avrdude/src/developer_opts.c

1235 lines
35 KiB
C
Raw Normal View History

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2022, Stefan Rueger <smr@theblueorange.space>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* $Id$ */
/*
* Code to program an Atmel AVR device through one of the supported
* programmers.
*
* For parallel port connected programmers, the pin definitions can be
* changed via a config file. See the config file for instructions on
* how to add a programmer definition.
*
*/
#include "ac_cfg.h"
#include <stdio.h>
#include <stdlib.h>
#include <whereami.h>
#include <stdarg.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/time.h>
#include "avrdude.h"
#include "libavrdude.h"
#include "developer_opts.h"
#include "developer_opts_private.h"
char cmdbitchar(CMDBIT cb) {
switch(cb.type) {
case AVR_CMDBIT_IGNORE:
return 'x';
case AVR_CMDBIT_VALUE:
return cb.value? '1': '0';
case AVR_CMDBIT_ADDRESS:
return 'a';
case AVR_CMDBIT_INPUT:
return 'i';
case AVR_CMDBIT_OUTPUT:
return 'o';
default:
return '?';
}
}
char *cmdbitstr(CMDBIT cb) {
char space[32];
*space = cmdbitchar(cb);
if(*space == 'a')
sprintf(space+1, "%d", cb.bitno);
else
space[1] = 0;
return strdup(space);
}
const char *opcodename(int opnum) {
switch(opnum) {
case AVR_OP_READ:
return "read";
case AVR_OP_WRITE:
return "write";
case AVR_OP_READ_LO:
return "read_lo";
case AVR_OP_READ_HI:
return "read_hi";
case AVR_OP_WRITE_LO:
return "write_lo";
case AVR_OP_WRITE_HI:
return "write_hi";
case AVR_OP_LOADPAGE_LO:
return "loadpage_lo";
case AVR_OP_LOADPAGE_HI:
return "loadpage_hi";
case AVR_OP_LOAD_EXT_ADDR:
return "load_ext_addr";
case AVR_OP_WRITEPAGE:
return "writepage";
case AVR_OP_CHIP_ERASE:
return "chip_erase";
case AVR_OP_PGM_ENABLE:
return "pgm_enable";
default:
return "???";
}
}
// Unique string representation of an opcode
char *opcode2str(OPCODE *op, int opnum, int detailed) {
char cb, space[1024], *sp = space;
int compact = 1;
if(!op)
return strdup("NULL");
// Can the opcode be printed in a compact way? Only if address bits are systematic.
for(int i=31; i >= 0; i--)
if(op->bit[i].type == AVR_CMDBIT_ADDRESS)
if(i<8 || i>23 || op->bit[i].bitno != (opnum == AVR_OP_LOAD_EXT_ADDR? i+8: i-8))
compact = 0;
if(detailed)
*sp++ = '"';
for(int i=31; i >= 0; i--) {
*sp++ = cb = cmdbitchar(op->bit[i]);
if(compact) {
if(i && i%8 == 0)
*sp++ = '-', *sp++ = '-';
else if(i && i%4 == 0)
*sp++ = '.';
} else {
if(cb == 'a') {
sprintf(sp, "%d", op->bit[i].bitno);
sp += strlen(sp);
}
if(i) {
if(detailed)
*sp++ = ' ';
if(i%8 == 0)
*sp++ = ' ';
}
}
}
if(detailed)
*sp++ = '"';
*sp = 0;
return strdup(space);
}
// return 0 if op code would encode (essentially) the same SPI command
int opcodecmp(OPCODE *op1, OPCODE *op2, int opnum) {
char *opstr1, *opstr2, *p;
int cmp;
if(!op1 && !op2)
return 0;
if(!op1 || !op2)
return op1? -1: 1;
opstr1 = opcode2str(op1, opnum, 1);
opstr2 = opcode2str(op2, opnum, 1);
if(!opstr1 || !opstr2) {
dev_info("%s: out of memory\n", progname);
exit(1);
}
// don't care x and 0 are functionally equivalent
for(p=opstr1; *p; p++)
if(*p == 'x')
*p = '0';
for(p=opstr2; *p; p++)
if(*p == 'x')
*p = '0';
cmp = strcmp(opstr1, opstr2);
free(opstr1);
free(opstr2);
return cmp;
}
static void printopcode(AVRPART *p, const char *d, OPCODE *op, int opnum) {
unsigned char cmd[4];
int i;
if(op) {
memset(cmd, 0, sizeof cmd);
avr_set_bits(op, cmd);
dev_info(".op\t%s\t%s\t%s\t0x%02x%02x%02x%02x\t", p->desc, d, opcodename(opnum), cmd[0], cmd[1], cmd[2], cmd[3]);
for(i=31; i >= 0; i--) {
dev_info("%c", cmdbitchar(op->bit[i]));
if(i%8 == 0)
dev_info("%c", i? '\t': '\n');
}
}
}
static void printallopcodes(AVRPART *p, const char *d, OPCODE **opa) {
for(int i=0; i<AVR_OP_MAX; i++)
printopcode(p, d, opa[i], i);
}
// returns position 0..31 of highest bit set or INT_MIN if no bit is set
int intlog2(unsigned int n) {
int ret;
if(!n)
return INT_MIN;
for(ret = 0; n >>= 1; ret++)
continue;
return ret;
}
// mnemonic characterisation of flags
static char *parttype(AVRPART *p) {
static char type[1024];
switch(p->flags & (AVRPART_HAS_PDI | AVRPART_AVR32 | AVRPART_HAS_TPI | AVRPART_HAS_UPDI)) {
case 0: strcpy(type, "ISP"); break;
case AVRPART_HAS_PDI: strcpy(type, "PDI"); break;
case AVRPART_AVR32: strcpy(type, "AVR32"); break;
case AVRPART_HAS_TPI: strcpy(type, "TPI"); break;
case AVRPART_HAS_UPDI: strcpy(type, "UPDI"); break;
default: strcpy(type, "UNKNOWN"); break;
}
if((p->flags & AVRPART_SERIALOK) == 0)
strcat(type, "|NOTSERIAL");
if((p->flags & AVRPART_PARALLELOK) == 0)
strcat(type, "|NOTPARALLEL");
if(p->flags & AVRPART_PSEUDOPARALLEL)
strcat(type, "|PSEUDOPARALLEL");
if(p->flags & AVRPART_IS_AT90S1200)
strcat(type, "|IS_AT90S1200");
if(p->flags & AVRPART_HAS_DW)
strcat(type, "|DW");
if(p->flags & AVRPART_HAS_JTAG)
strcat(type, "|JTAG");
if(p->flags & AVRPART_ALLOWFULLPAGEBITSTREAM)
strcat(type, "|PAGEBITSTREAM");
if((p->flags & AVRPART_ENABLEPAGEPROGRAMMING) == 0)
strcat(type, "|NOPAGEPROGRAMMING");
return type;
}
// check whether address bits are where they should be in ISP commands
static void checkaddr(int memsize, int pagesize, int opnum, OPCODE *op, AVRPART *p, AVRMEM *m) {
int i, lo, hi;
const char *opstr = opcodename(opnum);
lo = intlog2(pagesize);
hi = intlog2(memsize-1);
// address bits should be between positions lo and hi (and fall in line), outside should be 0 or don't care
for(i=0; i<16; i++) { // ISP programming only deals with 16-bit addresses (words for flash, bytes for eeprom)
if(i < lo || i > hi) {
if(op->bit[i+8].type != AVR_CMDBIT_IGNORE && !(op->bit[i+8].type == AVR_CMDBIT_VALUE && op->bit[i+8].value == 0)) {
char *cbs = cmdbitstr(op->bit[i+8]);
dev_info(".cmderr\t%s\t%s-%s\tbit %d outside addressable space should be x or 0 but is %s\n", p->desc, m->desc, opstr, i+8, cbs? cbs: "NULL");
if(cbs)
free(cbs);
}
} else {
if(op->bit[i+8].type != AVR_CMDBIT_ADDRESS)
dev_info(".cmderr\t%s\t%s-%s\tbit %d is %c but should be a\n", p->desc, m->desc, opstr, i+8, cmdbitchar(op->bit[i+8]));
else if(op->bit[i+8].bitno != i)
dev_info(".cmderr\t%s\t%s-%s\tbit %d inconsistent: a%d specified as a%d\n", p->desc, m->desc, opstr, i+8, i, op->bit[i+8].bitno);
}
}
for(i=0; i<32; i++) // command bits 8..23 should not contain address bits
if((i<8 || i>23) && op->bit[i].type == AVR_CMDBIT_ADDRESS)
dev_info(".cmderr\t%s\t%s-%s\tbit %d contains a%d which it shouldn't\n", p->desc, m->desc, opstr, i, op->bit[i].bitno);
}
Provide avr_set_addr_mem() to set addresses in SPI opcodes within boundaries The function avr_set_addr_mem(AVRMEM *mem, int opnum, unsigned char *cmd, unsigned long addr) is meant to replace avr_set_addr(OPCODE *op, unsigned char *cmd, unsigned long addr) in future. avr_set_addr_mem() has more information about the context of the task in that it knows the memory size, memory page size, whether or not the memory is a flash memory (which gets words addressees supplied) and, crucially, knows which SPI operation it is meant to compute the address bits for. avr_set_addr_mem() first computes the interval of bit numbers that must be supplied for the SPI command to stand a chance to work. The function only sets those address bits that are needed. Once all avr_set_addr() function calls have been replaced by avr_set_addr_mem(), the SPI commands that need an address can afford to declare in avrdude.conf all 16 address bits in the middle two bytes of the SPI command. This over-declaration will be corrected during runtime by avr_set_addr_mem(). One consequence of this is that parts can inherit smaller or larger memories from parents without the need to use different SPI codes in avrdude.conf. Another consequence is that avr_set_addr_mem() can, and does, tell the caller whether vital address bits were not declared in the SPI opcode. During parsing of avrdude.conf this might be utilised to generate a corresponding warning. This will uncover problematic SPI codes in avrdude.conf that in the past went undetected.
2022-07-21 20:42:07 +00:00
/*
* avr_set_addr_mem()
*
* Set address bits in the specified command based on the memory, opcode and
* address; addr must be a word address for flash or, for all other memories,
* a byte address; returns 0 on success and -1 on error (no memory or no
* opcode) or, if positive, bn+1 where bn is bit number of the highest
* necessary bit that the opcode does not provide.
*/
int avr_set_addr_mem(AVRMEM *mem, int opnum, unsigned char *cmd, unsigned long addr) {
int ret, isflash, lo, hi, memsize, pagesize;
OPCODE *op;
if(!mem)
return -1;
if(!(op = mem->op[opnum]))
return -1;
isflash = !strcmp(mem->desc, "flash"); // ISP parts have only one flash-like memory
memsize = mem->size >> isflash; // word addresses for flash
pagesize = mem->page_size >> isflash;
// compute range lo..hi of needed address bits
switch(opnum) {
case AVR_OP_READ:
case AVR_OP_WRITE:
case AVR_OP_READ_LO:
case AVR_OP_READ_HI:
case AVR_OP_WRITE_LO:
case AVR_OP_WRITE_HI:
lo = 0;
hi = intlog2(memsize-1); // memsize = 1 implies no addr bit is needed
break;
case AVR_OP_LOADPAGE_LO:
case AVR_OP_LOADPAGE_HI:
lo = 0;
hi = intlog2(pagesize-1);
break;
case AVR_OP_LOAD_EXT_ADDR:
lo = 16;
hi = intlog2(memsize-1);
break;
case AVR_OP_WRITEPAGE:
lo = intlog2(pagesize);
hi = intlog2(memsize-1);
break;
case AVR_OP_CHIP_ERASE:
case AVR_OP_PGM_ENABLE:
default:
lo = 0;
hi = -1;
break;
}
// Unless it's load extended address, ISP chips only deal with 16 bit addresses
if(opnum != AVR_OP_LOAD_EXT_ADDR && hi > 15)
hi = 15;
unsigned char avail[32];
memset(avail, 0, sizeof avail);
for(int i=0; i<32; i++) {
if(op->bit[i].type == AVR_CMDBIT_ADDRESS) {
int bitno, j, bit;
unsigned char mask;
bitno = op->bit[i].bitno & 31;
j = 3 - i / 8;
bit = i % 8;
mask = 1 << bit;
avail[bitno] = 1;
// 'a' bit with number outside bit range [lo, hi] is set to 0
if (bitno >= lo && bitno <= hi? (addr >> bitno) & 1: 0)
cmd[j] = cmd[j] | mask;
else
cmd[j] = cmd[j] & ~mask;
}
}
ret = 0;
if(lo >= 0 && hi < 32 && lo <= hi)
for(int bn=lo; bn <= hi; bn++)
if(!avail[bn]) // necessary bit bn misses in opcode
ret = bn+1;
return ret;
}
static char *dev_sprintf(const char *fmt, ...) {
int size = 0;
char *p = NULL;
va_list ap;
// compute size
va_start(ap, fmt);
size = vsnprintf(p, size, fmt, ap);
va_end(ap);
if(size < 0)
return NULL;
size++; // for temrinating '\0'
if(!(p = malloc(size)))
return NULL;
va_start(ap, fmt);
size = vsnprintf(p, size, fmt, ap);
va_end(ap);
if(size < 0) {
free(p);
return NULL;
}
return p;
}
static int dev_nprinted;
int dev_message(int msglvl, const char *fmt, ...) {
va_list ap;
int rc = 0;
if(verbose >= msglvl) {
va_start(ap, fmt);
rc = vfprintf(stderr, fmt, ap);
va_end(ap);
if(rc > 0)
dev_nprinted += rc;
}
return rc;
}
static int dev_part_strct_entry(bool tsv, char *col0, char *col1, char *col2, const char *name, char *cont) {
const char *n = name? name: "name_error";
const char *c = cont? cont: "cont_error";
if(tsv) { // tab separated values
if(col0) {
dev_info("%s\t", col0);
if(col1) {
dev_info("%s\t", col1);
if(col2) {
dev_info("%s\t", col2);
}
}
}
dev_info("%s\t%s\n", n, c);
} else { // grammar conform
int indent = col2 && strcmp(col2, "part");
printf("%*s%-*s = %s;\n", indent? 8: 4, "", indent? 15: 19, n, c);
}
if(cont)
free(cont);
return 1;
}
static const char *dev_controlstack_name(AVRPART *p) {
return
p->ctl_stack_type == CTL_STACK_PP? "pp_controlstack":
p->ctl_stack_type == CTL_STACK_HVSP? "hvsp_controlstack":
p->ctl_stack_type == CTL_STACK_NONE? "NULL":
"unknown_controlstack";
}
static void dev_stack_out(bool tsv, AVRPART *p, const char *name, unsigned char *stack, int ns) {
if(!strcmp(name, "NULL")) {
name = "pp_controlstack";
ns = 0;
}
if(tsv)
dev_info(".pt\t%s\t%s\t", p->desc, name);
else
dev_info(" %-19s =%s", name, ns <=8? " ": "");
if(ns <= 0)
dev_info(tsv? "NULL\n": "NULL;\n");
else
for(int i=0; i<ns; i++)
dev_info("%s0x%02x%s", !tsv && ns > 8 && i%8 == 0? "\n ": "", stack[i], i+1<ns? ", ": tsv? "\n": ";\n");
}
// order in which memories are processed, runtime adds unknown ones (but there shouldn't be any)
static const char *mem_order[100] = {
"eeprom", "flash", "application", "apptable",
"boot", "lfuse", "hfuse", "efuse",
"fuse", "fuse0", "wdtcfg", "fuse1",
"bodcfg", "fuse2", "osccfg", "fuse3",
"fuse4", "tcd0cfg", "fuse5", "syscfg0",
"fuse6", "syscfg1", "fuse7", "append",
"codesize", "fuse8", "fuse9", "bootend",
"bootsize", "fuses", "lock", "lockbits",
"tempsense", "signature", "prodsig", "sernum",
"calibration", "osccal16", "osccal20", "osc16err",
"osc20err", "usersig", "userrow", "data",
};
static void add_mem_order(const char *str) {
for(size_t i=0; i < sizeof mem_order/sizeof *mem_order; i++) {
if(mem_order[i] && !strcmp(mem_order[i], str))
return;
if(!mem_order[i]) {
mem_order[i] = strdup(str);
return;
}
}
dev_info("%s: mem_order[] under-dimensioned in developer_opts.c; increase and recompile\n", progname);
exit(1);
}
static int intcmp(int a, int b) {
return a-b;
}
// deep copies for comparison and raw output
typedef struct {
AVRMEM base;
OPCODE ops[AVR_OP_MAX];
} AVRMEMdeep;
static int avrmem_deep_copy(AVRMEMdeep *d, AVRMEM *m) {
size_t len;
d->base = *m;
// zap all bytes beyond terminating nul of desc array
len = strlen(m->desc)+1;
if(len < sizeof m->desc)
memset(d->base.desc + len, 0, sizeof m->desc - len);
// zap address values
d->base.buf = NULL;
d->base.tags = NULL;
for(int i=0; i<AVR_OP_MAX; i++)
d->base.op[i] = NULL;
// copy over the SPI operations themselves
memset(d->base.op, 0, sizeof d->base.op);
memset(d->ops, 0, sizeof d->ops);
for(size_t i=0; i<sizeof d->ops/sizeof *d->ops; i++)
if(m->op[i])
d->ops[i] = *m->op[i];
return 0;
}
static int memorycmp(AVRMEM *m1, AVRMEM *m2) {
AVRMEMdeep dm1, dm2;
if(!m1 && !m2)
return 0;
if(!m1 || !m2)
return m1? -1: 1;
avrmem_deep_copy(&dm1, m1);
avrmem_deep_copy(&dm2, m2);
return memcmp(&dm1, &dm2, sizeof dm1);
}
typedef struct {
AVRPART base;
OPCODE ops[AVR_OP_MAX];
AVRMEMdeep mems[40];
} AVRPARTdeep;
static int avrpart_deep_copy(AVRPARTdeep *d, AVRPART *p) {
AVRMEM *m;
size_t len, di;
memset(d, 0, sizeof *d);
d->base = *p;
d->base.config_file = NULL;
d->base.lineno = 0;
// zap all bytes beyond terminating nul of desc, id and family_id array
len = strlen(p->desc);
if(len < sizeof p->desc)
memset(d->base.desc + len, 0, sizeof p->desc - len);
len = strlen(p->family_id);
if(len < sizeof p->family_id)
memset(d->base.family_id + len, 0, sizeof p->family_id - len);
len = strlen(p->id);
if(len < sizeof p->id)
memset(d->base.id + len, 0, sizeof p->id - len);
// zap address values
d->base.mem = NULL;
d->base.mem_alias = NULL;
for(int i=0; i<AVR_OP_MAX; i++)
d->base.op[i] = NULL;
// copy over the SPI operations
memset(d->base.op, 0, sizeof d->base.op);
memset(d->ops, 0, sizeof d->ops);
for(int i=0; i<AVR_OP_MAX; i++)
if(p->op[i])
d->ops[i] = *p->op[i];
// fill in all memories we got in defined order
di = 0;
for(size_t mi=0; mi < sizeof mem_order/sizeof *mem_order && mem_order[mi]; mi++) {
m = p->mem? avr_locate_mem(p, mem_order[mi]): NULL;
if(m) {
if(di >= sizeof d->mems/sizeof *d->mems) {
avrdude_message(MSG_INFO, "%s: ran out of mems[] space, increase size in AVRMEMdeep of developer_opts.c and recompile\n", progname);
exit(1);
}
avrmem_deep_copy(d->mems+di, m);
di++;
}
}
return di;
}
static char txtchar(unsigned char in) {
in &= 0x7f;
return in == ' '? '_': in > ' ' && in < 0x7f? in: '.';
}
static void dev_raw_dump(unsigned char *p, int nbytes, const char *name, const char *sub, int idx) {
unsigned char *end = p+nbytes;
int n = ((end - p) + 15)/16;
for(int i=0; i<n; i++, p += 16) {
dev_info("%s\t%s\t%02x%04x: ", name, sub, idx, i*16);
for(int j=0; j<16; j++)
dev_info("%02x", p+i*16+j<end? p[i*16+j]: 0);
dev_info(" ");
for(int j=0; j<16; j++)
dev_info("%c", txtchar(p+i*16+j<end? p[i*16+j]: 0));
dev_info("\n");
}
}
static void dev_part_raw(AVRPART *part) {
AVRPARTdeep dp;
int di = avrpart_deep_copy(&dp, part);
dev_raw_dump((unsigned char *) &dp.base, sizeof dp.base, part->desc, "part", 0);
dev_raw_dump((unsigned char *) &dp.ops, sizeof dp.ops, part->desc, "ops", 1);
for(int i=0; i<di; i++)
dev_raw_dump((unsigned char *) (dp.mems+i), sizeof dp.mems[i], part->desc, dp.mems[i].base.desc, i+2);
}
static void dev_part_strct(AVRPART *p, bool tsv, AVRPART *base) {
dev_info("# %s %d\n", p->config_file, p->lineno);
if(!tsv)
dev_info("part\n");
_if_partout(strcmp, "\"%s\"", desc);
_if_partout(strcmp, "\"%s\"", id);
_if_partout(strcmp, "\"%s\"", family_id);
_if_partout(intcmp, "%d", hvupdi_variant);
_if_partout(intcmp, "0x%02x", stk500_devcode);
_if_partout(intcmp, "0x%02x", avr910_devcode);
_if_partout(intcmp, "%d", chip_erase_delay);
_if_partout(intcmp, "0x%02x", pagel);
_if_partout(intcmp, "0x%02x", bs2);
_if_n_partout_str(memcmp, sizeof p->signature, dev_sprintf("0x%02x 0x%02x 0x%02x", p->signature[0], p->signature[1], p->signature[2]), signature);
_if_partout(intcmp, "0x%04x", usbpid);
if(!base || base->reset_disposition != p->reset_disposition)
_partout_str(strdup(p->reset_disposition == RESET_DEDICATED? "dedicated": p->reset_disposition == RESET_IO? "io": "unknown"), reset);
_if_partout_str(intcmp, strdup(p->retry_pulse == PIN_AVR_RESET? "reset": p->retry_pulse == PIN_AVR_SCK? "sck": "unknown"), retry_pulse);
if(!base || base->flags != p->flags) {
if(tsv) {
_partout("0x%04x", flags);
} else {
_if_flagout(AVRPART_HAS_JTAG, has_jtag);
_if_flagout(AVRPART_HAS_DW, has_debugwire);
_if_flagout(AVRPART_HAS_PDI, has_pdi);
_if_flagout(AVRPART_HAS_UPDI, has_updi);
_if_flagout(AVRPART_HAS_TPI, has_tpi);
_if_flagout(AVRPART_IS_AT90S1200, is_at90s1200);
_if_flagout(AVRPART_AVR32, is_avr32);
_if_flagout(AVRPART_ALLOWFULLPAGEBITSTREAM, allowfullpagebitstream);
_if_flagout(AVRPART_ENABLEPAGEPROGRAMMING, enablepageprogramming);
_if_flagout(AVRPART_SERIALOK, serial);
if(!base || (base->flags & (AVRPART_PARALLELOK | AVRPART_PSEUDOPARALLEL)) != (p->flags & (AVRPART_PARALLELOK | AVRPART_PSEUDOPARALLEL))) {
int par = p->flags & (AVRPART_PARALLELOK | AVRPART_PSEUDOPARALLEL);
_partout_str(strdup(par == 0? "no": par == AVRPART_PSEUDOPARALLEL? "unknown": AVRPART_PARALLELOK? "yes": "pseudo"), parallel);
}
}
}
_if_partout(intcmp, "%d", timeout);
_if_partout(intcmp, "%d", stabdelay);
_if_partout(intcmp, "%d", cmdexedelay);
_if_partout(intcmp, "%d", synchloops);
_if_partout(intcmp, "%d", bytedelay);
_if_partout(intcmp, "%d", pollindex);
_if_partout(intcmp, "0x%02x", pollvalue);
_if_partout(intcmp, "%d", predelay);
_if_partout(intcmp, "%d", postdelay);
_if_partout(intcmp, "%d", pollmethod);
if(!base && p->ctl_stack_type != CTL_STACK_NONE)
dev_stack_out(tsv, p, dev_controlstack_name(p), p->controlstack, CTL_STACK_SIZE);
// @@@ may need to remove controlstack and set p->ctl_stack_type to CTL_STACK_NONE if base has controlstack?
if(base && (p->ctl_stack_type != base->ctl_stack_type || memcmp(base->controlstack, p->controlstack, sizeof base->controlstack)))
dev_stack_out(tsv, p, dev_controlstack_name(p), p->controlstack, CTL_STACK_SIZE);
if(!base || memcmp(base->flash_instr, p->flash_instr, sizeof base->flash_instr))
dev_stack_out(tsv, p, "flash_instr", p->flash_instr, FLASH_INSTR_SIZE);
if(!base || memcmp(base->eeprom_instr, p->eeprom_instr, sizeof base->eeprom_instr))
dev_stack_out(tsv, p, "eeprom_instr", p->eeprom_instr, EEPROM_INSTR_SIZE);
_if_partout(intcmp, "%d", hventerstabdelay);
_if_partout(intcmp, "%d", progmodedelay);
_if_partout(intcmp, "%d", latchcycles);
_if_partout(intcmp, "%d", togglevtg);
_if_partout(intcmp, "%d", poweroffdelay);
_if_partout(intcmp, "%d", resetdelayms);
_if_partout(intcmp, "%d", resetdelayus);
_if_partout(intcmp, "%d", hvleavestabdelay);
_if_partout(intcmp, "%d", resetdelay);
_if_partout(intcmp, "%d", chiperasepulsewidth);
_if_partout(intcmp, "%d", chiperasepolltimeout);
_if_partout(intcmp, "%d", chiperasetime);
_if_partout(intcmp, "%d", programfusepulsewidth);
_if_partout(intcmp, "%d", programfusepolltimeout);
_if_partout(intcmp, "%d", programlockpulsewidth);
_if_partout(intcmp, "%d", programlockpolltimeout);
_if_partout(intcmp, "%d", synchcycles);
_if_partout(intcmp, "%d", hvspcmdexedelay);
_if_partout(intcmp, "0x%02x", idr);
_if_partout(intcmp, "0x%02x", rampz);
_if_partout(intcmp, "0x%02x", spmcr);
_if_partout(intcmp, "0x%02x", eecr); // why is eecr an unsigned short?
_if_partout(intcmp, "0x%04x", mcu_base);
_if_partout(intcmp, "0x%04x", nvm_base);
_if_partout(intcmp, "0x%04x", ocd_base);
_if_partout(intcmp, "%d", ocdrev);
for(int i=0; i < AVR_OP_MAX; i++)
if(!base || opcodecmp(p->op[i], base->op[i], i))
dev_part_strct_entry(tsv, ".ptop", p->desc, "part", opcodename(i), opcode2str(p->op[i], i, !tsv));
for(size_t mi=0; mi < sizeof mem_order/sizeof *mem_order && mem_order[mi]; mi++) {
AVRMEM *m, *bm;
m = p->mem? avr_locate_mem(p, mem_order[mi]): NULL;
bm = base && base->mem? avr_locate_mem(base, mem_order[mi]): NULL;
if(!m && bm && !tsv)
dev_info("\n memory \"%s\" = NULL;\n", bm->desc);
if(!m)
continue;
if(base && !bm)
bm = avr_new_memtype();
if(!tsv) {
if(!memorycmp(bm, m)) // same memory bit for bit, no need to instantiate
continue;
dev_info("\n memory \"%s\"\n", m->desc);
}
_if_memout_yn(paged);
_if_memout(intcmp, m->size > 8192? "0x%x": "%d", size);
_if_memout(intcmp, "%d", page_size);
_if_memout(intcmp, "%d", num_pages); // why can AVRDUDE not compute this?
_if_memout(intcmp, "0x%x", offset);
_if_memout(intcmp, "%d", min_write_delay);
_if_memout(intcmp, "%d", max_write_delay);
_if_memout_yn(pwroff_after_write);
_if_n_memout_str(memcmp, 2, dev_sprintf("0x%02x 0x%02x", m->readback[0], m->readback[1]), readback);
_if_memout(intcmp, "%d", mode);
_if_memout(intcmp, "%d", delay);
_if_memout(intcmp, "%d", blocksize);
_if_memout(intcmp, "%d", readsize);
_if_memout(intcmp, "%d", pollindex);
for(int i=0; i < AVR_OP_MAX; i++)
if(!bm || opcodecmp(bm->op[i], m->op[i], i))
dev_part_strct_entry(tsv, ".ptmmop", p->desc, m->desc, opcodename(i), opcode2str(m->op[i], i, !tsv));
if(!tsv)
dev_info(" ;\n");
for(LNODEID lnm=lfirst(p->mem_alias); lnm; lnm=lnext(lnm)) {
AVRMEM_ALIAS *ma = ldata(lnm);
if(ma->aliased_mem && !strcmp(ma->aliased_mem->desc, m->desc)) {
if(tsv)
dev_info(".ptmm\t%s\t%s\talias\t%s\n", p->desc, ma->desc, m->desc);
else
dev_info("\n memory \"%s\"\n alias \"%s\";\n ;\n", ma->desc, m->desc);
}
}
}
if(!tsv)
dev_info(";\n");
}
/*
* Match STRING against the partname pattern PATTERN, returning 1 if it
* matches, 0 if not. NOTE: part_match() is a modified old copy of !fnmatch()
* from the GNU C Library (published under GLP v2). Used for portability.
*/
inline static int fold(int c) {
return (c >= 'A' && c <= 'Z')? c+('a'-'A'): c;
}
int part_match(const char *pattern, const char *string) {
unsigned char c;
const char *p = pattern, *n = string;
if(!*n) // AVRDUDE specialty: empty string never matches
return 0;
while((c = fold(*p++))) {
switch(c) {
case '?':
if(*n == 0)
return 0;
break;
case '\\':
c = fold(*p++);
if(fold(*n) != c)
return 0;
break;
case '*':
for(c = *p++; c == '?' || c == '*'; c = *p++)
if(c == '?' && *n++ == 0)
return 0;
if(c == 0)
return 1;
{
unsigned char c1 = fold(c == '\\'? *p : c); // This char
for(--p; *n; ++n) // Recursively check reminder of string for *
if((c == '[' || fold(*n) == c1) && part_match(p, n) == 1)
return 1;
return 0;
}
case '[':
{
int negate;
if(*n == 0)
return 0;
negate = (*p == '!' || *p == '^');
if(negate)
++p;
c = *p++;
for(;;) {
unsigned char cstart = c, cend = c;
if(c == '\\')
cstart = cend = *p++;
cstart = cend = fold(cstart);
if(c == 0) // [ (unterminated)
return 0;
c = *p++;
c = fold(c);
if(c == '-' && *p != ']') {
cend = *p++;
if(cend == '\\')
cend = *p++;
if(cend == 0)
return 0;
cend = fold(cend);
c = *p++;
}
if(fold(*n) >= cstart && fold(*n) <= cend)
goto matched;
if(c == ']')
break;
}
if(!negate)
return 0;
break;
matched:;
while(c != ']') { // Skip the rest of the [...] that already matched
if(c == 0) // [... (unterminated)
return 0;
c = *p++;
if(c == '\\') // XXX 1003.2d11 is unclear if this is right
++p;
}
if(negate)
return 0;
}
break;
default:
if(c != fold(*n))
return 0;
}
++n;
}
return *n == 0;
}
// -p */[cdosw*]
void dev_output_part_defs(char *partdesc) {
bool cmdok, waits, opspi, descs, strct, cmpst, raw, all, tsv;
char *flags;
int nprinted;
AVRPART *nullpart = avr_new_part();
if((flags = strchr(partdesc, '/')))
*flags++ = 0;
if(!flags && !strcmp(partdesc, "*")) // treat -p * as if it was -p */*
flags = "*";
if(!*flags || !strchr("cdosSrw*t", *flags)) {
dev_info("%s: flags for developer option -p <wildcard>/<flags> not recognised\n", progname);
dev_info(
"Wildcard examples:\n"
" * all known parts\n"
" ATtiny10 just this part\n"
" *32[0-9] matches ATmega329, ATmega325 and ATmega328\n"
" *32? matches ATmega329, ATmega32A, ATmega325 and ATmega328\n"
"Flags (one or more of the characters below):\n"
" c check address bits in SPI commands and output errors\n"
" d description of core part features\n"
" o opcodes for SPI programming parts and memories\n"
" S show entries of avrdude.conf parts with all values\n"
" s show entries of avrdude.conf parts with necessary values\n"
" r show entries of avrdude.conf parts as raw dump\n"
" w wd_... constants for ISP parts\n"
" * all of the above except s\n"
" t use tab separated values as much as possible\n"
"Note:\n"
" -p * same as -p */*\n"
);
return;
}
// redirect stderr to stdout
fflush(stderr); fflush(stdout); dup2(1, 2);
all = *flags == '*';
cmdok = all || !!strchr(flags, 'c');
descs = all || !!strchr(flags, 'd');
opspi = all || !!strchr(flags, 'o');
waits = all || !!strchr(flags, 'w');
strct = all || !!strchr(flags, 'S');
raw = all || !!strchr(flags, 'r');
cmpst = !!strchr(flags, 's');
tsv = !!strchr(flags, 't');
// go through all memories and add them to the memory order list
for(LNODEID ln1 = lfirst(part_list); ln1; ln1 = lnext(ln1)) {
AVRPART *p = ldata(ln1);
if(p->mem)
for(LNODEID lnm=lfirst(p->mem); lnm; lnm=lnext(lnm))
add_mem_order(((AVRMEM *) ldata(lnm))->desc);
// same for aliased memories (though probably not needed)
if(p->mem_alias)
for(LNODEID lnm=lfirst(p->mem_alias); lnm; lnm=lnext(lnm))
add_mem_order(((AVRMEM_ALIAS *) ldata(lnm))->desc);
}
nprinted = dev_nprinted;
for(LNODEID ln1 = lfirst(part_list); ln1; ln1 = lnext(ln1)) {
AVRPART *p = ldata(ln1);
int flashsize, flashoffset, flashpagesize, eepromsize , eepromoffset, eeprompagesize;
if(!descs || tsv)
if(dev_nprinted > nprinted) {
dev_info("\n");
nprinted = dev_nprinted;
}
if(!part_match(partdesc, p->desc) && !part_match(partdesc, p->id))
continue;
if(strct || cmpst)
dev_part_strct(p, tsv, cmpst? nullpart: NULL);
if(raw)
dev_part_raw(p);
// identify core flash and eeprom parameters
flashsize = flashoffset = flashpagesize = eepromsize = eepromoffset = eeprompagesize = 0;
if(p->mem) {
for(LNODEID lnm=lfirst(p->mem); lnm; lnm=lnext(lnm)) {
AVRMEM *m = ldata(lnm);
if(!flashsize && 0==strcmp(m->desc, "flash")) {
flashsize = m->size;
flashpagesize = m->page_size;
flashoffset = m->offset;
}
if(!eepromsize && 0==strcmp(m->desc, "eeprom")) {
eepromsize = m->size;
eepromoffset = m->offset;
eeprompagesize = m->page_size;
}
}
}
// "real" entries don't seem to have a space in their desc (a bit hackey)
if(flashsize && !strchr(p->desc, ' ')) {
int ok, nfuses;
AVRMEM *m;
OPCODE *oc;
ok = 2047;
nfuses = 0;
if(!p->op[AVR_OP_PGM_ENABLE])
ok &= ~DEV_SPI_EN_CE_SIG;
if(!p->op[AVR_OP_CHIP_ERASE])
ok &= ~DEV_SPI_EN_CE_SIG;
if((m = avr_locate_mem(p, "flash"))) {
if((oc = m->op[AVR_OP_LOAD_EXT_ADDR])) {
// @@@ to do: check whether address is put at lsb of third byte
} else
ok &= ~DEV_SPI_LOAD_EXT_ADDR;
if((oc = m->op[AVR_OP_READ_HI])) {
if(cmdok)
checkaddr(m->size>>1, 1, AVR_OP_READ_HI, oc, p, m);
} else
ok &= ~DEV_SPI_PROGMEM;
if((oc = m->op[AVR_OP_READ_LO])) {
if(cmdok)
checkaddr(m->size>>1, 1, AVR_OP_READ_LO, oc, p, m);
} else
ok &= ~DEV_SPI_PROGMEM;
if((oc = m->op[AVR_OP_WRITE_HI])) {
if(cmdok)
checkaddr(m->size>>1, 1, AVR_OP_WRITE_HI, oc, p, m);
} else
ok &= ~DEV_SPI_PROGMEM;
if((oc = m->op[AVR_OP_WRITE_LO])) {
if(cmdok)
checkaddr(m->size>>1, 1, AVR_OP_WRITE_LO, oc, p, m);
} else
ok &= ~DEV_SPI_PROGMEM;
if((oc = m->op[AVR_OP_LOADPAGE_HI])) {
if(cmdok)
checkaddr(m->page_size>>1, 1, AVR_OP_LOADPAGE_HI, oc, p, m);
} else
ok &= ~DEV_SPI_PROGMEM_PAGED;
if((oc = m->op[AVR_OP_LOADPAGE_LO])) {
if(cmdok)
checkaddr(m->page_size>>1, 1, AVR_OP_LOADPAGE_LO, oc, p, m);
} else
ok &= ~DEV_SPI_PROGMEM_PAGED;
if((oc = m->op[AVR_OP_WRITEPAGE])) {
if(cmdok)
checkaddr(m->size>>1, m->page_size>>1, AVR_OP_WRITEPAGE, oc, p, m);
} else
ok &= ~DEV_SPI_PROGMEM_PAGED;
} else
ok &= ~(DEV_SPI_PROGMEM_PAGED | DEV_SPI_PROGMEM);
if((m = avr_locate_mem(p, "eeprom"))) {
if((oc = m->op[AVR_OP_READ])) {
if(cmdok)
checkaddr(m->size, 1, AVR_OP_READ, oc, p, m);
} else
ok &= ~DEV_SPI_EEPROM;
if((oc = m->op[AVR_OP_WRITE])) {
if(cmdok)
checkaddr(m->size, 1, AVR_OP_WRITE, oc, p, m);
} else
ok &= ~DEV_SPI_EEPROM;
if((oc = m->op[AVR_OP_LOADPAGE_LO])) {
if(cmdok)
checkaddr(m->page_size, 1, AVR_OP_LOADPAGE_LO, oc, p, m);
} else
ok &= ~DEV_SPI_EEPROM_PAGED;
if((oc = m->op[AVR_OP_WRITEPAGE])) {
if(cmdok)
checkaddr(m->size, m->page_size, AVR_OP_WRITEPAGE, oc, p, m);
} else
ok &= ~DEV_SPI_EEPROM_PAGED;
} else
ok &= ~(DEV_SPI_EEPROM_PAGED | DEV_SPI_EEPROM);
if((m = avr_locate_mem(p, "signature")) && (oc = m->op[AVR_OP_READ])) {
if(cmdok)
checkaddr(m->size, 1, AVR_OP_READ, oc, p, m);
} else
ok &= ~DEV_SPI_EN_CE_SIG;
if((m = avr_locate_mem(p, "calibration")) && (oc = m->op[AVR_OP_READ])) {
if(cmdok)
checkaddr(m->size, 1, AVR_OP_READ, oc, p, m);
} else
ok &= ~DEV_SPI_CALIBRATION;
// actually, some AT90S... parts cannot read, only write lock bits :-0
if( ! ((m = avr_locate_mem(p, "lock")) && m->op[AVR_OP_WRITE]))
ok &= ~DEV_SPI_LOCK;
if(((m = avr_locate_mem(p, "fuse")) || (m = avr_locate_mem(p, "lfuse"))) && m->op[AVR_OP_READ] && m->op[AVR_OP_WRITE])
nfuses++;
else
ok &= ~DEV_SPI_LFUSE;
if((m = avr_locate_mem(p, "hfuse")) && m->op[AVR_OP_READ] && m->op[AVR_OP_WRITE])
nfuses++;
else
ok &= ~DEV_SPI_HFUSE;
if((m = avr_locate_mem(p, "efuse")) && m->op[AVR_OP_READ] && m->op[AVR_OP_WRITE])
nfuses++;
else
ok &= ~DEV_SPI_EFUSE;
if(descs) {
int len = 16-strlen(p->desc);
dev_info("%s '%s' =>%*s [0x%02X, 0x%02X, 0x%02X, 0x%08x, 0x%05x, 0x%03x, 0x%06x, 0x%04x, 0x%03x, %d, 0x%03x, 0x%04x, '%s'], # %s %d\n",
tsv || all? ".desc": " ",
p->desc, len > 0? len: 0, "",
p->signature[0], p->signature[1], p->signature[2],
flashoffset, flashsize, flashpagesize,
eepromoffset, eepromsize, eeprompagesize,
nfuses,
ok,
p->flags,
parttype(p),
p->config_file, p->lineno
);
}
}
if(opspi) {
printallopcodes(p, "part", p->op);
if(p->mem) {
for(LNODEID lnm=lfirst(p->mem); lnm; lnm=lnext(lnm)) {
AVRMEM *m = ldata(lnm);
if(m)
printallopcodes(p, m->desc, m->op);
}
}
}
// print wait delays for AVR family parts
if(waits) {
if(!(p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI | AVRPART_HAS_TPI | AVRPART_AVR32)))
dev_info(".wd_chip_erase %.3f ms %s\n", p->chip_erase_delay/1000.0, p->desc);
if(p->mem) {
for(LNODEID lnm=lfirst(p->mem); lnm; lnm=lnext(lnm)) {
AVRMEM *m = ldata(lnm);
// write delays not needed for read-only calibration and signature memories
if(strcmp(m->desc, "calibration") && strcmp(m->desc, "signature")) {
if(!(p->flags & (AVRPART_HAS_PDI | AVRPART_HAS_UPDI | AVRPART_HAS_TPI | AVRPART_AVR32))) {
if(m->min_write_delay == m->max_write_delay)
dev_info(".wd_%s %.3f ms %s\n", m->desc, m->min_write_delay/1000.0, p->desc);
else {
dev_info(".wd_min_%s %.3f ms %s\n", m->desc, m->min_write_delay/1000.0, p->desc);
dev_info(".wd_max_%s %.3f ms %s\n", m->desc, m->max_write_delay/1000.0, p->desc);
}
}
}
}
}
}
}
}