) {
usleep(p->min_write_delay); /* typical flash/eeprom write delay */
r = avr_read_byte(fd, p, memtype, addr);
if ((data == p->f_readback) ||
(data == p->e_readback[0]) || (data == p->e_readback[1])) {
/*
* use an extra long delay when we happen to be writing values
* used for polled data read-back. In this case, polling
* doesn't work, and we need to delay the worst case write time
* specified for the chip.
*/
usleep(p->max_write_delay);
ready = 1;
}
else if (r == data) {
ready = 1;
}
tries++;
if (!ready && tries > 10) {
/*
* we couldn't write the data, indicate our displeasure by
* returning an error code
*/
return -1;
}
}
return 0;
}
/*
* Write the whole memory region (flash or eeprom, specified by
* 'memtype') from the corresponding buffer of the avrpart pointed to
* by 'p'. All of the memory is updated, however, input data of 0xff
* is not actually written out, because empty flash and eeprom
* contains 0xff, and you can't actually write 1's, only 0's.
*/
int avr_write ( int fd, struct avrpart * p, AVRMEM memtype )
{
unsigned char data, memt;
unsigned short start, end, i, bi;
int nl;
int rc;
unsigned char * buf;
int bufsize;
start = 0;
switch (memtype) {
case AVR_FLASH :
buf = p->flash;
bufsize = p->flash_size;
end = start+bufsize/2;
memt = AVR_FLASH_LO;
break;
case AVR_EEPROM :
buf = p->eeprom;
bufsize = p->eeprom_size;
end = start+bufsize;
memt = memtype;
break;
default:
fprintf(stderr, "%s: avr_write(); internal error: invalid memtype=%d\n",
progname, memtype);
exit(1);
break;
}
bi = 0;
for (i=start; i<end; i++) {
/* eeprom or low byte of flash */
data = buf[bi++];
nl = 0;
rc = avr_write_byte(fd, p, memt, i, data );
fprintf(stderr, " \r%4u 0x%02x", i, data);
if (rc) {
fprintf(stderr, " ***failed; ");
nl = 1;
}
if (memtype == AVR_FLASH) {
/* high byte of flash */
data = buf[bi++];
rc = avr_write_byte(fd, p, AVR_FLASH_HI, i, data );
fprintf(stderr, " 0x%02x", data);
if (rc) {
fprintf(stderr, " ***failed; " );
nl = 1;
}
}
if (nl)
fprintf(stderr, "\n");
}
fprintf ( stderr, "\n" );
return 0;
}
/*
* issue the 'program enable' command to the AVR device
*/
int avr_program_enable ( int fd )
{
unsigned char cmd[4] = {0xac, 0x53, 0x00, 0x00};
unsigned char res[4];
avr_cmd(fd, cmd, res);
if (res[2] != cmd[1])
return -1;
return 0;
}
/*
* issue the 'chip erase' command to the AVR device
*/
int avr_chip_erase ( int fd, struct avrpart * p )
{
unsigned char data[4] = {0xac, 0x80, 0x00, 0x00};
unsigned char res[4];
avr_cmd(fd, data, res);
usleep(p->chip_erase_delay);
avr_initialize(fd, p);
return 0;
}
/*
* read the AVR device's signature bytes
*/
int avr_signature ( int fd, unsigned char sig[4] )
{
unsigned char cmd[4] = {0x30, 0x00, 0x00, 0x00};
unsigned char res[4];
int i;
for (i=0; i<4; i++) {
cmd[2] = i;
avr_cmd(fd, cmd, res);
sig[i] = res[3];
}
return 0;
}
/*
* apply power to the AVR processor
*/
void avr_powerup ( int fd )
{
ppi_set(fd, PPIDATA, AVR_POWER); /* power up */
usleep(100000);
}
/*
* remove power from the AVR processor
*/
void avr_powerdown ( int fd )
{
ppi_clr(fd, PPIDATA, AVR_POWER); /* power down */
}
/*
* initialize the AVR device and prepare it to accept commands
*/
int avr_initialize ( int fd, struct avrpart * p )
{
int rc;
int tries;
avr_powerup(fd);
ppi_clr(fd, PPIDATA, AVR_CLOCK);
ppi_clr(fd, PPIDATA, AVR_RESET);
ppi_pulse(fd, PPIDATA, AVR_RESET);
usleep(20000); /* 20 ms XXX should be a per-chip parameter */
/*
* Enable programming mode. If we are programming an AT90S1200, we
* can only issue the command and hope it worked. If we are using
* one of the other chips, the chip will echo 0x53 when issuing the
* third byte of the command. In this case, try up to 32 times in
* order to possibly get back into sync with the chip if we are out
* of sync.
*/
if (strcmp(p->partdesc, "AT90S1200")==0) {
avr_program_enable ( fd );
}
else {
tries = 0;
do {
rc = avr_program_enable ( fd );
if (rc == 0)
break;
ppi_pulse(fd, PPIDATA, AVR_CLOCK);
tries++;
} while (tries < 32);
/*
* can't sync with the device, maybe it's not attached?
*/
if (tries == 32) {
fprintf ( stderr, "%s: AVR device not responding\n", progname );
return -1;
}
}
return 0;
}
/*
* infinite loop, sensing on the pin that we use to read data out of
* the device; this is a debugging aid, you can insert a call to this
* function in 'main()' and can use it to determine whether your sense
* pin is actually sensing.
*/
int ppi_sense_test ( int fd )
{
unsigned char v, pv;
pv = 1;
do {
usleep(100000); /* check every 100 ms */
v = ppi_get(fd, PPISTATUS, AVR_DATA);
if (v != pv) {
fprintf ( stderr, "sense bit = %d\n", v );
}
pv = v;
} while(1);
return 0;
}
/*
* usage message
*/
void usage ( void )
{
fprintf ( stderr, "%s", usage_text );
fprintf(stderr, " Valid Parts for the -p option are:\n");
list_valid_parts(stderr, " ");
fprintf(stderr, "\n");
}
char * fmtstr ( FILEFMT format )
{
switch (format) {
case FMT_AUTO : return "auto-detect"; break;
case FMT_SREC : return "Motorola S-Record"; break;
case FMT_IHEX : return "Intel Hex"; break;
case FMT_RBIN : return "raw binary"; break;
default : return "invalid format"; break;
};
}
int b2ihex ( unsigned char * inbuf, int bufsize,
int recsize, int startaddr,
char * outfile, FILE * outf )
{
unsigned char * buf;
unsigned int nextaddr;
int n;
int i;
unsigned char cksum;
if (recsize > 255) {
fprintf ( stderr, "%s: recsize=%d, must be < 256\n",
progname, recsize );
return -1;
}
nextaddr = startaddr;
buf = inbuf;
while (bufsize) {
n = recsize;
if (n > bufsize)
n = bufsize;
if (n) {
cksum = 0;
fprintf ( outf, ":%02X%04X00", n, nextaddr );
cksum += n + ((nextaddr >> 8) & 0x0ff) + (nextaddr & 0x0ff);
for (i=0; i<n; i++) {
fprintf ( outf, "%02X", buf[i] );
cksum += buf[i];
}
cksum = -cksum;
fprintf ( outf, "%02X\n", cksum );
nextaddr += n;
}
/* advance to next 'recsize' bytes */
buf += n;
bufsize -= n;
}
/*-----------------------------------------------------------------
add the end of record data line
-----------------------------------------------------------------*/
cksum = 0;
n = 0;
nextaddr = 0;
fprintf ( outf, ":%02X%04X01", n, nextaddr );
cksum += n + ((nextaddr >> 8) & 0x0ff) + (nextaddr & 0x0ff);
cksum = -cksum;
fprintf ( outf, "%02X\n", cksum );
return 0;
}
int ihex2b ( char * infile, FILE * inf,
unsigned char * outbuf, int bufsize )
{
unsigned char buffer [ MAX_LINE_LEN ];
unsigned char * buf;
unsigned int prevaddr, nextaddr;
unsigned int b;
int n;
int i, j;
unsigned int cksum, rectype;
int lineno;
lineno = 0;
prevaddr = 0;
buf = outbuf;
while (fgets((char *)buffer,MAX_LINE_LEN,inf)!=NULL) {
lineno++;
if (buffer[0] != ':')
continue;
if (sscanf((char *)&buffer[1],
"%02x%04x%02x", &n, &nextaddr, &rectype) != 3) {
fprintf(stderr, "%s: invalid record at line %d of \"%s\"\n",
progname, lineno, infile);
exit(1);
}
if ((rectype != 0) && (rectype != 1)) {
fprintf(stderr,
"%s: don't know how to deal with rectype=%d "
"at line %d of %s\n",
progname, rectype, lineno, infile);
exit(1);
}
if (n && ((nextaddr + n) > bufsize)) {
fprintf(stderr, "%s: address 0x%04x out of range at line %d of %s\n",
progname, nextaddr+n, lineno, infile);
return -1;
}
/* start computing a checksum */
cksum = n + ((nextaddr >> 8 ) & 0x0ff) + (nextaddr & 0x0ff);
for (i=0; i<n; i++) {
if (sscanf((char *)&buffer[i*2+9], "%02x", &b) != 1) {
fprintf(stderr, "%s: can't scan byte number %d at line %d of %s\n",
progname, i, lineno, infile);
/* display the buffer and the position of the scan error */
fprintf(stderr, "%s", buffer);
for (j=0; j<9+2*i; j++) {
fprintf(stderr, " ");
}
fprintf(stderr, "^\n");
return -1;
}
buf[nextaddr + i] = b;
cksum += b;
}
/*-----------------------------------------------------------------
read the cksum value from the record and compare it with our
computed value
-----------------------------------------------------------------*/
if (sscanf((char *)&buffer[n*2+9], "%02x", &b) != 1) {
fprintf(stderr, "%s: can't scan byte number %d at line %d of %s\n",
progname, i, lineno, infile);
/* display the buffer and the position of the scan error */
fprintf(stderr, "%s", buffer);
for (j=0; j<9+2*i; j++) {
fprintf(stderr, " ");
}
fprintf(stderr, "^\n");
return -1;
}
cksum = -cksum & 0xff;
if (cksum != b) {
fprintf(stderr,
"%s: WARNING: cksum error for line %d of \"%s\": computed=%02x "
"found=%02x\n",
progname, lineno, infile, cksum, b);
/* return -1; */
}
if (rectype == 1) {
/* end of record */
return 0;
}
prevaddr = nextaddr + n;
}
return 0;
}
int fileio_rbin ( struct fioparms * fio,
char * filename, FILE * f, unsigned char * buf, int size )
{
int rc;
switch (fio->op) {
case FIO_READ:
rc = fread(buf, 1, size, f);
break;
case FIO_WRITE:
rc = fwrite(buf, 1, size, f);
break;
default:
fprintf(stderr, "%s: fileio: invalid operation=%d\n",
progname, fio->op);
return -1;
}
if (rc < size) {
fprintf(stderr,
"%s: %s error %s %s: %s; %s %d of the expected %d bytes\n",
progname, fio->iodesc, fio->dir, filename, strerror(errno),
fio->rw, rc, size);
return -1;
}
return rc;
}
int fileio_ihex ( struct fioparms * fio,
char * filename, FILE * f, unsigned char * buf, int size )
{
int rc;
switch (fio->op) {
case FIO_WRITE:
rc = b2ihex(buf, size, 32, 0, filename, f);
if (rc) {
return -1;
}
break;
case FIO_READ:
rc = ihex2b(filename, f, buf, size);
if (rc)
return -1;
break;
default:
fprintf(stderr, "%s: invalid Intex Hex file I/O operation=%d\n",
progname, fio->op);
return -1;
break;
}
return 0;
}
int fileio_srec ( struct fioparms * fio,
char * filename, FILE * f, unsigned char * buf, int size )
{
fprintf(stderr, "%s: Motorola S-Record %s format not yet supported\n",
progname, fio->iodesc);
return -1;
}
int fileio_setparms ( int op, struct fioparms * fp )
{
fp->op = op;
switch (op) {
case FIO_READ:
fp->mode = "r";
fp->iodesc = "input";
fp->dir = "from";
fp->rw = "read";
break;
case FIO_WRITE:
fp->mode = "w";
fp->iodesc = "output";
fp->dir = "to";
fp->rw = "wrote";
break;
default:
fprintf(stderr, "%s: invalid I/O operation %d\n",
progname, op);
return -1;
break;
}
return 0;
}
int fmt_autodetect ( char * fname )
{
FILE * f;
unsigned char buf[MAX_LINE_LEN];
int i;
int len;
int found;
f = fopen(fname, "r");
if (f == NULL) {
fprintf(stderr, "%s: error opening %s: %s\n",
progname, fname, strerror(errno));
return -1;
}
while (fgets((char *)buf, MAX_LINE_LEN, f)!=NULL) {
buf[MAX_LINE_LEN-1] = 0;
len = strlen((char *)buf);
if (buf[len-1] == '\n')
buf[--len] = 0;
/* check for binary data */
found = 0;
for (i=0; i<len; i++) {
if (buf[i] > 127) {
found = 1;
break;
}
}
if (found)
return FMT_RBIN;
/* check for lines that look like intel hex */
if ((buf[0] == ':') && (len >= 11)) {
found = 1;
for (i=1; i<len; i++) {
if (!isxdigit(buf[1])) {
found = 0;
break;
}
}
if (found)
return FMT_IHEX;
}
/* check for lines that look like motorola s-record */
if ((buf[0] == 'S') && (len >= 10) && isdigit(buf[1])) {
found = 1;
for (i=1; i<len; i++) {
if (!isxdigit(buf[1])) {
found = 0;
break;
}
}
if (found)
return FMT_SREC;
}
}
return -1;
}
int fileio ( int op, char * filename, FILEFMT format,
struct avrpart * p, AVRMEM memtype )
{
int rc;
FILE * f;
char * fname;
unsigned char * buf;
int size;
struct fioparms fio;
int i;
rc = fileio_setparms(op, &fio);
if (rc < 0)
return -1;
if (strcmp(filename, "-")==0) {
if (fio.op == FIO_READ) {
fname = "<stdin>";
f = stdin;
}
else {
fname = "<stdout>";
f = stdout;
}
}
else {
fname = filename;
f = fopen(fname, fio.mode);
if (f == NULL) {
fprintf(stderr, "%s: can't open %s file %s: %s\n",
progname, fio.iodesc, fname, strerror(errno));
return -1;
}
}
switch (memtype) {
case AVR_EEPROM:
buf = p->eeprom;
size = p->eeprom_size;
break;
case AVR_FLASH:
buf = p->flash;
size = p->flash_size;
break;
default:
fprintf(stderr, "%s: invalid memory type for %s: %d\n",
progname, fio.iodesc, memtype);
return -1;
}
if (fio.op == FIO_READ) {
/* 0xff fill unspecified memory */
for (i=0; i<size; i++) {
buf[i] = 0xff;
}
}
if (format == FMT_AUTO) {
format = fmt_autodetect(fname);
if (format < 0) {
fprintf(stderr,
"%s: can't determine file format for %s, specify explicitly\n",
progname, fname);
return -1;
}
fprintf(stderr, "%s: %s file %s auto detected as %s\n\n",
progname, fio.iodesc, fname, fmtstr(format));
}
switch (format) {
case FMT_IHEX:
rc = fileio_ihex(&fio, fname, f, buf, size);
break;
case FMT_SREC:
rc = fileio_srec(&fio, fname, f, buf, size);
break;
case FMT_RBIN:
rc = fileio_rbin(&fio, fname, f, buf, size);
break;
default:
fprintf(stderr, "%s: invalid %s file format: %d\n",
progname, fio.iodesc, format);
return -1;
}
return rc;
}
char * memtypestr ( AVRMEM memtype )
{
switch (memtype) {
case AVR_EEPROM : return "eeprom"; break;
case AVR_FLASH : return "flash"; break;
default : return "unknown-memtype"; break;
}
}
int nexttok ( char * buf, char ** tok, char ** next )
{
char * q, * n;
q = buf;
while (isspace(*q))
q++;
/* isolate first token */
n = q+1;
while (*n && !isspace(*n))
n++;
if (*n) {
*n = 0;
n++;
}
/* find start of next token */
while (isspace(*n))
n++;
*tok = q;
*next = n;
return 0;
}
int hexdump_line ( char * buffer, unsigned char * p, int n, int pad )
{
char * hexdata = "0123456789abcdef";
char * b;
int i, j;
b = buffer;
j = 0;
for (i=0; i<n; i++) {
if (i && ((i % 8) == 0))
b[j++] = ' ';
b[j++] = hexdata[(p[i] & 0xf0) >> 4];
b[j++] = hexdata[(p[i] & 0x0f)];
if (i < 15)
b[j++] = ' ';
}
for (i=j; i<pad; i++)
b[i] = ' ';
b[i] = 0;
for (i=0; i<pad; i++) {
if (!((b[i] == '0') || (b[i] == ' ')))
return 0;
}
return 1;
}
int chardump_line ( char * buffer, unsigned char * p, int n, int pad )
{
int i;
char b [ 128 ];
for (i=0; i<n; i++) {
memcpy ( b, p, n );
buffer[i] = '.';
if (isalpha(b[i]) || isdigit(b[i]) || ispunct(b[i]))
buffer[i] = b[i];
else if (isspace(b[i]))
buffer[i] = ' ';
}
for (i=n; i<pad; i++)
buffer[i] = ' ';
buffer[i] = 0;
return 0;
}
int hexdump_buf ( FILE * f, int startaddr, char * buf, int len )
{
int addr;
int i, n;
unsigned char * p;
char dst1[80];
char dst2[80];
addr = startaddr;
i = 0;
p = (unsigned char *)buf;
while (len) {
n = 16;
if (n > len)
n = len;
hexdump_line(dst1, p, n, 48);
chardump_line(dst2, p, n, 16);
fprintf(stdout, "%04x %s |%s|\n", addr, dst1, dst2);
len -= n;
addr += n;
p += n;
}
return 0;
}
int cmd_dump ( int fd, struct avrpart * p, int argc, char * argv[] )
{
char * e;
int i, j;
int len, maxsize;
AVRMEM memtype;
unsigned short addr, daddr;
char * buf;
if (argc != 4) {
fprintf(stderr, "Usage: dump flash|eeprom <addr> <len>\n");
return -1;
}
if (strcmp(argv[1],"flash")==0) {
memtype = AVR_FLASH;
maxsize = p->flash_size;
}
else if (strcmp(argv[1],"eeprom")==0) {
memtype = AVR_EEPROM;
maxsize = p->eeprom_size;
}
else {
fprintf(stderr, "%s (dump): invalid memory type \"%s\"\n",
progname, argv[1]);
return -1;
}
addr = strtoul(argv[2], &e, 0);
if (*e || (e == argv[2])) {
fprintf(stderr, "%s (dump): can't parse address \"%s\"\n",
progname, argv[2]);
return -1;
}
len = strtol(argv[3], &e, 0);
if (*e || (e == argv[3])) {
fprintf(stderr, "%s (dump): can't parse length \"%s\"\n",
progname, argv[3]);
return -1;
}
if (addr > maxsize) {
fprintf(stderr,
"%s (dump): address 0x%04x is out of range for %s memory\n",
progname, addr, memtypestr(memtype));
return -1;
}
if ((addr + len) > maxsize) {
fprintf(stderr,
"%s (dump): selected address and length exceed "
"range for %s memory\n",
progname, memtypestr(memtype));
return -1;
}
buf = malloc(len);
if (buf == NULL) {
fprintf(stderr, "%s (dump): out of memory\n", progname);
return -1;
}
j = 0;
daddr = addr;
if (memtype == AVR_FLASH) {
daddr = addr / 2;
if (addr & 0x01) {
buf[j++] = avr_read_byte( fd, p, AVR_FLASH_HI, daddr);
daddr++;
}
}
i = daddr;
while (j < len) {
if (memtype == AVR_FLASH) {
buf[j++] = avr_read_byte( fd, p, AVR_FLASH_LO, i);
if (j < len) {
buf[j++] = avr_read_byte( fd, p, AVR_FLASH_HI, i);
}
}
else {
buf[j++] = avr_read_byte( fd, p, AVR_EEPROM, i);
}
i++;
}
hexdump_buf(stdout, addr, buf, len);
fprintf(stdout, "\n");
free(buf);
return 0;
}
int cmd_write ( int fd, struct avrpart * p, int argc, char * argv[] )
{
char * e;
int i, j;
int len, maxsize;
AVRMEM memtype;
unsigned short addr, daddr;
char * buf;
int rc;
if (argc < 4) {
fprintf(stderr,
"Usage: write flash|eeprom <addr> <byte1> <byte2> ... byteN>\n");
return -1;
}
if (strcmp(argv[1],"flash")==0) {
memtype = AVR_FLASH;
maxsize = p->flash_size;
}
else if (strcmp(argv[1],"eeprom")==0) {
memtype = AVR_EEPROM;
maxsize = p->eeprom_size;
}
else {
fprintf(stderr, "%s (write): invalid memory type \"%s\"\n",
progname, argv[1]);
return -1;
}
addr = strtoul(argv[2], &e, 0);
if (*e || (e == argv[2])) {
fprintf(stderr, "%s (write): can't parse address \"%s\"\n",
progname, argv[2]);
return -1;
}
if (addr > maxsize) {
fprintf(stderr,
"%s (write): address 0x%04x is out of range for %s memory\n",
progname, addr, memtypestr(memtype));
return -1;
}
/* number of bytes to write at the specified address */
len = argc - 3;
if ((addr + len) > maxsize) {
fprintf(stderr,
"%s (write): selected address and # bytes exceed "
"range for %s memory\n",
progname, memtypestr(memtype));
return -1;
}
buf = malloc(len);
if (buf == NULL) {
fprintf(stderr, "%s (write): out of memory\n", progname);
return -1;
}
for (i=3; i<argc; i++) {
buf[i-3] = strtoul(argv[i], &e, 0);
if (*e || (e == argv[i])) {
fprintf(stderr, "%s (write): can't parse byte \"%s\"\n",
progname, argv[i]);
return -1;
}
}
j = 0;
daddr = addr;
if (memtype == AVR_FLASH) {
daddr = addr / 2;
if (addr & 0x01) {
/* handle odd numbered memory locations in the flash area */
rc = avr_write_byte(fd, p, AVR_FLASH_HI, daddr, buf[j++]);
if (rc) {
fprintf(stderr, "%s (write): error writing 0x%02x at 0x%04x\n",
progname, buf[j-1], daddr*2+1);
}
daddr++;
}
}
i = daddr;
while (j < len) {
if (memtype == AVR_FLASH) {
rc = avr_write_byte( fd, p, AVR_FLASH_LO, i, buf[j++]);
if (rc) {
fprintf(stderr, "%s (write): error writing 0x%02x at 0x%04x\n",
progname, buf[j-1], i*2);
}
if (j < len) {
rc = avr_write_byte( fd, p, AVR_FLASH_HI, i, buf[j++]);
if (rc) {
fprintf(stderr, "%s (write): error writing 0x%02x at 0x%04x\n",
progname, buf[j-1], i*2+1);
}
}
}
else {
rc = avr_write_byte( fd, p, AVR_EEPROM, i, buf[j++]);
if (rc) {
fprintf(stderr, "%s (write): error writing 0x%02x at 0x%04x\n",
progname, buf[j-1], i);
}
}
i++;
}
free(buf);
fprintf(stdout, "\n");
return 0;
}
int cmd_erase ( int fd, struct avrpart * p, int argc, char * argv[] )
{
fprintf(stderr, "%s: erasing chip\n", progname );
avr_chip_erase(fd,p);
return 0;
}
int cmd_part ( int fd, struct avrpart * p, int argc, char * argv[] )
{
fprintf(stdout, "\n");
display_part(stdout, p, "");
fprintf(stdout, "\n");
return 0;
}
int cmd_sig ( int fd, struct avrpart * p, int argc, char * argv[] )
{
unsigned char sig[4]; /* AVR signature bytes */
int i;
avr_signature(fd, sig);
fprintf(stdout, "\nDevice signature = 0x");
for (i=0; i<4; i++)
fprintf(stdout, "%02x", sig[i]);
fprintf(stdout, "\n\n");
return 0;
}
int cmd_quit ( int fd, struct avrpart * p, int argc, char * argv[] )
{
return 1;
}
int cmd_help ( int fd, struct avrpart * p, int argc, char * argv[] )
{
int i;
fprintf(stdout, "Valid commands:\n\n" );
for (i=0; i<NCMDS; i++) {
fprintf(stdout, " %-6s : ", cmd[i].name );
fprintf(stdout, cmd[i].desc, cmd[i].name);
fprintf(stdout, "\n");
}
fprintf(stdout, "\n");
return 0;
}
int tokenize ( char * s, char *** argv )
{
int i, n, l, nargs, offset;
int len, slen;
char * buf;
int bufsize;
char ** bufv;
char * q, * r;
char * nbuf;
char ** av;
slen = strlen(s);
/*
* initialize allow for 20 arguments, use realloc to grow this if
* necessary
*/
nargs = 20;
bufsize = slen + 20;
buf = malloc(bufsize);
bufv = (char **) malloc(nargs*sizeof(char *));
for (i=0; i<nargs; i++) {
bufv[i] = NULL;
}
buf[0] = 0;
n = 0;
l = 0;
nbuf = buf;
r = s;
while (*r) {
nexttok(r, &q, &r);
strcpy(nbuf, q);
bufv[n] = nbuf;
len = strlen(q);
l += len + 1;
nbuf += len + 1;
nbuf[0] = 0;
n++;
if ((n % 20) == 0) {
/* realloc space for another 20 args */
bufsize += 20;
nargs += 20;
buf = realloc(buf, bufsize);
bufv = realloc(bufv, nargs*sizeof(char *));
nbuf = &buf[l];
for (i=n; i<nargs; i++)
bufv[i] = NULL;
}
}
/*
* We have parsed all the args, n == argc, bufv contains an array of
* pointers to each arg, and buf points to one memory block that
* contains all the args, back to back, seperated by a nul
* terminator. Consilidate bufv and buf into one big memory block
* so that the code that calls us, will have an easy job of freeing
* this memory.
*/
av = (char **) malloc(slen + n + (n+1)*sizeof(char *));
q = (char *)&av[n+1];
memcpy(q, buf, l);
for (i=0; i<n; i++) {
offset = bufv[i] - buf;
av[i] = q + offset;
}
av[i] = NULL;
free(buf);
free(bufv);
*argv = av;
return n;
}
int do_cmd ( int fd, struct avrpart * p, int argc, char * argv[] )
{
int i;
for (i=0; i<NCMDS; i++) {
if (strcasecmp(argv[0], cmd[i].name) == 0) {
return cmd[i].func(fd, p, argc, argv);
}
}
fprintf(stderr, "%s: invalid command \"%s\"\n",
progname, argv[0]);
return -1;
}
int go_interactive ( int fd, struct avrpart * p )
{
char * cmdbuf;
int i, len;
char * q;
int rc;
int argc;
char ** argv;
rc = 0;
while ((cmdbuf = readline("avrprog> ")) != NULL) {
len = strlen(cmdbuf);
/*
* find the start of the command, skipping any white space
*/
q = cmdbuf;
while (*q && isspace(*q))
q++;
/* skip blank lines and comments */
if (!*q || (*q == '#'))
continue;
/* tokenize command line */
argc = tokenize(q, &argv);
fprintf(stdout, ">>> ");
for (i=0; i<argc; i++)
fprintf(stdout, "%s ", argv[i]);
fprintf(stdout, "\n");
/* run the command */
rc = do_cmd(fd, p, argc, argv);
free(argv);
if (rc > 0) {
rc = 0;
break;
}
free(cmdbuf);
}
return rc;
}
int avr_initmem ( struct avrpart * p )
{
p->flash = (unsigned char *) malloc(p->flash_size);
if (p->flash == NULL) {
fprintf(stderr, "%s: can't alloc buffer for flash size of %d bytes\n",
progname, p->flash_size);
exit(1);
}
p->eeprom = (unsigned char *) malloc(p->eeprom_size);
if (p->eeprom == NULL) {
fprintf(stderr, "%s: can't alloc buffer for eeprom size of %d bytes\n",
progname, p->eeprom_size);
exit(1);
}
return 0;
}
int verify_data(struct avrpart * p, struct avrpart * v, AVRMEM memtype)
{
int i;
unsigned char * buf1, * buf2;
int size;
switch (memtype) {
case AVR_FLASH:
buf1 = p->flash;
buf2 = v->flash;
size = p->flash_size;
break;
case AVR_EEPROM:
buf1 = p->eeprom;
buf2 = v->eeprom;
size = p->eeprom_size;
break;
default:
fprintf(stderr, "%s: invalid memory type = %d for data verification\n",
progname, memtype);
return -1;
}
for (i=0; i<size; i++) {
if (buf1[i] != buf2[i]) {
fprintf(stderr,
"%s: verification error, first mismatch at byte %d\n"
"%s0x%02x != 0x%02x\n",
progname, i,
progbuf, buf1[i], buf2[i]);
return -1;
}
}
return 0;
}
void display_part ( FILE * f, struct avrpart * p, char * prefix )
{
fprintf(f,
"%sAVR Part = %s\n"
"%sFlash memory size = %d bytes\n"
"%sEEPROM memory size = %d bytes\n"
"%sMin/Max program delay = %d/%d us\n"
"%sChip Erase delay = %d us\n"
"%sFlash Polled Readback = 0x%02x\n"
"%sEEPROM Polled Readback = 0x%02x, 0x%02x\n",
prefix, p->partdesc,
prefix, p->flash_size,
prefix, p->eeprom_size,
prefix, p->min_write_delay, p->max_write_delay,
prefix, p->chip_erase_delay,
prefix, p->f_readback,
prefix, p->e_readback[0], p->e_readback[1]);
}
/*
* main routine
*/
int main ( int argc, char * argv [] )
{
int fd; /* file descriptor for parallel port */
int rc; /* general return code checking */
int exitrc; /* exit code for main() */
int i; /* general loop counter */
int ch; /* options flag */
int size; /* size of memory region */
int len; /* length for various strings */
char * p1; /* used to parse CVS Id */
char * p2; /* used to parse CVS Ed */
unsigned char sig[4]; /* AVR signature bytes */
unsigned char nulldev[4]; /* 0xff signature bytes for comparison */
struct avrpart * p, ap1; /* which avr part we are programming */
struct avrpart * v, ap2; /* used for verify */
int readorwrite; /* true if a chip read/write op was selected */
/* options / operating mode variables */
int memtype; /* AVR_FLASH or AVR_EEPROM */
int doread; /* 0=reading, 1=writing */
int erase; /* 1=erase chip, 0=don't */
char * outputf; /* output file name */
char * inputf; /* input file name */
int ovsigck; /* 1=override sig check, 0=don't */
char * parallel; /* parallel port device */
int terminal; /* 1=enter terminal mode, 0=don't */
FILEFMT filefmt; /* FMT_AUTO, FMT_IHEX, FMT_SREC, FMT_RBIN */
int nowrite; /* don't actually write anything to the chip */
int verify; /* perform a verify operation */
readorwrite = 0;
parallel = DEFAULT_PARALLEL;
outputf = NULL;
inputf = NULL;
doread = 1;
memtype = AVR_FLASH;
erase = 0;
p = NULL;
ovsigck = 0;
terminal = 0;
filefmt = FMT_AUTO;
nowrite = 0;
verify = 1; /* on by default; XXX can't turn it off */
progname = rindex(argv[0],'/');
if (progname)
progname++;
else
progname = argv[0];
len = strlen(progname) + 2;
for (i=0; i<len; i++)
progbuf[i] = ' ';
progbuf[i] = 0;
/*
* Print out an identifying string so folks can tell what version
* they are running
*/
p1 = strchr(version,',');
if (p1 == NULL)
p1 = version;
else
p1 += 3;
p2 = strrchr(p1,':');
if (p2 == NULL)
p2 = &p1[strlen(p1)];
else
p2 += 3;
fprintf(stderr, "\n");
fprintf(stderr, "%s: Copyright 2000 Brian Dean, bsd@bsdhome.com\n"
"%sRevision ", progname, progbuf);
for (i=0; i<p2-p1; i++)
fprintf(stderr, "%c", p1[i]);
fprintf(stderr, "\n\n");
/*
* check for no arguments
*/
if (argc == 1) {
usage();
return 0;
}
/*
* process command line arguments
*/
while ((ch = getopt(argc,argv,"?ef:Fi:m:no:p:P:tv")) != -1) {
switch (ch) {
case 'm': /* select memory type to operate on */
if ((strcasecmp(optarg,"e")==0)||(strcasecmp(optarg,"eeprom")==0)) {
memtype = AVR_EEPROM;
}
else if ((strcasecmp(optarg,"f")==0)||
(strcasecmp(optarg,"flash")==0)) {
memtype = AVR_FLASH;
}
else {
fprintf(stderr, "%s: invalid memory type \"%s\"\n\n",
progname, optarg);
usage();
exit(1);
}
readorwrite = 1;
break;
case 'F': /* override invalid signature check */
ovsigck = 1;
break;
case 'n':
nowrite = 1;
break;
case 'o': /* specify output file */
if (inputf || terminal) {
fprintf(stderr,"%s: -i, -o, and -t are incompatible\n\n", progname);
return 1;
}
doread = 1;
outputf = optarg;
if (filefmt == FMT_AUTO)
filefmt = FMT_RBIN;
break;
case 'p' : /* specify AVR part */
p = NULL;
for (i=0; i<N_AVRPARTS; i++) {
if (strcmp(parts[i].optiontag, optarg)==0) {
p = &parts[i];
break;
}
}
if (p == NULL) {
fprintf(stderr,
"%s: AVR Part \"%s\" not found. Valid parts are:\n\n",
progname, optarg );
list_valid_parts(stderr," ");
fprintf(stderr, "\n");
return 1;
}
break;
case 'e': /* perform a chip erase */
erase = 1;
break;
case 'i': /* specify input file */
if (outputf || terminal) {
fprintf(stderr,"%s: -o, -i, and -t are incompatible\n\n", progname);
return 1;
}
doread = 0;
inputf = optarg;
break;
case 'f': /* specify file format */
if (strlen(optarg) != 1) {
fprintf(stderr, "%s: invalid file format \"%s\"\n",
progname, optarg);
usage();
exit(1);
}
switch (optarg[0]) {
case 'a' : filefmt = FMT_AUTO; break;
case 'i' : filefmt = FMT_IHEX; break;
case 'r' : filefmt = FMT_RBIN; break;
case 's' :
fprintf(stderr,
"%s: Motorola S-Record format not yet supported\n\n",
progname);
exit(1);
break;
default :
fprintf(stderr, "%s: invalid file format \"%s\"\n\n",
progname, optarg);
usage();
exit(1);
}
break;
case 't': /* enter terminal mode */
if (!((inputf == NULL)||(outputf == NULL))) {
fprintf(stderr,
"%s: terminal mode is not compatible with -i or -o\n\n",
progname);
usage();
exit(1);
}
terminal = 1;
break;
case 'P':
parallel = optarg;
break;
case 'v':
verify = 1;
break;
case '?': /* help */
usage();
exit(0);
break;
default:
fprintf(stderr, "%s: invalid option -%c\n\n", progname, ch);
usage();
exit(1);
break;
}
}
if (p == NULL) {
fprintf(stderr,
"%s: No AVR part has been specified, use \"-p Part\"\n\n"
" Valid Parts are:\n\n",
progname );
list_valid_parts(stderr, " ");
fprintf(stderr,"\n");
return 1;
}
/*
* set up seperate instances of the avr part, one for use in
* programming, one for use in verifying. These are separate
* because they need separate flash and eeprom buffer space
*/
ap1 = *p;
v = p;
p = &ap1;
ap2 = *v;
v = &ap2;
avr_initmem(p);
avr_initmem(v);
display_part(stderr, p, progbuf);
fprintf(stderr, "\n");
/*
* open the parallel port
*/
fd = open ( parallel, O_RDWR );
if (fd < 0) {
fprintf ( stderr, "%s: can't open device \"%s\": %s\n\n",
progname, parallel, strerror(errno) );
return 1;
}
exitrc = 0;
/*
* initialize the chip in preperation for accepting commands
*/
rc = avr_initialize(fd,p);
if (rc < 0) {
fprintf ( stderr, "%s: initialization failed, rc=%d\n", progname, rc );
exitrc = 1;
goto main_exit;
}
fprintf ( stderr,
"%s: AVR device initialized and ready to accept instructions\n",
progname );
/*
* Let's read the signature bytes to make sure there is at least a
* chip on the other end that is responding correctly. A check
* against 0xffffffff should ensure that the signature bytes are
* valid.
*/
avr_signature(fd, sig);
fprintf(stderr, "%s: Device signature = 0x", progname);
for (i=0; i<4; i++)
fprintf(stderr, "%02x", sig[i]);
fprintf(stderr, "\n");
memset(nulldev,0xff,4);
if (memcmp(sig,nulldev,4)==0) {
fprintf(stderr,
"%s: Yikes! Invalid device signature.\n", progname);
if (!ovsigck) {
fprintf(stderr,
"%sDouble check connections and try again, or use -F to override\n"
"%sthis check.\n\n",
progbuf, progbuf );
exit(1);
}
}
fprintf(stderr, "\n");
if (erase) {
/*
* erase the chip's flash and eeprom memories, this is required
* before the chip can accept new programming
*/
fprintf(stderr, "%s: erasing chip\n", progname );
avr_chip_erase(fd,p);
fprintf(stderr, "%s: done.\n", progname );
}
if (!terminal && ((inputf==NULL) && (outputf==NULL))) {
/*
* Check here to see if any other operations were selected and
* generate an error message because if they were, we need either
* an input or and output file, but one was not selected.
* Otherwise, we just shut down.
*/
if (readorwrite) {
fprintf(stderr, "%s: you must specify an input or an output file\n",
progname);
exitrc = 1;
}
goto main_exit;
}
if (terminal) {
/*
* terminal mode
*/
exitrc = go_interactive(fd, p);
}
else if (doread) {
/*
* read out the specified device memory and write it to a file
*/
fprintf(stderr, "%s: reading %s memory:\n",
progname, memtypestr(memtype));
rc = avr_read ( fd, p, memtype );
if (rc) {
fprintf(stderr, "%s: failed to read all of %s memory, rc=%d\n",
progname, memtypestr(memtype), rc);
exitrc = 1;
goto main_exit;
}
fprintf(stderr, "%s: writing output file \"%s\"\n",
progname, outputf);
rc = fileio(FIO_WRITE, outputf, filefmt, p, memtype);
if (rc < 0) {
fprintf(stderr, "%s: terminating\n", progname);
exitrc = 1;
goto main_exit;
}
}
else {
/*
* write the selected device memory using data from a file; first
* read the data from the specified file
*/
fprintf(stderr, "%s: reading input file \"%s\"\n",
progname, inputf);
rc = fileio(FIO_READ, inputf, filefmt, p, memtype );
if (rc < 0) {
fprintf(stderr, "%s: terminating\n", progname);
exitrc = 1;
goto main_exit;
}
size = rc;
/*
* write the buffer contents to the selected memory type
*/
fprintf(stderr, "%s: writing %s:\n",
progname, memtypestr(memtype));
if (!nowrite) {
rc = avr_write ( fd, p, memtype );
}
else {
/*
* test mode, don't actually write to the chip, output the buffer
* to stdout in intel hex instead
*/
rc = fileio(FIO_WRITE, "-", FMT_IHEX, p, memtype);
}
if (rc) {
fprintf ( stderr, "%s: failed to write flash memory, rc=%d\n",
progname, rc );
exitrc = 1;
goto main_exit;
}
}
if (!doread && verify) {
/*
* verify that the in memory file (p->flash or p->eeprom) is the
* same as what is on the chip
*/
fprintf(stderr, "%s: verifying %s memory against %s:\n",
progname, memtypestr(memtype), inputf);
fprintf(stderr, "%s: reading on-chip %s data:\n",
progname, memtypestr(memtype));
rc = avr_read ( fd, v, memtype );
if (rc) {
fprintf(stderr, "%s: failed to read all of %s memory, rc=%d\n",
progname, memtypestr(memtype), rc);
exitrc = 1;
goto main_exit;
}
fprintf(stderr, "%s: verifying\n", progname);
rc = verify_data(p, v, memtype);
if (rc) {
fprintf(stderr, "%s: verification error; content mismatch\n",
progname);
exitrc = 1;
goto main_exit;
}
fprintf(stderr, "%s: data verified\n", progname);
}
main_exit:
/*
* program complete
*/
avr_powerdown(fd);
ppi_clr(fd, PPIDATA, 0xff);
ppi_clr(fd, PPIDATA, AVR_RESET);
close(fd);
fprintf(stderr, "\n%s done. Thank you.\n\n", progname);
return exitrc;
}