avrdude/src/flip2.c

981 lines
29 KiB
C
Raw Normal View History

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2012 Kirill Levchenko
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* $Id$ */
#include "ac_cfg.h"
2022-01-07 12:15:55 +00:00
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <limits.h>
#include <unistd.h>
#include "avrdude.h"
#include "libavrdude.h"
#include "flip2.h"
#include "dfu.h"
#include "usbdevs.h" /* for USB_VENDOR_ATMEL */
/* There are three versions of the FLIP protocol:
*
* Version 0: C51 parts
* Version 1: megaAVR parts ("USB DFU Bootloader Datasheet" [doc7618])
* Version 2: XMEGA parts (AVR4023 [doc8457])
*
* We currently only support Version 2, as documented in AVR4023.
*
* Additional references:
* flip_protocol.h from the Atmel Software Framework.
* udi_dfu_atmel.c from XMEGA bootloaders archive.
*/
/* EXPORTED CONSTANT STRINGS */
const char flip2_desc[] = "FLIP USB DFU protocol version 2 (AVR4023)";
/* PRIVATE DATA STRUCTURES */
struct flip2
{
struct dfu_dev *dfu;
unsigned char part_sig[3];
unsigned char part_rev;
unsigned char boot_ver;
};
#define FLIP2(pgm) ((struct flip2 *)(pgm->cookie))
/* The FLIP2 protocol assigns specific meaning to certain combinations of
* status and state bytes in the DFU_GETSTATUS response. These constants en-
* code these combinations as a 16-bit value: the high order byte is the
* status and the low order byte is the state of the status-state pairing.
*/
#define FLIP2_STATUS_OK 0x0000
#define FLIP2_STATUS_STALL 0x0F0A
#define FLIP2_STATUS_MEM_UKNOWN 0x030A
#define FLIP2_STATUS_MEM_PROTECTED 0x0300
#define FLIP2_STATUS_OUTOFRANGE 0x080A
#define FLIP2_STATUS_BLANK_FAIL 0x0500
#define FLIP2_STATUS_ERASE_ONGOING 0x0904
/* FLIP2 data structures and constants. */
struct flip2_cmd {
unsigned char group_id;
unsigned char cmd_id;
unsigned char args[4];
};
#define FLIP2_CMD_GROUP_DOWNLOAD 0x01
#define FLIP2_CMD_GROUP_UPLOAD 0x03
#define FLIP2_CMD_GROUP_EXEC 0x04
#define FLIP2_CMD_GROUP_SELECT 0x06
#define FLIP2_CMD_PROG_START 0x00
#define FLIP2_CMD_READ_MEMORY 0x00
#define FLIP2_CMD_SELECT_MEMORY 0x03
#define FLIP2_CMD_CHIP_ERASE 0x00
#define FLIP2_CMD_START_APP 0x03
#define FLIP2_SELECT_MEMORY_UNIT 0x00
#define FLIP2_SELECT_MEMORY_PAGE 0x01
enum flip2_mem_unit {
FLIP2_MEM_UNIT_UNKNOWN = -1,
FLIP2_MEM_UNIT_FLASH = 0x00,
FLIP2_MEM_UNIT_EEPROM = 0x01,
FLIP2_MEM_UNIT_SECURITY = 0x02,
FLIP2_MEM_UNIT_CONFIGURATION = 0x03,
FLIP2_MEM_UNIT_BOOTLOADER = 0x04,
FLIP2_MEM_UNIT_SIGNATURE = 0x05,
FLIP2_MEM_UNIT_USER = 0x06,
FLIP2_MEM_UNIT_INT_RAM = 0x07,
FLIP2_MEM_UNIT_EXT_MEM_CS0 = 0x08,
FLIP2_MEM_UNIT_EXT_MEM_CS1 = 0x09,
FLIP2_MEM_UNIT_EXT_MEM_CS2 = 0x0A,
FLIP2_MEM_UNIT_EXT_MEM_CS3 = 0x0B,
FLIP2_MEM_UNIT_EXT_MEM_CS4 = 0x0C,
FLIP2_MEM_UNIT_EXT_MEM_CS5 = 0x0D,
FLIP2_MEM_UNIT_EXT_MEM_CS6 = 0x0E,
FLIP2_MEM_UNIT_EXT_MEM_CS7 = 0x0F,
FLIP2_MEM_UNIT_EXT_MEM_DF = 0x10
};
/* EXPORTED PROGRAMMER FUNCTION PROTOTYPES */
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
static int flip2_open(PROGRAMMER *pgm, const char *port_spec);
static int flip2_initialize(const PROGRAMMER *pgm, const AVRPART *part);
static void flip2_close(PROGRAMMER* pgm);
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
static void flip2_enable(PROGRAMMER *pgm, const AVRPART *p);
static void flip2_disable(const PROGRAMMER *pgm);
static void flip2_display(const PROGRAMMER *pgm, const char *prefix);
static int flip2_program_enable(const PROGRAMMER *pgm, const AVRPART *part);
static int flip2_chip_erase(const PROGRAMMER *pgm, const AVRPART *part);
static int flip2_read_byte(const PROGRAMMER *pgm, const AVRPART *part, const AVRMEM *mem,
unsigned long addr, unsigned char *value);
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
static int flip2_write_byte(const PROGRAMMER *pgm, const AVRPART *part, const AVRMEM *mem,
unsigned long addr, unsigned char value);
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
static int flip2_paged_load(const PROGRAMMER *pgm, const AVRPART *part, const AVRMEM *mem,
unsigned int page_size, unsigned int addr, unsigned int n_bytes);
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
static int flip2_paged_write(const PROGRAMMER *pgm, const AVRPART *part, const AVRMEM *mem,
unsigned int page_size, unsigned int addr, unsigned int n_bytes);
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
static int flip2_read_sig_bytes(const PROGRAMMER *pgm, const AVRPART *part, const AVRMEM *mem);
static void flip2_setup(PROGRAMMER * pgm);
static void flip2_teardown(PROGRAMMER * pgm);
/* INTERNAL PROGRAMMER FUNCTION PROTOTYPES */
#ifdef HAVE_LIBUSB
// The internal ones are made conditional, as they're not defined further down #ifndef HAVE_LIBUSB
static void flip2_show_info(struct flip2 *flip2);
static int flip2_read_memory(struct dfu_dev *dfu,
enum flip2_mem_unit mem_unit, uint32_t addr, void *ptr, int size);
static int flip2_write_memory(struct dfu_dev *dfu,
enum flip2_mem_unit mem_unit, uint32_t addr, const void *ptr, int size);
static int flip2_set_mem_unit(struct dfu_dev *dfu,
enum flip2_mem_unit mem_unit);
static int flip2_set_mem_page(struct dfu_dev *dfu, unsigned short page_addr);
static int flip2_read_max1k(struct dfu_dev *dfu,
unsigned short offset, void *ptr, unsigned short size);
static int flip2_write_max1k(struct dfu_dev *dfu,
unsigned short offset, const void *ptr, unsigned short size);
static const char * flip2_status_str(const struct dfu_status *status);
static const char * flip2_mem_unit_str(enum flip2_mem_unit mem_unit);
static enum flip2_mem_unit flip2_mem_unit(const char *name);
#endif /* HAVE_LIBUSB */
/* THE INITPGM FUNCTION DEFINITIONS */
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
void flip2_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "flip2");
/* Mandatory Functions */
pgm->initialize = flip2_initialize;
pgm->enable = flip2_enable;
pgm->disable = flip2_disable;
pgm->display = flip2_display;
pgm->program_enable = flip2_program_enable;
pgm->chip_erase = flip2_chip_erase;
pgm->open = flip2_open;
pgm->close = flip2_close;
pgm->paged_load = flip2_paged_load;
pgm->paged_write = flip2_paged_write;
pgm->read_byte = flip2_read_byte;
pgm->write_byte = flip2_write_byte;
pgm->read_sig_bytes = flip2_read_sig_bytes;
pgm->setup = flip2_setup;
pgm->teardown = flip2_teardown;
}
#ifdef HAVE_LIBUSB
/* EXPORTED PROGRAMMER FUNCTION DEFINITIONS */
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
int flip2_open(PROGRAMMER *pgm, const char *port_spec) {
FLIP2(pgm)->dfu = dfu_open(port_spec);
return (FLIP2(pgm)->dfu != NULL) ? 0 : -1;
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
int flip2_initialize(const PROGRAMMER *pgm, const AVRPART *part) {
unsigned short vid, pid;
int result;
struct dfu_dev *dfu = FLIP2(pgm)->dfu;
/* A note about return values. Negative return values from this function are
* interpreted as failure by main(), from where this function is called.
* However such failures are interpreted as a device signature check failure
2022-01-07 10:31:16 +00:00
* and the user is advised to use the -F option to override this check. In
* our case, this is misleading, so we defer reporting an error until another
* function is called. Thus, we always return 0 (success) from initialize().
* I don't like this, but I don't want to mess with main().
*/
/* The dfu_init() function will try to find the target part either based on
* a USB address provided by the user with the -P option or by matching the
* VID and PID of the device. The VID may be specified in the programmer
* definition; if not specified, it defaults to USB_VENDOR_ATMEL (defined
* in usbdevs.h). The PID may be specified either in the programmer
* definition or the part definition; the programmer definition takes
* priority. The default PID value is 0, which causes dfu_init() to ignore
* the PID when matching a target device.
*/
vid = (pgm->usbvid != 0) ? pgm->usbvid : USB_VENDOR_ATMEL;
LNODEID usbpid = lfirst(pgm->usbpid);
if (usbpid) {
pid = *(int *)(ldata(usbpid));
if (lnext(usbpid))
avrdude_message(MSG_INFO, "%s: Warning: using PID 0x%04x, ignoring remaining PIDs in list\n",
progname, pid);
} else {
pid = part->usbpid;
}
if (!ovsigck && !(part->prog_modes & PM_PDI)) {
avrdude_message(MSG_INFO, "%s: \"flip2\" (FLIP protocol version 2) is for Xmega devices.\n"
"%s For AT90USB* or ATmega*U* devices, use \"flip1\".\n"
"%s (Use -F to bypass this check.)\n",
progname, progbuf, progbuf);
return -1;
}
result = dfu_init(dfu, vid, pid);
if (result != 0)
goto flip2_initialize_fail;
/* Check if descriptor values are what we expect. */
if (dfu->dev_desc.idVendor != vid)
avrdude_message(MSG_INFO, "%s: Warning: USB idVendor = 0x%04X (expected 0x%04X)\n",
progname, dfu->dev_desc.idVendor, vid);
if (pid != 0 && dfu->dev_desc.idProduct != pid)
avrdude_message(MSG_INFO, "%s: Warning: USB idProduct = 0x%04X (expected 0x%04X)\n",
progname, dfu->dev_desc.idProduct, pid);
if (dfu->dev_desc.bNumConfigurations != 1)
avrdude_message(MSG_INFO, "%s: Warning: USB bNumConfigurations = %d (expected 1)\n",
progname, (int) dfu->dev_desc.bNumConfigurations);
if (dfu->conf_desc.bNumInterfaces != 1)
avrdude_message(MSG_INFO, "%s: Warning: USB bNumInterfaces = %d (expected 1)\n",
progname, (int) dfu->conf_desc.bNumInterfaces);
if (dfu->dev_desc.bDeviceClass != 0)
avrdude_message(MSG_INFO, "%s: Warning: USB bDeviceClass = %d (expected 0)\n",
progname, (int) dfu->dev_desc.bDeviceClass);
if (dfu->dev_desc.bDeviceSubClass != 0)
avrdude_message(MSG_INFO, "%s: Warning: USB bDeviceSubClass = %d (expected 0)\n",
progname, (int) dfu->dev_desc.bDeviceSubClass);
if (dfu->dev_desc.bDeviceProtocol != 0)
avrdude_message(MSG_INFO, "%s: Warning: USB bDeviceProtocol = %d (expected 0)\n",
progname, (int) dfu->dev_desc.bDeviceProtocol);
if (dfu->intf_desc.bInterfaceClass != 0xFF)
avrdude_message(MSG_INFO, "%s: Warning: USB bInterfaceClass = %d (expected 255)\n",
progname, (int) dfu->intf_desc.bInterfaceClass);
if (dfu->intf_desc.bInterfaceSubClass != 0)
avrdude_message(MSG_INFO, "%s: Warning: USB bInterfaceSubClass = %d (expected 0)\n",
progname, (int) dfu->intf_desc.bInterfaceSubClass);
if (dfu->intf_desc.bInterfaceProtocol != 0)
avrdude_message(MSG_INFO, "%s: Warning: USB bInterfaceSubClass = %d (expected 0)\n",
progname, (int) dfu->intf_desc.bInterfaceProtocol);
result = flip2_read_memory(FLIP2(pgm)->dfu,
FLIP2_MEM_UNIT_SIGNATURE, 0, FLIP2(pgm)->part_sig, 4);
if (result != 0)
goto flip2_initialize_fail;
result = flip2_read_memory(FLIP2(pgm)->dfu,
FLIP2_MEM_UNIT_BOOTLOADER, 0, &FLIP2(pgm)->boot_ver, 1);
if (result != 0)
goto flip2_initialize_fail;
if (verbose)
flip2_show_info(FLIP2(pgm));
return 0;
flip2_initialize_fail:
dfu_close(FLIP2(pgm)->dfu);
FLIP2(pgm)->dfu = NULL;
return 0;
}
void flip2_close(PROGRAMMER* pgm)
{
if (FLIP2(pgm)->dfu != NULL) {
dfu_close(FLIP2(pgm)->dfu);
FLIP2(pgm)->dfu = NULL;
}
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
void flip2_enable(PROGRAMMER *pgm, const AVRPART *p) {
/* Nothing to do. */
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
void flip2_disable(const PROGRAMMER *pgm) {
/* Nothing to do. */
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
void flip2_display(const PROGRAMMER *pgm, const char *prefix) {
/* Nothing to do. */
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
int flip2_program_enable(const PROGRAMMER *pgm, const AVRPART *part) {
/* I couldn't find anything that uses this function, although it is marked
* as "mandatory" in pgm.c. In case anyone does use it, we'll report an
* error if we failed to initialize.
*/
return (FLIP2(pgm)->dfu != NULL) ? 0 : -1;
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
int flip2_chip_erase(const PROGRAMMER *pgm, const AVRPART *part) {
struct dfu_status status;
int cmd_result = 0;
int aux_result;
avrdude_message(MSG_NOTICE2, "%s: flip_chip_erase()\n", progname);
struct flip2_cmd cmd = {
FLIP2_CMD_GROUP_EXEC, FLIP2_CMD_CHIP_ERASE, { 0xFF, 0, 0, 0 }
};
for (;;) {
cmd_result = dfu_dnload(FLIP2(pgm)->dfu, &cmd, sizeof(cmd));
aux_result = dfu_getstatus(FLIP2(pgm)->dfu, &status);
if (aux_result != 0)
return aux_result;
if (status.bStatus != DFU_STATUS_OK) {
if (status.bStatus == ((FLIP2_STATUS_ERASE_ONGOING >> 8) & 0xFF) &&
status.bState == ((FLIP2_STATUS_ERASE_ONGOING >> 0) & 0xFF))
{
continue;
} else
avrdude_message(MSG_INFO, "%s: Error: DFU status %s\n", progname,
flip2_status_str(&status));
dfu_clrstatus(FLIP2(pgm)->dfu);
} else
break;
}
return cmd_result;
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
int flip2_read_byte(const PROGRAMMER *pgm, const AVRPART *part, const AVRMEM *mem,
unsigned long addr, unsigned char *value)
{
enum flip2_mem_unit mem_unit;
if (FLIP2(pgm)->dfu == NULL)
return -1;
mem_unit = flip2_mem_unit(mem->desc);
if (mem_unit == FLIP2_MEM_UNIT_UNKNOWN) {
avrdude_message(MSG_INFO, "%s: Error: "
"\"%s\" memory not accessible using FLIP",
progname, mem->desc);
if (strcmp(mem->desc, "flash") == 0)
avrdude_message(MSG_INFO, " (did you mean \"application\"?)");
avrdude_message(MSG_INFO, "\n");
return -1;
}
return flip2_read_memory(FLIP2(pgm)->dfu, mem_unit, addr, value, 1);
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
int flip2_write_byte(const PROGRAMMER *pgm, const AVRPART *part, const AVRMEM *mem,
unsigned long addr, unsigned char value)
{
enum flip2_mem_unit mem_unit;
if (FLIP2(pgm)->dfu == NULL)
return -1;
mem_unit = flip2_mem_unit(mem->desc);
if (mem_unit == FLIP2_MEM_UNIT_UNKNOWN) {
avrdude_message(MSG_INFO, "%s: Error: "
"\"%s\" memory not accessible using FLIP",
progname, mem->desc);
if (strcmp(mem->desc, "flash") == 0)
avrdude_message(MSG_INFO, " (did you mean \"application\"?)");
avrdude_message(MSG_INFO, "\n");
return -1;
}
return flip2_write_memory(FLIP2(pgm)->dfu, mem_unit, addr, &value, 1);
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
int flip2_paged_load(const PROGRAMMER *pgm, const AVRPART *part, const AVRMEM *mem,
unsigned int page_size, unsigned int addr, unsigned int n_bytes)
{
enum flip2_mem_unit mem_unit;
int result;
if (FLIP2(pgm)->dfu == NULL)
return -1;
mem_unit = flip2_mem_unit(mem->desc);
if (mem_unit == FLIP2_MEM_UNIT_UNKNOWN) {
avrdude_message(MSG_INFO, "%s: Error: "
"\"%s\" memory not accessible using FLIP",
progname, mem->desc);
if (strcmp(mem->desc, "flash") == 0)
avrdude_message(MSG_INFO, " (did you mean \"application\"?)");
avrdude_message(MSG_INFO, "\n");
return -1;
}
if (n_bytes > INT_MAX) {
/* This should never happen, unless the int type is only 16 bits. */
avrdude_message(MSG_INFO, "%s: Error: Attempting to read more than %d bytes\n",
progname, INT_MAX);
exit(1);
}
result = flip2_read_memory(FLIP2(pgm)->dfu, mem_unit, addr,
mem->buf + addr, n_bytes);
return (result == 0) ? n_bytes : -1;
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
int flip2_paged_write(const PROGRAMMER *pgm, const AVRPART *part, const AVRMEM *mem,
unsigned int page_size, unsigned int addr, unsigned int n_bytes)
{
enum flip2_mem_unit mem_unit;
int result;
if (FLIP2(pgm)->dfu == NULL)
return -1;
mem_unit = flip2_mem_unit(mem->desc);
if (mem_unit == FLIP2_MEM_UNIT_UNKNOWN) {
avrdude_message(MSG_INFO, "%s: Error: "
"\"%s\" memory not accessible using FLIP",
progname, mem->desc);
if (strcmp(mem->desc, "flash") == 0)
avrdude_message(MSG_INFO, " (did you mean \"application\"?)");
avrdude_message(MSG_INFO, "\n");
return -1;
}
if (n_bytes > INT_MAX) {
/* This should never happen, unless the int type is only 16 bits. */
avrdude_message(MSG_INFO, "%s: Error: Attempting to read more than %d bytes\n",
progname, INT_MAX);
exit(1);
}
result = flip2_write_memory(FLIP2(pgm)->dfu, mem_unit, addr,
mem->buf + addr, n_bytes);
return (result == 0) ? n_bytes : -1;
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
int flip2_read_sig_bytes(const PROGRAMMER *pgm, const AVRPART *part, const AVRMEM *mem) {
if (FLIP2(pgm)->dfu == NULL)
return -1;
if (mem->size < sizeof(FLIP2(pgm)->part_sig)) {
avrdude_message(MSG_INFO, "%s: Error: Signature read must be at least %u bytes\n",
progname, (unsigned int) sizeof(FLIP2(pgm)->part_sig));
return -1;
}
memcpy(mem->buf, FLIP2(pgm)->part_sig, sizeof(FLIP2(pgm)->part_sig));
return 0;
}
void flip2_setup(PROGRAMMER * pgm)
{
pgm->cookie = calloc(1, sizeof(struct flip2));
if (pgm->cookie == NULL) {
avrdude_message(MSG_INFO, "%s: Out of memory allocating private data structure\n",
progname);
exit(1);
}
}
void flip2_teardown(PROGRAMMER * pgm)
{
free(pgm->cookie);
pgm->cookie = NULL;
}
/* INTERNAL FUNCTION DEFINITIONS
*/
void flip2_show_info(struct flip2 *flip2)
{
dfu_show_info(flip2->dfu);
avrdude_message(MSG_INFO, " Part signature : 0x%02X%02X%02X\n",
(int) flip2->part_sig[0],
(int) flip2->part_sig[1],
(int) flip2->part_sig[2]);
if (flip2->part_rev < 26)
avrdude_message(MSG_INFO, " Part revision : %c\n",
(char) (flip2->part_rev + 'A'));
else
avrdude_message(MSG_INFO, " Part revision : %c%c\n",
(char) (flip2->part_rev / 26 - 1 + 'A'),
(char) (flip2->part_rev % 26 + 'A'));
avrdude_message(MSG_INFO, " Bootloader version : 2.%hu.%hu\n",
((unsigned short) flip2->boot_ver >> 4) & 0xF,
((unsigned short) flip2->boot_ver >> 0) & 0xF);
avrdude_message(MSG_INFO, " USB max packet size : %hu\n",
(unsigned short) flip2->dfu->dev_desc.bMaxPacketSize0);
}
int flip2_read_memory(struct dfu_dev *dfu,
enum flip2_mem_unit mem_unit, uint32_t addr, void *ptr, int size)
{
unsigned short prev_page_addr;
unsigned short page_addr;
const char * mem_name;
int read_size;
int result;
avrdude_message(MSG_NOTICE2, "%s: flip_read_memory(%s, 0x%04x, %d)\n",
progname, flip2_mem_unit_str(mem_unit), addr, size);
result = flip2_set_mem_unit(dfu, mem_unit);
if (result != 0) {
if ((mem_name = flip2_mem_unit_str(mem_unit)) != NULL)
avrdude_message(MSG_INFO, "%s: Error: Failed to set memory unit 0x%02X (%s)\n",
progname, (int) mem_unit, mem_name);
else
avrdude_message(MSG_INFO, "%s: Error: Failed to set memory unit 0x%02X\n",
progname, (int) mem_unit);
return -1;
}
page_addr = addr >> 16;
result = flip2_set_mem_page(dfu, page_addr);
if (result != 0) {
avrdude_message(MSG_INFO, "%s: Error: Failed to set memory page 0x%04hX\n",
progname, page_addr);
return -1;
}
while (size > 0) {
prev_page_addr = page_addr;
page_addr = addr >> 16;
if (page_addr != prev_page_addr) {
result = flip2_set_mem_page(dfu, page_addr);
if (result != 0) {
avrdude_message(MSG_INFO, "%s: Error: Failed to set memory page 0x%04hX\n",
progname, page_addr);
return -1;
}
}
read_size = (size > 0x400) ? 0x400 : size;
result = flip2_read_max1k(dfu, addr & 0xFFFF, ptr, read_size);
if (result != 0) {
avrdude_message(MSG_INFO, "%s: Error: Failed to read 0x%04X bytes at 0x%04lX\n",
progname, read_size, (unsigned long) addr);
return -1;
}
2021-12-28 10:26:09 +00:00
ptr = (char*)ptr + read_size;
addr += read_size;
size -= read_size;
}
return 0;
}
int flip2_write_memory(struct dfu_dev *dfu,
enum flip2_mem_unit mem_unit, uint32_t addr, const void *ptr, int size)
{
unsigned short prev_page_addr;
unsigned short page_addr;
const char * mem_name;
int write_size;
int result;
avrdude_message(MSG_NOTICE2, "%s: flip_write_memory(%s, 0x%04x, %d)\n",
progname, flip2_mem_unit_str(mem_unit), addr, size);
result = flip2_set_mem_unit(dfu, mem_unit);
if (result != 0) {
if ((mem_name = flip2_mem_unit_str(mem_unit)) != NULL)
avrdude_message(MSG_INFO, "%s: Error: Failed to set memory unit 0x%02X (%s)\n",
progname, (int) mem_unit, mem_name);
else
avrdude_message(MSG_INFO, "%s: Error: Failed to set memory unit 0x%02X\n",
progname, (int) mem_unit);
return -1;
}
page_addr = addr >> 16;
result = flip2_set_mem_page(dfu, page_addr);
if (result != 0) {
avrdude_message(MSG_INFO, "%s: Error: Failed to set memory page 0x%04hX\n",
progname, page_addr);
return -1;
}
while (size > 0) {
prev_page_addr = page_addr;
page_addr = addr >> 16;
if (page_addr != prev_page_addr) {
result = flip2_set_mem_page(dfu, page_addr);
if (result != 0) {
avrdude_message(MSG_INFO, "%s: Error: Failed to set memory page 0x%04hX\n",
progname, page_addr);
return -1;
}
}
write_size = (size > 0x800) ? 0x800 : size;
result = flip2_write_max1k(dfu, addr & 0xFFFF, ptr, write_size);
if (result != 0) {
avrdude_message(MSG_INFO, "%s: Error: Failed to write 0x%04X bytes at 0x%04lX\n",
progname, write_size, (unsigned long) addr);
return -1;
}
2021-12-28 10:26:09 +00:00
ptr = (const char*)ptr + write_size;
addr += write_size;
size -= write_size;
}
return 0;
}
int flip2_set_mem_unit(struct dfu_dev *dfu, enum flip2_mem_unit mem_unit)
{
struct dfu_status status;
int cmd_result = 0;
int aux_result;
struct flip2_cmd cmd = {
FLIP2_CMD_GROUP_SELECT, FLIP2_CMD_SELECT_MEMORY, { 0, 0, 0, 0 }
};
cmd.args[0] = FLIP2_SELECT_MEMORY_UNIT;
cmd.args[1] = mem_unit;
cmd_result = dfu_dnload(dfu, &cmd, sizeof(cmd));
aux_result = dfu_getstatus(dfu, &status);
if (aux_result != 0)
return aux_result;
if (status.bStatus != DFU_STATUS_OK) {
if (status.bStatus == ((FLIP2_STATUS_OUTOFRANGE >> 8) & 0xFF) &&
status.bState == ((FLIP2_STATUS_OUTOFRANGE >> 0) & 0xFF))
{
avrdude_message(MSG_INFO, "%s: Error: Unknown memory unit (0x%02x)\n",
progname, (unsigned int) mem_unit);
} else
avrdude_message(MSG_INFO, "%s: Error: DFU status %s\n", progname,
flip2_status_str(&status));
dfu_clrstatus(dfu);
}
return cmd_result;
}
int flip2_set_mem_page(struct dfu_dev *dfu,
unsigned short page_addr)
{
struct dfu_status status;
int cmd_result = 0;
int aux_result;
struct flip2_cmd cmd = {
FLIP2_CMD_GROUP_SELECT, FLIP2_CMD_SELECT_MEMORY, { 0, 0, 0, 0 }
};
cmd.args[0] = FLIP2_SELECT_MEMORY_PAGE;
cmd.args[1] = (page_addr >> 8) & 0xFF;
cmd.args[2] = (page_addr >> 0) & 0xFF;
cmd_result = dfu_dnload(dfu, &cmd, sizeof(cmd));
aux_result = dfu_getstatus(dfu, &status);
if (aux_result != 0)
return aux_result;
if (status.bStatus != DFU_STATUS_OK) {
if (status.bStatus == ((FLIP2_STATUS_OUTOFRANGE >> 8) & 0xFF) &&
status.bState == ((FLIP2_STATUS_OUTOFRANGE >> 0) & 0xFF))
{
avrdude_message(MSG_INFO, "%s: Error: Page address out of range (0x%04hx)\n",
progname, page_addr);
} else
avrdude_message(MSG_INFO, "%s: Error: DFU status %s\n", progname,
flip2_status_str(&status));
dfu_clrstatus(dfu);
}
return cmd_result;
}
int flip2_read_max1k(struct dfu_dev *dfu,
unsigned short offset, void *ptr, unsigned short size)
{
struct dfu_status status;
int cmd_result = 0;
int aux_result;
struct flip2_cmd cmd = {
FLIP2_CMD_GROUP_UPLOAD, FLIP2_CMD_READ_MEMORY, { 0, 0, 0, 0 }
};
cmd.args[0] = (offset >> 8) & 0xFF;
cmd.args[1] = (offset >> 0) & 0xFF;
cmd.args[2] = ((offset+size-1) >> 8) & 0xFF;
cmd.args[3] = ((offset+size-1) >> 0) & 0xFF;
cmd_result = dfu_dnload(dfu, &cmd, sizeof(cmd));
if (cmd_result != 0)
goto flip2_read_max1k_status;
cmd_result = dfu_upload(dfu, (char*) ptr, size);
flip2_read_max1k_status:
aux_result = dfu_getstatus(dfu, &status);
if (aux_result != 0)
return aux_result;
if (status.bStatus != DFU_STATUS_OK) {
if (status.bStatus == ((FLIP2_STATUS_OUTOFRANGE >> 8) & 0xFF) &&
status.bState == ((FLIP2_STATUS_OUTOFRANGE >> 0) & 0xFF))
{
avrdude_message(MSG_INFO, "%s: Error: Address out of range [0x%04hX,0x%04hX]\n",
progname, offset, offset+size-1);
} else
avrdude_message(MSG_INFO, "%s: Error: DFU status %s\n", progname,
flip2_status_str(&status));
dfu_clrstatus(dfu);
}
return cmd_result;
}
int flip2_write_max1k(struct dfu_dev *dfu,
unsigned short offset, const void *ptr, unsigned short size)
{
char buffer[64+64+0x400];
unsigned short data_offset;
struct dfu_status status;
int cmd_result = 0;
int aux_result;
struct flip2_cmd cmd = {
FLIP2_CMD_GROUP_DOWNLOAD, FLIP2_CMD_PROG_START, { 0, 0, 0, 0 }
};
cmd.args[0] = (offset >> 8) & 0xFF;
cmd.args[1] = (offset >> 0) & 0xFF;
cmd.args[2] = ((offset+size-1) >> 8) & 0xFF;
cmd.args[3] = ((offset+size-1) >> 0) & 0xFF;
if (size > 0x400) {
avrdude_message(MSG_INFO, "%s: Error: Write block too large (%hu > 1024)\n",
progname, size);
return -1;
}
/* There are some special padding requirements for writes. The first packet
* must consist only of the FLIP2 command data, which must be padded to
* fill out the USB packet (the packet size is given by bMaxPacketSize0 in
* the device descriptor). In addition, the data must be padded so that the
* first byte of data to be written is at located at position (offset mod
* bMaxPacketSize0) within the packet.
*/
data_offset = dfu->dev_desc.bMaxPacketSize0;
data_offset += offset % dfu->dev_desc.bMaxPacketSize0;
memcpy(buffer, &cmd, sizeof(cmd));
memset(buffer + sizeof(cmd), 0, data_offset - sizeof(cmd));
memcpy(buffer + data_offset, ptr, size);
cmd_result = dfu_dnload(dfu, buffer, data_offset + size);
aux_result = dfu_getstatus(dfu, &status);
if (aux_result != 0)
return aux_result;
if (status.bStatus != DFU_STATUS_OK) {
if (status.bStatus == ((FLIP2_STATUS_OUTOFRANGE >> 8) & 0xFF) &&
status.bState == ((FLIP2_STATUS_OUTOFRANGE >> 0) & 0xFF))
{
avrdude_message(MSG_INFO, "%s: Error: Address out of range [0x%04hX,0x%04hX]\n",
progname, offset, offset+size-1);
} else
avrdude_message(MSG_INFO, "%s: Error: DFU status %s\n", progname,
flip2_status_str(&status));
dfu_clrstatus(dfu);
}
return cmd_result;
}
const char * flip2_status_str(const struct dfu_status *status)
{
unsigned short selector;
selector = (unsigned short) status->bStatus << 8;
selector |= status->bState;
switch (selector) {
case FLIP2_STATUS_OK: return "OK";
case FLIP2_STATUS_STALL: return "STALL";
case FLIP2_STATUS_MEM_UKNOWN: return "MEM_UKNOWN";
case FLIP2_STATUS_MEM_PROTECTED: return "MEM_PROTECTED";
case FLIP2_STATUS_OUTOFRANGE: return "OUTOFRANGE";
case FLIP2_STATUS_BLANK_FAIL: return "BLANK_FAIL";
case FLIP2_STATUS_ERASE_ONGOING: return "ERASE_ONGOING";
default: return dfu_status_str(status->bStatus);
}
}
const char * flip2_mem_unit_str(enum flip2_mem_unit mem_unit)
{
switch (mem_unit) {
case FLIP2_MEM_UNIT_FLASH: return "Flash";
case FLIP2_MEM_UNIT_EEPROM: return "EEPROM";
case FLIP2_MEM_UNIT_SECURITY: return "security";
case FLIP2_MEM_UNIT_CONFIGURATION: return "configuration";
case FLIP2_MEM_UNIT_BOOTLOADER: return "bootloader version";
case FLIP2_MEM_UNIT_SIGNATURE: return "signature";
case FLIP2_MEM_UNIT_USER: return "user";
case FLIP2_MEM_UNIT_INT_RAM: return "internal RAM";
case FLIP2_MEM_UNIT_EXT_MEM_CS0: return "EXT_MEM_CS0";
case FLIP2_MEM_UNIT_EXT_MEM_CS1: return "EXT_MEM_CS1";
case FLIP2_MEM_UNIT_EXT_MEM_CS2: return "EXT_MEM_CS2";
case FLIP2_MEM_UNIT_EXT_MEM_CS3: return "EXT_MEM_CS3";
case FLIP2_MEM_UNIT_EXT_MEM_CS4: return "EXT_MEM_CS4";
case FLIP2_MEM_UNIT_EXT_MEM_CS5: return "EXT_MEM_CS5";
case FLIP2_MEM_UNIT_EXT_MEM_CS6: return "EXT_MEM_CS6";
case FLIP2_MEM_UNIT_EXT_MEM_CS7: return "EXT_MEM_CS7";
case FLIP2_MEM_UNIT_EXT_MEM_DF: return "EXT_MEM_DF";
default: return "unknown";
}
}
enum flip2_mem_unit flip2_mem_unit(const char *name) {
if (strcmp(name, "application") == 0)
return FLIP2_MEM_UNIT_FLASH;
if (strcmp(name, "eeprom") == 0)
return FLIP2_MEM_UNIT_EEPROM;
if (strcmp(name, "signature") == 0)
return FLIP2_MEM_UNIT_SIGNATURE;
return FLIP2_MEM_UNIT_UNKNOWN;
}
#else /* HAVE_LIBUSB */
/* EXPORTED PROGRAMMER FUNCTION DEFINITIONS */
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
int flip2_open(PROGRAMMER *pgm, const char *port_spec) {
fprintf(stderr, "%s: Error: No USB support in this compile of avrdude\n",
progname);
return -1;
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
int flip2_initialize(const PROGRAMMER *pgm, const AVRPART *part) {
return -1;
}
void flip2_close(PROGRAMMER* pgm)
{
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
void flip2_enable(PROGRAMMER *pgm, const AVRPART *p) {
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
void flip2_disable(const PROGRAMMER *pgm) {
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
void flip2_display(const PROGRAMMER *pgm, const char *prefix) {
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
int flip2_program_enable(const PROGRAMMER *pgm, const AVRPART *part) {
return -1;
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
int flip2_chip_erase(const PROGRAMMER *pgm, const AVRPART *part) {
return -1;
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
int flip2_read_byte(const PROGRAMMER *pgm, const AVRPART *part, const AVRMEM *mem,
unsigned long addr, unsigned char *value)
{
return -1;
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
int flip2_write_byte(const PROGRAMMER *pgm, const AVRPART *part, const AVRMEM *mem,
unsigned long addr, unsigned char value)
{
return -1;
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
int flip2_paged_load(const PROGRAMMER *pgm, const AVRPART *part, const AVRMEM *mem,
unsigned int page_size, unsigned int addr, unsigned int n_bytes)
{
return -1;
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
int flip2_paged_write(const PROGRAMMER *pgm, const AVRPART *part, const AVRMEM *mem,
unsigned int page_size, unsigned int addr, unsigned int n_bytes)
{
return -1;
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
int flip2_read_sig_bytes(const PROGRAMMER *pgm, const AVRPART *part, const AVRMEM *mem) {
return -1;
}
void flip2_setup(PROGRAMMER * pgm)
{
}
void flip2_teardown(PROGRAMMER * pgm)
{
}
#endif /* HAVE_LIBUSB */